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Particular solutions of the linearized Boltzmann equation for

a binary mixture of rigid spheres

R. D. M. Garcia and C. E. Siewert

Abstract. Particular solutions that correspond to inhomogeneous driving terms in the linearized

Boltzmann equation for the case of a binary mixture of rigid spheres are reported. For flow prob-
lems (in a plane channel) driven by pressure, temperature, and density gradients, inhomogeneous
terms appear in the Boltzmann equation, and it is for these inhomogeneous terms that the partic-

ular solutions are developed. The required solutions for temperature and density driven problems
are expressed in terms of previously reported generalized (vector-valued) Chapman–Enskog func-

tions. However, for the pressure-driven problem (Poiseuille flow) the required particular solution
is expressed in terms of two generalized Burnett functions defined by linear integral equations
in which the driving terms are given in terms of the Chapman–Enskog functions. To complete

this work, expansions in terms of Hermite cubic splines and a collocation scheme are used to
establish numerical solutions for the generalized (vector-valued) Burnett functions.

Keywords. Rarefied gas dynamics, binary mixtures, rigid spheres, particular solutions, lin-

earized Boltzmann equation, Chapman–Enskog and Burnett functions.

1. Introduction

The use of the Chapman–Enskog and Burnett functions for constructing particular
solutions of the linearized Boltzmann equation for a single-species gas starts (as
far as we can establish) with the work of Loyalka and Hickey [1]. The paper by
Loyalka and Hickey [1] is focused on the problem of Poiseuille flow, but the authors
also reported numerical results for (what they called) the Chapman–Enskog and
Burnett functions. A discussion of these same functions (in a different notation)
and a tabulation of numerical values is also available in a text by Sone [2]. Ad-
ditional computations of these basic functions for the case of a single-species gas
have been reported by Siewert [3] and Barichello, Rodrigues, and Siewert [4]. More
relevant to this work is our recent computation [5] of the generalized Chapman–
Enskog (vector-valued) functions relevant to the linearized Boltzmann equation
for a binary mixture of rigid spheres.
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2. Basic formulation

In this work we base our analysis of a binary gas mixture of rigid spheres on the
linearized Boltzmann equation as formulated and utilized in Refs. [5–8]. While
much of the formulation we use here was given in Ref. [5], we repeat some of that
material since now we must account explicitly for the pressure gradient, the tem-
perature gradient, and the density gradients that drive the flow. It is convenient to
linearize our problem about local (rather that absolute) Maxwellian distributions,
and so we start with the basic distribution functions written as

f1(z, x,v) = f1,0(v) {1 + h1(z, λ
1/2
1 v) + [(λ1v

2 − 5/2)KT + KP + (n2/n)KC ]x}
(2.1a)

and

f2(z, x,v) = f2,0(v){1 + h2(z, λ
1/2
2 v) + [(λ2v

2 − 5/2)KT + KP − (n1/n)KC ]x},
(2.1b)

where
fα,0(v) = nα(λα/π)3/2e−λαv2

, λα = mα/(2kT0), (2.2)

and n = n1 + n2. Here k is the Boltzmann constant, mα and nα are the mass
and the equilibrium density of the α-th species, z is the spatial variable in the
transverse, or cross-channel, direction, x is the spatial variable in the longitudinal
direction, (both measured, for example, in cm), v, with components vx, vy, vz and
magnitude v, is the particle velocity, and T0 is a reference temperature. We note
that the constants KT ,KP , and KC define respectively measures of the tempera-
ture, pressure, and density gradients that drive the flow (in the x direction).

In Refs. [5–7] the Boltzmann equation used was derived from linearizations
about absolute Maxwellian distributions, rather than from linearizations as listed
in Eqs. (2.1), and so now, as was done in Ref. [8], we must add inhomogeneous
driving terms to the form of the balance equation used in Refs. [5–7]. Taking
note of Eqs. (2.1), we start our work here with the linearized Boltzmann equation
written as

S(c) + cµ
∂

∂τ
H(τ, c) + V (c)H(τ, c) =

∫

e−c′2
K(c′ : c)H(τ, c′)d3c′, (2.3)

where

H(τ, c) =

[

h1(τ/ε0, c)
h2(τ/ε0, c)

]

, (2.4)

and where we have introduced the dimensionless transverse spatial variable

τ = zε0. (2.5)

Here, in order to use the properties of both species of particles, we define our
mean-free path in terms of

ε0 = (n1 + n2)π
1/2

(n1d1 + n2d2

n1 + n2

)2

, (2.6)



Vol. 59 (2008) Particular solutions of the linearized Boltzmann equation 283

where d1 and d2 are the diameters of the two species that define the mixture.
Note that, in writing Eq. (2.3), we have followed Refs. [5–8] and have introduced a
dimensionless velocity vector c, with components cx, cy, cz and magnitude c. How-
ever, rather than working with Cartesian coordinates, we use spherical coordinates
{c, θ, φ}, with µ = cos θ, to describe the dimensionless velocity vector, so that cµ
is the component of the (dimensionless) velocity vector in the positive τ direction,

cx = c(1 − µ2)1/2 cos φ (2.7)

is the component of the velocity in the direction of the flow, and

H(τ, c) ⇔ H(τ, c, µ, φ).

We find we can write the inhomogeneous driving term in Eq. (2.3) as

S(c) = (c/ε0)(1 − µ2)1/2 cos φ

[

(c2 − 5/2)KT + KP + (n2/n)KC

(c2 − 5/2)KT + KP − (n1/n)KC

]

. (2.8)

In order to compact our presentation here, we do not list the definition of V (c)
or of the matrix scattering kernel K(c′ : c) that appear in Eq. (2.3); instead we
consider that Ref. [8] is available where these quantities are defined explicitly (in
the same notation used here).

Following Ref. [8], a work devoted to half-space flow (in the x direction) prob-
lems, we can, for the considered class of flow problems, write

H(τ, c) = Ψ(τ, c, µ)(1 − µ2)1/2 cos φ, (2.9)

and so we substitute Eq. (2.9) in Eq. (2.3) and use the Legendre expansion of the
scattering kernel K(c′ : c) that was reported in Ref. [5] to find

Υ(c) + cµ
∂

∂τ
Ψ(τ, c, µ) + V (c)Ψ(τ, c, µ)

=

∫

∞

0

∫ 1

−1

e−c′2f(µ′, µ)K(c′, µ′ : c, µ)Ψ(τ, c′, µ′)c′
2
dµ′dc′, (2.10)

where

f(µ′, µ) =
(1 − µ′2

1 − µ2

)1/2

. (2.11)

In addition,

K(c′, µ′ : c, µ) cos φ′ =

∫ 2π

0

K(c′ : c) cos φdφ, (2.12)

or

K(c′, µ′ : c, µ) = (1/2)

∞
∑

n=1

(2n + 1)P 1
n(µ′)P 1

n(µ)Kn(c′, c), (2.13)

where P 1
n(x) is used to denote one of the normalized associated Legendre func-

tions, and where the required definitions of the component kernels Kn(c′, c) are
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given explicitly in Refs. [5] and [8]. To complete Eq. (2.10), we note that the
inhomogeneous driving term is

Υ(c) = (c/ε0)

[

(c2 − 5/2)KT + KP + (n2/n)KC

(c2 − 5/2)KT + KP − (n1/n)KC

]

. (2.14)

3. The generalized Chapman–Enskog functions

For review, we list the defining equations, taken from Ref. [5], for (what we call)
the generalized Chapman–Enskog (vector-valued) functions. In terms of the linear
operators

Ln{F }(c) = V (c)F (c) −

∫

∞

0

e−c′2
Kn(c′, c)F (c′)c′

2
dc′, (3.1)

we list the relevant integral equations as

L1{A
(1)}(c) = cΦ1(c), c ∈ [0,∞), (3.2a)

L1{A
(2)}(c) = cΦ2(c), c ∈ [0,∞), (3.2b)

and

L2{B}(c) = c2Φ, c ∈ [0,∞), (3.2c)

where

Φα(c) = Φα,0 + (c2 − 5/2)Φα,2, α = 1, 2, (3.3)

with

Φ1,0 =

[

c1 − 1
c1

]

, Φ1,2 =

[

c1

c1

]

, (3.4a,b)

Φ2,0 =

[

c2

c2 − 1

]

, and Φ2,2 =

[

c2

c2

]

, (3.4c,d)

and where

Φ =

[

1
a1,2

]

. (3.5)

In general, we use cα = nα/(n1 + n2) and

aα,β = (mβ/mα)1/2. (3.6)

Because of the fact [5] that

Ah(c) = λc

[

1
a1,2

]

, (3.7)

for any value of λ, is a solution of the homogeneous versions of Eqs. (3.2a) and
(3.2b), we add Ah(c) to any solution we find of Eq. (3.2a) or (3.2b) and then
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Table 1. The generalized Burnett functions for the Ne-Ar mixture for the case
c1 = 0.1

c D1(c) D2(c) E1(c) E2(c)

0.0 0.0 0.0 0.0 0.0
0.1 –3.536362(–1) –2.390230(–1) 1.519502(–3) 8.230310(–4)
0.2 –6.889937(–1) –4.682681(–1) 1.186713(–2) 6.512373(–3)
0.3 –9.899660(–1) –6.784673(–1) 3.853333(–2) 2.158742(–2)
0.4 –1.244143 –8.613001(–1) 8.676809(–2) 4.992822(–2)
0.5 –1.443371 –1.009704 1.593159(–1) 9.457722(–2)
0.6 –1.583441 –1.118035 2.567032(–1) 1.576513(–1)
0.7 –1.663268 –1.182085 3.778279(–1) 2.403566(–1)
0.8 –1.683917 –1.198984 5.205987(–1) 3.430817(–1)
0.9 –1.647741 –1.167035 6.824673(–1) 4.655384(–1)
1.0 –1.557738 –1.085503 8.607996(–1) 6.069206(–1)
1.5 –4.089243(–1) 4.844150(–2) 1.921046 1.550966
2.0 1.673168 2.274307 3.125851 2.757838
2.5 4.469378 5.410527 4.376903 4.087493
3.0 7.838522 9.305649 5.633144 5.459620
3.5 1.168320(1) 1.384408(1) 6.878054 6.834072
4.0 1.593270(1) 1.893760(1) 8.105898 8.192771
4.5 2.053372(1) 2.451766(1) 9.315703 9.528949
5.0 2.544492(1) 3.052988(1) 1.050852(1) 1.084137(1)

determine the constants λ1 and λ2 so that our final solutions will satisfy the
normalization conditions

[

c1 c2

]

∫

∞

0

e−c2

A
(α)(c)c3dc = 0, α = 1, 2. (3.8)

In Ref. [5] all three functions A
(1)(c),A(2)(c) and B(c) were expressed in terms of

Hermite cubic splines and tabulated for some test cases. Henceforth, we consider
these basic functions to be known.

4. Particular solutions for temperature and density gradients

In Ref. [8] we have already reported the particular solutions for the cases of tem-
perature and density gradients. So we simply list these solutions here as

ΨT (τ, c, µ) = −(1/ε0)[A
(1)(c) + A

(2)(c)]KT (4.1)

and
ΨC(τ, c, µ) = (1/ε0)[c2A

(1)(c) − c1A
(2)(c)]KC . (4.2)
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Table 2. The generalized Burnett functions for the Ne-Ar mixture for the case
c1 = 0.5

c D1(c) D2(c) E1(c) E2(c)

0.0 0.0 0.0 0.0 0.0
0.1 –2.659442(–1) –1.699998(–1) 1.065199(–3) 5.862471(–4)
0.2 –5.192142(–1) –3.330636(–1) 8.362924(–3) 4.649899(–3)
0.3 –7.483141(–1) –4.825423(–1) 2.737917(–2) 1.547359(–2)
0.4 –9.438213(–1) –6.123281(–1) 6.230267(–2) 3.597528(–2)
0.5 –1.098833 –7.170477(–1) 1.157797(–1) 6.858251(–2)
0.6 –1.208963 –7.921832(–1) 1.889669(–1) 1.151609(–1)
0.7 –1.272018 –8.341171(–1) 2.817887(–1) 1.769966(–1)
0.8 –1.287509 –8.401120(–1) 3.932826(–1) 2.548254(–1)
0.9 –1.256148 –8.082415(–1) 5.219370(–1) 3.488943(–1)
1.0 –1.179412 –7.372898(–1) 6.659686(–1) 4.590425(–1)
1.5 –1.855894(–1) 2.105991(–1) 1.555112 1.227384
2.0 1.648575 2.090584 2.603352 2.271090
2.5 4.139182 4.781919 3.712356 3.479596
3.0 7.162194 8.167974 4.837314 4.776960
3.5 1.063089(1) 1.215323(1) 5.958856 6.117681
4.0 1.448179(1) 1.666169(1) 7.069255 7.475935
4.5 1.866666(1) 2.163266(1) 8.166096 8.837543
5.0 2.314774(1) 2.701701(1) 9.249340 1.019500(1)

5. A particular solution for a pressure gradient

Considering pressure-driven flow, we follow Ref. [9] and seek a particular solution
expressed as

ΨP (τ, c, µ) = [1/(ε0εp)]{cτ
2Φ − 2µτB(c)

+ (1/5)D(c) + [(5µ2 − 1)/5]E(c)}KP , (5.1)

where B(c) is defined by Eq. (3.2c) and where εp, D(c), and E(c) are to be deter-
mined. Substituting Eq. (5.1) into Eq. (2.10) for the considered case of pressure-
driven flow, we find the integral equations

L1{D}(c) = 2cB(c) − 5εpcΓ, c ∈ [0,∞), (5.2a)

and
L3{E}(c) = 2cB(c), c ∈ [0,∞), (5.2b)

where

Γ =

[

1
1

]

. (5.3)
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Table 3. The generalized Burnett functions for the Ne-Ar mixture for the case
c1 = 0.9

c D1(c) D2(c) E1(c) E2(c)

0.0 0.0 0.0 0.0 0.0
0.1 –1.982432(–1) –1.187171(–1) 7.091367(–4) 4.059196(–4)
0.2 –3.880557(–1) –2.325293(–1) 5.599329(–3) 3.227514(–3)
0.3 –5.615392(–1) –3.366787(–1) 1.849809(–2) 1.078330(–2)
0.4 –7.117687(–1) –4.266888(–1) 4.259186(–2) 2.520670(–2)
0.5 –8.330812(–1) –4.984751(–1) 8.024923(–2) 4.837497(–2)
0.6 –9.211891(–1) –5.484256(–1) 1.329675(–1) 8.185992(–2)
0.7 –9.731412(–1) –5.734477(–1) 2.014255(–1) 1.269022(–1)
0.8 –9.871745(–1) –5.709840(–1) 2.856079(–1) 1.844077(–1)
0.9 –9.625069(–1) –5.389996(–1) 3.849631(–1) 2.549627(–1)
1.0 –8.991174(–1) –4.759493(–1) 4.985643(–1) 3.388633(–1)
1.5 –3.062103(–2) 3.315738(–1) 1.237215 9.535544(–1)
2.0 1.641545 1.957169 2.153169 1.847337
2.5 3.966367 4.335720 3.143863 2.941077
3.0 6.828188 7.382024 4.155751 4.167159
3.5 1.014218(1) 1.101716(1) 5.164157 5.477953
4.0 1.384499(1) 1.517402(1) 6.159023 6.842185
4.5 1.788802(1) 1.979668(1) 7.137287 8.239801
5.0 2.223305(1) 2.483861(1) 8.099071 9.657992

Again, because of the fact [5] that

Dh(c) = λc

[

1
a1,2

]

, (5.4)

for any value of λ, is a solution of the homogeneous version of Eq. (5.2a), we intend
to add Dh(c) to any solution we find of Eq. (5.2a), and then we determine the
constant λ so that our final solution will satisfy the normalization condition

[

c1 c2

]

∫

∞

0

e−c2

D(c)c3dc = 0. (5.5)

We proceed to determine the required constant εp. If we consider the inhomoge-
neous integral equation

Ln{F }(c) = R(c), (5.6)

then we can use the fact [5] that

SK
T (c : c

′) = K(c′ : c)S, (5.7)
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Table 4. The generalized Burnett functions for the He-Xe mixture for the case
c1 = 0.1

c D1(c) D2(c) E1(c) E2(c)

0.0 0.0 0.0 0.0 0.0
0.1 –4.502358 –8.720557(–1) 2.326783(–2) 3.204674(–3)
0.2 –7.573805 –1.706968 1.366631(–1) 2.537995(–2)
0.3 –9.241140 –2.469359 3.216220(–1) 8.424910(–2)
0.4 –1.005329(1) –3.127150 5.394149(–1) 1.952168(–1)
0.5 –1.040748(1) –3.652705 7.710396(–1) 3.706070(–1)
0.6 –1.051824(1) –4.023483 1.009547 6.192748(–1)
0.7 –1.049475(1) –4.222207 1.252462 9.465817(–1)
0.8 –1.039257(1) –4.236631 1.498825 1.354667
0.9 –1.024067(1) –4.059018 1.748233 1.842918
1.0 –1.005484(1) –3.685455 2.000519 2.408544
1.5 –8.838425 1.079521 3.304555 6.215502
2.0 –7.337471 1.023691(1) 4.681962 1.111142(1)
2.5 –5.624131 2.307254(1) 6.134873 1.650631(1)
3.0 –3.710048 3.897510(1) 7.662702 2.205899(1)
3.5 –1.594958 5.747466(1) 9.262514 2.760119(1)
4.0 7.229750(–1) 7.821198(1) 1.092956(1) 3.305986(1)
4.5 3.244387 1.009079(2) 1.265782(1) 3.841025(1)
5.0 5.968035 1.253411(2) 1.444045(1) 4.365066(1)

where the superscript T denotes the transpose operation and where

S =

[

c2 0
0 c1a1,2

]

, (5.8)

to deduce, in regard to Eq. (5.6), solvability condition(s) which we write as
∫

∞

0

e−c2

G
T (c)S−1

R(c)c2dc = 0, (5.9)

where G(c) is any solution of the homogeneous equation

Ln{F }(c) = 0. (5.10)

We can now use the fact [5] that

G(c) = c

[

1
a1,2

]

(5.11)

is a solution of Eq. (5.10) for the case n = 1 to conclude from Eqs. (5.2a), (5.6),
and (5.9) that

εp =
[

c1 c2

]

εp, (5.12)
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Table 5. The generalized Burnett functions for the He-Xe mixture for the case
c1 = 0.5

c D1(c) D2(c) E1(c) E2(c)

0.0 0.0 0.0 0.0 0.0
0.1 –1.493783 –2.807519(–1) 5.083082(–3) 1.971211(–3)
0.2 –2.747772 –5.417248(–1) 3.608063(–2) 1.568308(–2)
0.3 –3.677910 –7.636366(–1) 1.032477(–1) 5.245047(–2)
0.4 –4.319351 –9.281652(–1) 2.036549(–1) 1.227696(–1)
0.5 –4.738506 –1.018345 3.302408(–1) 2.359865(–1)
0.6 –4.993860 –1.018881 4.765094(–1) 4.000478(–1)
0.7 –5.129006 –9.163554(–1) 6.375190(–1) 6.213437(–1)
0.8 –5.174873 –6.993449(–1) 8.096893(–1) 9.046452(–1)
0.9 –5.153170 –3.584350(–1) 9.904484(–1) 1.253126
1.0 –5.079209 1.138403(–1) 1.177943 1.668457
1.5 –4.220793 4.589183 2.180144 4.721769
2.0 –2.902413 1.263468(1) 3.247948 9.136197
2.5 –1.314326 2.399460(1) 4.362016 1.443864(1)
3.0 4.794627(–1) 3.828476(1) 5.518735 2.022459(1)
3.5 2.454194 5.513607(1) 6.717798 2.622278(1)
4.0 4.599536 7.423185(1) 7.958826 3.227241(1)
4.5 6.910775 9.530905(1) 9.240556 3.828642(1)
5.0 9.385251 1.181503(2) 1.056080(1) 4.422253(1)

where [5]

εp =
16

15π1/2

∫

∞

0

e−c2

B(c)c4dc. (5.13)

To close this section, we note that each of the inhomogeneous driving terms
used in Eqs. (3.2a) and (3.2b) satisfies the solvability condition listed as Eq. (5.9),
for the case n = 1.

6. Hermite cubic splines and numerical results

In Ref. [5] we reported very explicitly all definitions required to establish our
solution of Eqs. (3.2). As we use exactly the same expansions in terms of Hermite
cubic splines and the same collocation procedure to solve Eqs. (5.2), we do not
report again the details of these calculations.

At this point we can report some numerical results for two specific cases: the
first is a mixture of Ne and Ar atoms, while the second is a mixture of He and Xe
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Table 6. The generalized Burnett functions for the He-Xe mixture for the case
c1 = 0.9

c D1(c) D2(c) E1(c) E2(c)

0.0 0.0 0.0 0.0 0.0
0.1 –3.676171(–1) 3.019568(–1) 9.687980(–4) 1.434414(–3)
0.2 –7.134980(–1) 6.145593(–1) 7.617458(–3) 1.145953(–2)
0.3 –1.021428 9.483865(–1) 2.487811(–2) 3.858766(–2)
0.4 –1.282072 1.313886 5.623660(–2) 9.117648(–2)
0.5 –1.491248 1.721314 1.035945(–1) 1.773571(–1)
0.6 –1.647962 2.180673 1.675747(–1) 3.049682(–1)
0.7 –1.753146 2.701669 2.478885(–1) 4.814975(–1)
0.8 –1.808893 3.293659 3.436435(–1) 7.140320(–1)
0.9 –1.817950 3.965617 4.535876(–1) 1.009217
1.0 –1.783367 4.726102 5.762930(–1) 1.373226
1.5 –1.060625 1.012459(1) 1.332080 4.406470
2.0 3.562759(–1) 1.875799(1) 2.225551 9.797084
2.5 2.261964 3.118881(1) 3.176448 1.777522(1)
3.0 4.535714 4.773974(1) 4.150240 2.834577(1)
3.5 7.104270 6.854674(1) 5.134480 4.136247(1)
4.0 9.921148 9.360939(1) 6.126235 5.659115(1)
4.5 1.295571(1) 1.228330(2) 7.126307 7.375676(1)
5.0 1.618713(1) 1.560617(2) 8.136694 9.257548(1)

atoms. For the sake of our computations, we consider that the data

m2 = 39.948 m1 = 20.183 d2/d1 = 1.406 (Ne-Ar mixture)

and
m2 = 131.30 m1 = 4.0026 d2/d1 = 2.226 (He-Xe mixture)

are exact. It should be noted that the values of the masses used here are taken from
Ref. [10], while the diameter ratios are those reported in Ref. [11]. We tabulate our
results for these two cases in terms of c1, the fractional concentration of the first
particle. We note that the generalized Burnett (vector-valued) functions D(c) and
E(c), as defined, depend only on three ratios: n1/n2, d1/d2 and m1/m2. We list
in Tables 1–3 selected values of the two (vector-valued) functions for the Ne-Ar
mixture, for three values of the concentration parameter: c1 = 0.1, 0.5, 0.9. Similar
results for the He-Xe mixture are given in Tables 4–6.

Finally, we note that we have compared results of our program with the single-
gas results reported in the last two columns of Table 1 of Ref. [3], using three
different ways of simulating the one-gas case with our formulation:

c2 = 0
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D1(c) → c3d(c) E1(c) → c3e(c),

c1 = 0

a2,1D2(c) → c3d(c) a2,1E2(c) → c3e(c),

or
m1/m2 = 1 d1/d2 = 1

D1(c) and D2(c) → c3d(c) E1(c) and E2(c) → c3e(c).

We found perfect agreement with the results of Ref. [3], except the entry c3d(c)
with c = 1.5, for which we obtained −7.351809(−4) instead of −7.351806(−4).

7. Conclusions

While the particular solutions required for the problems of flow driven by tem-
perature and concentration gradients and described by the linearized Boltzmann
equation for a binary mixture of rigid-sphere gases were reported in Ref. [8], the
particular solution for the case of Poiseuille flow in a plane channel has not been
available. In providing our Eq. (5.1), we have now established this required partic-
ular solution. In addition to providing the mathematical result listed as Eq. (5.1),
we have also reported (and illustrated with example computations) our numerical
work with the generalized Burnett (vector-valued) functions that makes available
numerical results relevant to Eq. (5.1). As a final comment, we note that Eq. (5.1)
has been used recently [12] to solve well the problem of Poiseuille flow in a plane
channel, as described by the linearized Boltzmann equation for a mixture of rigid-
sphere gases.
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