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CHANNEL FLOW OF A BINARY MIXTURE OF RIGID SPHERES
DESCRIBED BY THE LINEARIZED BOLTZMANN EQUATION AND

DRIVEN BY TEMPERATURE, PRESSURE, AND
CONCENTRATION GRADIENTS∗

R. D. M. GARCIA† AND C. E. SIEWERT‡

Abstract. An analytical version of the discrete-ordinates method (the ADO method) is used
with recently established analytical expressions for the rigid-sphere scattering kernels in a study
devoted to the flow of a binary gas mixture in a plane channel. In particular, concise and accurate
solutions to basic flow problems in a plane channel driven by temperature, pressure, and concentration
gradients and described by the linearized Boltzmann equation are established for the case of Maxwell
boundary conditions for each of the two species. The velocity, heat-flow, and shear-stress profiles,
as well as the mass- and heat-flow rates, are established for each species of particles, and numerical
results are reported for two binary mixtures (Ne-Ar and He-Xe).
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1. Introduction. While the classical problems of Poiseuille flow and thermal-
creep flow in a plane channel in the general field of rarefied gas dynamics [24, 3, 5, 4]
have been extensively studied for the case of a single-species gas (see, for example,
[1, 25, 20, 22, 21, 14, 17] and the references therein), there are relatively few works (for
example, [23, 16, 13]) devoted to these problems for gas mixtures. While [23] and [16]
are based on the McCormack kinetic model [15], the work of Kosuge et al. [13] is
carried out in terms of the linearized Boltzmann equation (LBE). It can be noted
that the paper by Siewert and Valougeorgis [23] reports (in terms of the McCormack
model) concise and accurate solutions to the problems of channel flow driven by
pressure, temperature, and concentration gradients. While the approach used in [16],
also based on the McCormack model, is purely numerical, that work does investigate
flow in a two-dimensional channel. Most closely related to this work is [13], where
purely numerical methods are used to establish some results for channel-flow problems
based on the LBE.

In this work, we develop and evaluate concise and accurate solutions for flow prob-
lems in a plane-parallel channel driven by pressure, temperature, and concentration
gradients. We make use of an analytical discrete-ordinates method (ADO method,
[2]), and we use (in the LBE) explicit forms of the rigid-sphere collision kernels for
binary gas mixtures [12, 6, 8]. The developed solutions depend (aside from some
normalizations) only on the mass and diameter ratios and the relative equilibrium
concentration of the two species of particles. We allow a free choice of the accom-
modation coefficients for each species at the confining surfaces of the channel. Our
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approach relies on a continuous treatment of both the space and speed variables that
has proved to be particularly efficient and accurate for other classical problems for
binary gas mixtures [7, 9, 10].

2. Basic formulation. The flow problems considered in this work are driven
by a temperature gradient, a pressure gradient, or concentration gradients (or any
linear combination of these effects), and so we base our linearizations of the particle
distribution functions about local rather than absolute conditions, as was done in [9],
for example. We use x to measure distance in the direction (parallel to the confining
walls of the plane-parallel channel) of the mentioned gradients, and so we write the
local Maxwellians (for the two species of particles identified by the subscripts α = 1
and 2) as

(2.1) fα,0(x, v) = nα(x)

[
mα

2πkT (x)

]3/2

exp

{
− mαv

2

2kT (x)

}
, α = 1, 2,

where v is the magnitude of the velocity v. If we now express the considered linear
variations in the number densities and the temperature as

(2.2) nα(x) = nα(1 + Rαx), α = 1, 2,

and

(2.3) T (x) = T0(1 + KTx),

where Rα and KT are considered to be given (small) constants, we can linearize (2.1)
to obtain the approximations

(2.4) f∗
α,0(x, v) = fα,0(v)[1 + fα(v)x], α = 1, 2,

where

(2.5) fα,0(v) = nα(λα/π)3/2e−λαv2

, λα = mα/(2kT0),

is the absolute Maxwellian distribution for nα particles of mass mα in equilibrium
at temperature T0. Here k is the Boltzmann constant, and the fα(v) are to be
determined. If we express the pressure distribution as

(2.6) p(x) = p0(1 + KPx),

where p0 = nkT0, n = n1 + n2, and KP is a given (small) constant, then using the
perfect gas law

(2.7) p(x) = n(x)kT (x),

where

(2.8) n(x) = n1(x) + n2(x),

we find, after neglecting second-order effects,

(2.9) c1R1 + c2R2 = KP −KT ,

where cα = nα/n, α = 1, 2. And so, making use of (2.9), we find that we can use

(2.10a) f1(v) = [m1v
2/(2kT0) − 5/2]KT + KP + c2KC
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and

(2.10b) f2(v) = [m2v
2/(2kT0) − 5/2]KT + KP − c1KC ,

with KC = R1 − R2, to complete (2.4). Using the variable z ∈ [−z0, z0] to measure
the transverse or cross-channel direction, we now write the true velocity distributions
as

(2.11) fα(x, z,v) = fα,0(v){1 + fα(v)x + hα(z, λ1/2
α v)},

where the perturbations hα(z, λ
1/2
α v) are to be determined from a form of the LBE

used in [12, 6, 8, 7, 10] that has an added inhomogeneous driving term due to the x
variation in (2.11).

And so we proceed with an inhomogeneous form of the LBE, for a binary mixture
of rigid spheres, written as

(2.12) S(c) + cμ
∂

∂z
H(z, c) + ε0V (c)H(z, c) = ε0

∫
e−c′2K(c′ : c)H(z, c′)d3c′,

where ε0 is, at this point, an arbitrary parameter that we will soon use to define a
dimensionless spatial variable,

(2.13) H(z, c) =

[
h1(z, c)
h2(z, c)

]
,

and

(2.14) S(c) = c(1−μ2)1/2 cosφ

{
(c2 − 5/2)KT

[
1
1

]
+ KP

[
1
1

]
+ KC

[
c2

−c1

]}
.

Considering that the driving term in (2.12) is given by (2.14), we note that (i) the
case of flow driven by a temperature gradient corresponds to KP = 0, KC = 0, and
KT �= 0, (ii) the case of flow driven by a pressure gradient corresponds to KT = 0,
KC = 0, and KP �= 0, and (iii) the case of flow driven by concentration gradients
corresponds to KP = 0, KT = 0, and KC �= 0. Furthermore, we note that in writing
(2.12), we have introduced the variable changes

(2.15) hα(z, c) = hα(z, λ1/2
α v), α = 1, 2,

in order to work with the dimensionless velocity variable c. Continuing, we note that
we use spherical coordinates {c, θ, φ}, with μ = cos θ, to describe the dimensionless
velocity vector, so that

H(z, c) ⇔ H(z, c, μ, φ).

In our notation, cμ is the component of the (dimensionless) velocity vector in the
positive z direction, and

(2.16) cx = c(1 − μ2)1/2 cosφ

is the component of velocity in the direction x (parallel to the confining surfaces) of
the flow.

In regard to the homogeneous version of (2.12), we note that all of the defining
elements have been developed in a recent series of papers [12, 6, 8]. We consider
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that these works [12, 6, 8] can be consulted if a complete understanding of all of the
required elements is desired. And so at this point we simply quote from our previous
work [12, 6, 8] and list without additional comments the required definitions. First,

(2.17) V (c) = (1/ε0)Σ(c)

and

(2.18) K(c′ : c) = (1/ε0)K(c′ : c),

where

(2.19) Σ(c) =

[
	1(c) 0

0 	2(c)

]
,

with

(2.20) 	α(c) = 	(1)
α (c) + 	(2)

α (c)

and

(2.21) 	(β)
α (c) = 4π1/2nβσα,βaβ,αν(aα,βc).

Here

(2.22) ν(c) =
2c2 + 1

c

∫ c

0

e−x2

dx + e−c2

and

(2.23) aα,β = (mβ/mα)1/2, α, β = 1, 2.

We use σα,β to denote the differential-scattering cross section, which (for the case of
rigid-sphere scattering that is isotropic in the center-of-mass system) we write as [4]

(2.24) σα,β =
1

4

(
dα + dβ

2

)2

, α, β = 1, 2,

where d1 and d2 are the atomic diameters of the two types of gas particles. We
continue to follow [12, 6, 8] and write

(2.25) K(c′ : c) =

[
K1,1(c

′ : c) K1,2(c
′ : c)

K2,1(c
′ : c) K2,2(c

′ : c)

]
,

where

K1,1(c
′ : c) = 4n1σ1,1π

1/2P(c′ : c) + n2σ1,2π
1/2F1,2(c

′ : c),(2.26)

K1,2(c
′ : c) = 4n2σ1,2π

1/2G1,2(c
′ : c),(2.27)

K2,1(c
′ : c) = 4n1σ2,1π

1/2G2,1(c
′ : c),(2.28)

and

(2.29) K2,2(c
′ : c) = 4n2σ2,2π

1/2P(c′ : c) + n1σ2,1π
1/2F2,1(c

′ : c).
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Here

(2.30) P(c′ : c) =
1

π

(
2

|c′ − c| exp

{
|c′ × c|2
|c′ − c|2

}
− |c′ − c|

)

is the basic kernel for a single-species gas used by Pekeris [18]. In addition,

(2.31) Fα,β(c′ : c) = F(aα,β ; c′ : c)

and

(2.32) Gα,β(c′ : c) = G(aα,β ; c′ : c),

where
(2.33)

F(a; c′ : c) =
(a2 + 1)2

a3π|c′ − c| exp

{
a2 |c′ × c|2

|c′ − c|2 − (1 − a2)2(c′
2

+ c2)

4a2
− (a4 − 1)c′ · c

2a2

}

and

(2.34) G(a; c′ : c) =
1

aπ

∣∣c′ − ac
∣∣[J(a; c′ : c) − 1],

with
(2.35a)

J(a; c′ : c) =
(a + 1/a)2

2Δ(a; c′ : c)
exp

{
−2C(a; c′ : c)

(a− 1/a)2

}
sinh

{
2Δ(a; c′ : c)

(a− 1/a)2

}
, a �= 1,

or

(2.35b) J(a; c′ : c) =
1

|c′ − c|2 exp

{
|c′ × c|2
|c′ − c|2

}
, a = 1.

We have used the definitions [12, 6, 8]

(2.36) Δ(a; c′ : c) =
{
C2(a; c′ : c) + (a− 1/a)2|c′ × c|2

}1/2

and

(2.37) C(a; c′ : c) = c′
2

+ c2 − (a + 1/a)c′ · c.

In this work, we intend to compute the velocity, the shear-stress, and the heat-flow
profiles which we express as

U(z) =
1

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2H(z, c)c3(1 − μ2)1/2 cosφdφdμdc,(2.38)

P (z) =
2

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2H(z, c)c4μ(1 − μ2)1/2 cosφdφdμdc,(2.39)

and

(2.40) Q(z) =
1

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2H(z, c)

(
c2 − 5

2

)
c3(1 − μ2)1/2 cosφdφdμdc,
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where the components of U(z), P (z), and Q(z) are the functions Uα(z), Pα(z), and
Qα(z), for α = 1, 2, that can be used, as mentioned in Appendix A of [9], to define
the macroscopic quantities for a binary mixture.

As in [9], it is clear (for the specific flow problems considered here) that an
expansion of H(z, c) in a Fourier series (in the angle φ) requires only one term—that
is, one proportional to cosφ. And so we follow [8] and introduce the dimensionless
spatial variable

(2.41) τ = zε0,

where

(2.42) ε0 = (n1 + n2)π
1/2

(
n1d1 + n2d2

n1 + n2

)2

,

and write

(2.43) H(τ/ε0, c) = Ψ(τ, c, μ)(1 − μ2)1/2 cosφ,

where Ψ(τ, c, μ) is the (vector-valued) function to be determined. We now let z = τ/ε0

in (2.38)–(2.40) and consider that

U(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψ(τ, c, μ)c3(1 − μ2)dμdc,(2.44)

P (τ) =
2

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψ(τ, c, μ)c4(1 − μ2)μdμdc,(2.45)

and

(2.46) Q(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψ(τ, c, μ)

(
c2 − 5

2

)
c3(1 − μ2)dμdc

are the quantities to be computed. It should be noted that to avoid excessive notation,
we have, in writing (2.44)–(2.46), followed the (often-used) procedure of not always
introducing new labels for dependent quantities (in this case U , P , and Q) when the
independent variable is changed.

We can now use (2.43) in (2.12), multiply the resulting equation by cosφ, integrate
over all φ, and use the Legendre expansion of the scattering kernel K(c′ : c) that was
introduced in a previous work—see equations (26) and (65) of [8]—to find

(2.47) Υ(c) + cμ
∂

∂τ
Ψ(τ, c, μ) + V (c)Ψ(τ, c, μ)

=

∫ ∞

0

∫ 1

−1

e−c′2f(μ′, μ)K(c′, μ′ : c, μ)Ψ(τ, c′, μ′)c′
2
dμ′dc′,

where

(2.48) f(μ′, μ) =

(
1 − μ′2

1 − μ2

)1/2

.

In addition,

(2.49) K(c′, μ′ : c, μ) cosφ′ =

∫ 2π

0

K(c′ : c) cosφdφ,
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which we can express, in the notation of [8], as

(2.50) K(c′, μ′ : c, μ) = (1/2)

∞∑
n=1

(2n + 1)P 1
n(μ′)P 1

n(μ)Kn(c′, c),

where P 1
n(x) is used to denote one of the normalized associated Legendre functions.

More explicitly,

(2.51) Pm
l (μ) =

[
(l −m)!

(l + m)!

]1/2

(1 − μ2)m/2 dm

dμm
Pl(μ),

where Pl(μ) is the Legendre polynomial. In addition,

(2.52) Kn(c′, c) =

[
K(1,1)

n (c′, c) K(1,2)
n (c′, c)

K(2,1)
n (c′, c) K(2,2)

n (c′, c)

]
,

with

K(1,1)
n (c′, c) = p1P(n)(c′, c) + (g2/4)F (n)(a1,2; c

′, c),(2.53a)

K(1,2)
n (c′, c) = g2G(n)(a1,2; c

′, c),(2.53b)

K(2,1)
n (c′, c) = g1G(n)(a2,1; c

′, c),(2.53c)

and

(2.53d) K(2,2)
n (c′, c) = p2P(n)(c′, c) + (g1/4)F (n)(a2,1; c

′, c).

We also can write

(2.54) V (c) =

[
v1(c) 0

0 v2(c)

]
,

where now

(2.55a) v1(c) = p1ν(c) + g2a2,1ν(a1,2c)

and

(2.55b) v2(c) = p2ν(c) + g1a1,2ν(a2,1c).

In writing (2.53) and (2.55), we have used

(2.56a) pα = cα

(
ndα

n1d1 + n2d2

)2

, α = 1, 2,

and

(2.56b) gα = cα

(
ndavg

n1d1 + n2d2

)2

, α = 1, 2,

where

(2.57) davg = (d1 + d2)/2.
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In order to avoid too much repetition, we do not list here our expressions for the
Legendre moments

P(n)(c′, c), F (n)(a; c′, c), and G(n)(a; c′, c),

since they are explicitly given in Appendix A of [8]. To complete (2.47), we note that
the inhomogeneous driving term is

(2.58) Υ(c) = (c/ε0)

[
(c2 − 5/2)KT + KP + c2KC

(c2 − 5/2)KT + KP − c1KC

]
.

At the walls located at τ = −a and τ = a, we use a combination of specular and
diffuse reflection, and so, in regard to (2.12), we write the boundary conditions as

(2.59a) H(−a, c, μ, φ) − (I −α)H(−a, c,−μ, φ) −αI−{H}(−a) = 0

and

(2.59b) H(a, c,−μ, φ) − (I − β)H(a, c, μ, φ) − βI+{H}(a) = 0

for μ ∈ (0, 1] and all c and all φ. Here

I∓{H}(z) =
2

π

∫ ∞

0

∫ 1

0

∫ 2π

0

e−c′2H(z, c′,∓μ′, φ′)μ′c′
3
dφ′dμ′dc′,(2.60)

α = diag
{
α1, α2

}
,(2.61a)

and

(2.61b) β = diag
{
β1, β2

}
,

where α1, α2, β1, and β2 are the accommodation coefficients to be used for the two
species of gas particles at the confining surfaces. Taking note of (2.43), we find from
(2.59) the boundary conditions subject to which we must solve (2.47), that is,

(2.62a) Ψ(−a, c, μ) − (I −α)Ψ(−a, c,−μ) = 0

and

(2.62b) Ψ(a, c,−μ) − (I − β)Ψ(a, c, μ) = 0,

for μ ∈ (0, 1] and all c. We use I to denote the 2 × 2 identity matrix.

3. Solutions. Following our previous work as reported in [9, 11], we express our
solution (evaluated at the N pairs of discrete ordinates ±μi) of (2.47) in the form

(3.1) Ψ(τ, c,±μi) = Ψps(τ, c,±μi) + Ψ∗(τ, c,±μi) + Ψapp(τ, c,±μi)

for i = 1, 2, . . . , N . We note that Ψ∗(τ, c, μ) is defined in terms of two of the exact
elementary solutions we reported in a previous work [8], that is,

(3.2) Ψ∗(τ, c, μ) = A1cΦ + B1

[
cτΦ − μB(c)

]
,

where

(3.3) Φ =

[
1

a1,2

]
,
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and where B(c) is one of the generalized Chapman–Enskog (vector-valued) functions
discussed in [8]. In addition,
(3.4)

Ψapp(τ, c,±μi) = Π(c)

J∑
j=2

[
AjΦ(νj ,±μi)e

−(a+τ)/νj + BjΦ(νj ,∓μi)e
−(a−τ)/νj

]
.

For our computations, we use the 2 × 2(K + 1) matrix

(3.5) Π(c) =
[
P0(2e−c − 1)I P1(2e−c − 1)I · · ·PK(2e−c − 1)I

]
,

where K + 1 is the number of basis functions used to represent the speed dependence
of the approximate part of our solution. We note that [9] can be consulted if a
complete understanding of the eigenvalue spectrum {νj} and the elementary solutions
{Φ(νj ,±μi)} is desired. Since (2.47) has the inhomogeneous driving term Υ(c), we
have included in (3.1) the particular solution

(3.6) Ψps(τ, c, μ) = ΨP (τ, c, μ) + ΨT (τ, c, μ) + ΨC(τ, c, μ),

the elements of which were developed and reported in [11]. We repeat from [11]:

ΨP (τ, c, μ) = [1/(ε0εp)]{cτ2Φ − 2μτB(c) + (1/5)D(c) + [(5μ2 − 1)/5]E(c)}KP ,

(3.7)

ΨT (τ, c, μ) = −(1/ε0)[A
(1)(c) + A(2)(c)]KT ,(3.8)

and

(3.9) ΨC(τ, c, μ) = (1/ε0)[c2A
(1)(c) − c1A

(2)(c)]KC .

In [8] and [11], we have defined and computed, for selected cases, the generalized

Chapman–Enskog and Burnett (vector-valued) functions A(1)(c), A(2)(c), B(c), D(c),
and E(c) that appear in (3.7)–(3.9). In addition, the constant εp is expressed in [11]
as

(3.10) εp =
[
c1 c2

]
εp,

where

(3.11) εp =
16

15π1/2

∫ ∞

0

e−c2B(c)c4dc.

We note that the components εp,1 and εp,2 of εp have been evaluated (for several data
sets) in [8].

Finally, to complete our discussion of (3.1), we note that the arbitrary constants
{Aj , Bj} are to be determined from boundary conditions to be applied at τ = ±a. For
this purpose, we substitute (3.1) into discrete-ordinates versions of (2.62), multiply
the resulting equations by

c2 exp{−c2}ΠT (c),

where the superscript T is used to denote the transpose operation, and integrate
over all c to define a system of 2J linear algebraic equations for the 2J unspecified
constants. We note that only the right-hand-side vector of such system is problem-
dependent.
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4. Quantities of interest. Considering that we have solved the system of linear
algebraic equations to establish the arbitrary constants {Aj , Bj}, we can use (3.1) to
find our final expressions for the quantities of interest here, that is, the velocity, heat-
flow, and shear-stress profiles. And so, using (3.1) in discrete-ordinates versions of
(2.44)–(2.46), we find

U(τ) = Ups(τ) + (1/2)(A1 + B1τ)Φ +

J∑
j=2

[
Aje

−(a+τ)/νj + Bje
−(a−τ)/νj

]
U j ,

(4.1a)

Q(τ) = Qps(τ) +

J∑
j=2

[
Aje

−(a+τ)/νj + Bje
−(a−τ)/νj

]
Qj ,(4.1b)

and

(4.1c) P (τ) = P ps(τ) − (1/2)B1εp +

J∑
j=2

[
Aje

−(a+τ)/νj −Bje
−(a−τ)/νj

]
Pj .

In writing (4.1), we have used the definitions

U j = Π1Xj ,(4.2a)

Pj = 2Π2Y j ,(4.2b)

and

(4.2c) Qj = [Π3 − (5/2)Π1]Xj ,

where

Xj =
1

π1/2

N∑
k=1

wk(1 − μ2
k)[Φ(νj , μk) + Φ(νj ,−μk)],(4.3a)

Y j =
1

π1/2

N∑
k=1

wkμk(1 − μ2
k)[Φ(νj , μk) − Φ(νj ,−μk)],(4.3b)

and

(4.4) Πn =

∫ ∞

0

e−c2Π(c)cn+2dc.

In (4.3), we use the weights {wk}, along with the nodes {μk}, to complete the defi-
nition of our N -point, half-range quadrature scheme. Finally, to complete (4.1), we
must compute

Ups(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψps(τ, c, μ)c3(1 − μ2)dμdc,(4.5)

Qps(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψps(τ, c, μ)

(
c2 − 5

2

)
c3(1 − μ2)dμdc,(4.6)
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and

(4.7) P ps(τ) =
2

π1/2

∫ ∞

0

∫ 1

−1

e−c2Ψps(τ, c, μ)c4(1 − μ2)μdμdc.

Using (3.6)–(3.9), we find

Ups(τ) = (1/ε0){(1/εp)[(1/2)τ2Φ + DU ]Kp

− [A
(1)
U + A

(2)
U ]KT + [c2A

(1)
U − c1A

(2)
U ]KC},

(4.8)

Qps(τ) = (1/ε0){(1/εp)DQKp − [A
(1)
Q + A

(2)
Q ]KT + [c2A

(1)
Q − c1A

(2)
Q ]KC},(4.9)

and

(4.10) P ps(τ) = −[τ/(ε0εp)]εpKp,

where

DU =
4

15π1/2

∫ ∞

0

e−c2D(c)c3dc,(4.11a)

A
(α)
U =

4

3π1/2

∫ ∞

0

e−c2A(α)(c)c3dc, α = 1, 2,(4.11b)

DQ =
4

15π1/2

∫ ∞

0

e−c2D(c)

(
c2 − 5

2

)
c3dc,(4.11c)

and

(4.11d) A
(α)
Q =

4

3π1/2

∫ ∞

0

e−c2A(α)(c)

(
c2 − 5

2

)
c3dc, α = 1, 2.

Since the expressions listed as (4.1a), (4.1b), (4.8), and (4.9) are analytical and
continuous in the space variable, we can immediately find results for the normalized
mass- and heat-flow rates

(4.12) U =
1

2a2

∫ a

−a

U(τ)dτ

and

(4.13) Q =
1

2a2

∫ a

−a

Q(τ)dτ,

where the factor 1/(2a2) is included in order to be consistent with definitions adopted
in other works and to facilitate comparisons with numerical results reported in these
works. We find

(4.14) U =
1

2a2

[
Ups + aA1Φ +

J∑
j=2

νj(Aj + Bj)(1 − e−2a/νj )U j

]

and

(4.15) Q =
1

2a2

[
Qps +

J∑
j=2

νj(Aj + Bj)(1 − e−2a/νj )Qj

]
,
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Table 1

Pressure-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the Ne-Ar
mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) −U2(−a + 2ηa) Q1(−a + 2ηa) Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 2.0012(−1) 1.6301(−1) 6.6293(−2) 4.8754(−2) 1.7779(−2) 3.2742(−2)
0.1 2.0308(−1) 1.7049(−1) 6.7557(−2) 5.1904(−2) 9.6303(−3) 2.1508(−2)
0.2 2.0430(−1) 1.7393(−1) 6.8083(−2) 5.3332(−2) 1.4419(−3) 1.0300(−2)
0.3 2.0455(−1) 1.7547(−1) 6.8208(−2) 5.3981(−2) −6.7713(−3) −8.9089(−4)
0.4 2.0395(−1) 1.7549(−1) 6.7987(−2) 5.4019(−2) −1.5002(−2) −1.2071(−2)
0.5 2.0254(−1) 1.7409(−1) 6.7431(−2) 5.3493(−2) −2.3243(−2) −2.3243(−2)
0.6 2.0028(−1) 1.7128(−1) 6.6527(−2) 5.2399(−2) −3.1491(−2) −3.4411(−2)
0.7 1.9708(−1) 1.6691(−1) 6.5233(−2) 5.0678(−2) −3.9742(−2) −4.5577(−2)
0.8 1.9274(−1) 1.6068(−1) 6.3464(−2) 4.8191(−2) −4.7990(−2) −5.6745(−2)
0.9 1.8682(−1) 1.5183(−1) 6.1023(−2) 4.4605(−2) −5.6229(−2) −6.7919(−2)
1.0 1.7702(−1) 1.3641(−1) 5.6912(−2) 3.8171(−2) −6.4447(−2) −7.9107(−2)

where

(4.16) Ups = (2a/ε0){(1/εp)[(1/6)a2Φ + DU ]Kp

− [A
(1)
U + A

(2)
U ]KT + [c2A

(1)
U − c1A

(2)
U ]KC}

and

(4.17) Qps = (2a/ε0){(1/εp)DQKp − [A
(1)
Q + A

(2)
Q ]KT + [c2A

(1)
Q − c1A

(2)
Q ]KC}.

As our solutions are now complete, we are ready for some numerical results.

5. Numerical results. The sample cases for which we report numerical results
in this work are defined in terms of two binary mixtures: Ne-Ar and He-Xe. We
note that only the mass ratio m1/m2, the diameter ratio d1/d2, and the density ratio
n1/n2 are needed to define the LBE for rigid-sphere interactions, and so we use the
basic data:

m2 = 39.948, m1 = 20.183, d2/d1 = 1.406, n1/n2 = 2/3

for the Ne-Ar mixture and

m2 = 131.30, m1 = 4.0026, d2/d1 = 2.226, n1/n2 = 2/3

for the He-Xe mixture. It should be noted here that the values of the masses of these
gas species were taken from [23] and those of the diameter ratios from [19].

We report in Tables 1–12 the velocity, heat-flow, and shear-stress profiles com-
puted for the three considered problems of pressure-driven, temperature-driven, and
concentration-driven flow, using as additional input data the accommodation coeffi-
cients α1 = 0.2, α2 = 0.4, β1 = 0.6, and β2 = 0.8 and two different values of the
channel width (2a = 0.1 and 1.0). The numerical results reported in Tables 1–12 are
thought to be correct to within ±1 in the last reported digit and were obtained by in-
creasing the values of the approximation parameters {L,M,K,N,Ks} of our method
in steps, until numerical convergence was observed. Here L is the kernel truncation
parameter (the maximum value of n considered in the summation of (2.50)), M is
the order of the Gaussian quadrature used to evaluate numerically integrals over the
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Table 2

Pressure-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the He-Xe
mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) −U2(−a + 2ηa) Q1(−a + 2ηa) Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 1.7251(−1) 1.7483(−1) 7.3532(−2) 4.9529(−2) 1.4254(−2) 3.5944(−2)
0.1 1.7469(−1) 1.8461(−1) 7.4540(−2) 5.4100(−2) 7.6815(−3) 2.3659(−2)
0.2 1.7559(−1) 1.8881(−1) 7.4952(−2) 5.6008(−2) 1.1142(−3) 1.1370(−2)
0.3 1.7577(−1) 1.9069(−1) 7.5037(−2) 5.6886(−2) −5.4543(−3) −9.1737(−4)
0.4 1.7532(−1) 1.9079(−1) 7.4839(−2) 5.6994(−2) −1.2031(−2) −1.3200(−2)
0.5 1.7426(−1) 1.8925(−1) 7.4367(−2) 5.6408(−2) −1.8622(−2) −2.5472(−2)
0.6 1.7257(−1) 1.8606(−1) 7.3610(−2) 5.5124(−2) −2.5236(−2) −3.7729(−2)
0.7 1.7017(−1) 1.8106(−1) 7.2531(−2) 5.3067(−2) −3.1881(−2) −4.9966(−2)
0.8 1.6692(−1) 1.7388(−1) 7.1059(−2) 5.0049(−2) −3.8566(−2) −6.2176(−2)
0.9 1.6246(−1) 1.6353(−1) 6.9031(−2) 4.5589(−2) −4.5303(−2) −7.4352(−2)
1.0 1.5509(−1) 1.4439(−1) 6.5634(−2) 3.6907(−2) −5.2111(−2) −8.6479(−2)

Table 3

Pressure-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the Ne-Ar
mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) −U2(−a + 2ηa) Q1(−a + 2ηa) Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 1.3905 1.5596 1.3575(−1) 9.4647(−2) 1.6828(−1) 4.3756(−1)
0.1 1.4709 1.8014 1.5711(−1) 1.5084(−1) 1.1953(−1) 3.0339(−1)
0.2 1.5097 1.9042 1.6796(−1) 1.7100(−1) 5.7794(−2) 1.7788(−1)
0.3 1.5257 1.9529 1.7378(−1) 1.8082(−1) −1.0287(−2) 5.6604(−2)
0.4 1.5209 1.9600 1.7546(−1) 1.8426(−1) −8.1812(−2) −6.2380(−2)
0.5 1.4958 1.9292 1.7326(−1) 1.8256(−1) −1.5489(−1) −1.8033(−1)
0.6 1.4498 1.8612 1.6702(−1) 1.7579(−1) −2.2800(−1) −2.9825(−1)
0.7 1.3818 1.7538 1.5622(−1) 1.6306(−1) −2.9965(−1) −4.1716(−1)
0.8 1.2893 1.6006 1.3972(−1) 1.4198(−1) −3.6806(−1) −5.3821(−1)
0.9 1.1651 1.3840 1.1491(−1) 1.0648(−1) −4.3065(−1) −6.6315(−1)
1.0 9.6070(−1) 9.8737(−1) 6.7860(−2) 2.0640(−2) −4.8170(−1) −7.9579(−1)

Table 4

Pressure-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the He-Xe
mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) −U2(−a + 2ηa) Q1(−a + 2ηa) Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 6.4867(−1) 1.8406 1.4476(−1) 9.1086(−2) 7.4981(−2) 5.2277(−1)
0.1 6.8104(−1) 2.1498 1.5355(−1) 1.7507(−1) 5.1223(−2) 3.7194(−1)
0.2 6.9653(−1) 2.2785 1.5721(−1) 2.0267(−1) 2.4189(−2) 2.2330(−1)
0.3 7.0306(−1) 2.3412 1.5884(−1) 2.1651(−1) −4.4918(−3) 7.5753(−2)
0.4 7.0167(−1) 2.3519 1.5896(−1) 2.2175(−1) −3.4250(−2) −7.1074(−2)
0.5 6.9255(−1) 2.3149 1.5770(−1) 2.1998(−1) −6.4771(−2) −2.1739(−1)
0.6 6.7546(−1) 2.2308 1.5497(−1) 2.1132(−1) −9.5859(−2) −3.6334(−1)
0.7 6.4971(−1) 2.0973 1.5044(−1) 1.9468(−1) −1.2739(−1) −5.0898(−1)
0.8 6.1378(−1) 1.9075 1.4339(−1) 1.6716(−1) −1.5929(−1) −6.5438(−1)
0.9 5.6382(−1) 1.6418 1.3211(−1) 1.2119(−1) −1.9153(−1) −7.9956(−1)
1.0 4.7729(−1) 1.1502 1.0784(−1) 1.7932(−3) −2.2385(−1) −9.4468(−1)

speed variable, K is the order of the basis-function approximation introduced in (3.4)
and (3.5) to take care of the speed dependence of the solution, N is the number of
discrete ordinates used to represent the μ variable in (0, 1), and Ks is the number
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Table 5

Temperature-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
Ne-Ar mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η U1(−a + 2ηa) U2(−a + 2ηa) −Q1(−a + 2ηa) −Q2(−a + 2ηa) −P1(−a + 2ηa) −P2(−a + 2ηa)

0.0 6.9591(−2) 4.6009(−2) 3.3654(−1) 2.2923(−1) 6.9271(−5) 3.4849(−4)
0.1 7.0821(−2) 4.8693(−2) 3.4162(−1) 2.3995(−1) 9.1318(−5) 3.3379(−4)
0.2 7.1328(−2) 4.9914(−2) 3.4369(−1) 2.4483(−1) 9.9311(−5) 3.2847(−4)
0.3 7.1444(−2) 5.0468(−2) 3.4414(−1) 2.4704(−1) 9.9592(−5) 3.2828(−4)
0.4 7.1223(−2) 5.0495(−2) 3.4320(−1) 2.4716(−1) 9.5821(−5) 3.3079(−4)
0.5 7.0675(−2) 5.0036(−2) 3.4092(−1) 2.4536(−1) 9.0902(−5) 3.3407(−4)
0.6 6.9786(−2) 4.9086(−2) 3.3723(−1) 2.4160(−1) 8.7513(−5) 3.3633(−4)
0.7 6.8517(−2) 4.7594(−2) 3.3197(−1) 2.3566(−1) 8.8411(−5) 3.3573(−4)
0.8 6.6783(−2) 4.5443(−2) 3.2477(−1) 2.2707(−1) 9.6781(−5) 3.3015(−4)
0.9 6.4392(−2) 4.2344(−2) 3.1481(−1) 2.1462(−1) 1.1689(−4) 3.1675(−4)
1.0 6.0363(−2) 3.6811(−2) 2.9793(−1) 1.9222(−1) 1.5656(−4) 2.9030(−4)

Table 6

Temperature-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
He-Xe mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η U1(−a + 2ηa) U2(−a + 2ηa) −Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) −P2(−a + 2ηa)

0.0 7.6247(−2) 4.0307(−2) 3.4185(−1) 2.1217(−1) −2.3469(−4) 1.8717(−4)
0.1 7.7279(−2) 4.3532(−2) 3.4621(−1) 2.2424(−1) −1.4265(−4) 2.4853(−4)
0.2 7.7703(−2) 4.4892(−2) 3.4798(−1) 2.2939(−1) −4.3015(−5) 3.1495(−4)
0.3 7.7789(−2) 4.5519(−2) 3.4834(−1) 2.3174(−1) 6.0403(−5) 3.8389(−4)
0.4 7.7585(−2) 4.5592(−2) 3.4747(−1) 2.3196(−1) 1.6554(−4) 4.5398(−4)
0.5 7.7098(−2) 4.5163(−2) 3.4541(−1) 2.3024(−1) 2.7077(−4) 5.2414(−4)
0.6 7.6316(−2) 4.4230(−2) 3.4212(−1) 2.2658(−1) 3.7457(−4) 5.9334(−4)
0.7 7.5204(−2) 4.2737(−2) 3.3743(−1) 2.2073(−1) 4.7534(−4) 6.6052(−4)
0.8 7.3690(−2) 4.0546(−2) 3.3104(−1) 2.1217(−1) 5.7114(−4) 7.2438(−4)
0.9 7.1607(−2) 3.7317(−2) 3.2222(−1) 1.9955(−1) 6.5924(−4) 7.8312(−4)
1.0 6.8134(−2) 3.1091(−2) 3.0745(−1) 1.7544(−1) 7.3409(−4) 8.3302(−4)

Table 7

Temperature-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
Ne-Ar mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η U1(−a + 2ηa) U2(−a + 2ηa) −Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) −P2(−a + 2ηa)

0.0 1.6352(−1) 1.1439(−1) 7.3626(−1) 5.3931(−1) −1.5921(−3) 1.8955(−3)
0.1 1.7493(−1) 1.3808(−1) 7.7567(−1) 6.1916(−1) −2.3711(−3) 1.3762(−3)
0.2 1.8001(−1) 1.4709(−1) 7.9100(−1) 6.4734(−1) −2.2690(−3) 1.4442(−3)
0.3 1.8245(−1) 1.5156(−1) 7.9742(−1) 6.6053(−1) −1.8145(−3) 1.7473(−3)
0.4 1.8282(−1) 1.5304(−1) 7.9733(−1) 6.6445(−1) −1.1850(−3) 2.1669(−3)
0.5 1.8121(−1) 1.5202(−1) 7.9125(−1) 6.6080(−1) −4.6766(−4) 2.6451(−3)
0.6 1.7752(−1) 1.4845(−1) 7.7869(−1) 6.4946(−1) 2.7989(−4) 3.1435(−3)
0.7 1.7133(−1) 1.4188(−1) 7.5812(−1) 6.2872(−1) 9.9769(−4) 3.6220(−3)
0.8 1.6181(−1) 1.3114(−1) 7.2619(−1) 5.9426(−1) 1.5901(−3) 4.0170(−3)
0.9 1.4703(−1) 1.1335(−1) 6.7487(−1) 5.3501(−1) 1.8583(−3) 4.1958(−3)
1.0 1.1654(−1) 7.1981(−2) 5.6056(−1) 3.8620(−1) 1.2125(−3) 3.7653(−3)

of spline functions used to compute (without postprocessing) the Chapman–Enskog

(vector-valued) functions A(1)(c), A(2)(c), B(c), D(c), and E(c), as explained in de-
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Table 8

Temperature-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
He-Xe mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η U1(−a + 2ηa) U2(−a + 2ηa) −Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) −P2(−a + 2ηa)

0.0 1.6158(−1) 9.7015(−2) 6.8378(−1) 4.7673(−1) −1.6983(−3) 1.0746(−3)
0.1 1.6960(−1) 1.2111(−1) 7.1404(−1) 5.5454(−1) −1.5536(−3) 1.1711(−3)
0.2 1.7288(−1) 1.2977(−1) 7.2547(−1) 5.8063(−1) −1.0929(−3) 1.4782(−3)
0.3 1.7427(−1) 1.3418(−1) 7.2994(−1) 5.9301(−1) −5.1014(−4) 1.8667(−3)
0.4 1.7425(−1) 1.3582(−1) 7.2943(−1) 5.9702(−1) 1.4055(−4) 2.3005(−3)
0.5 1.7293(−1) 1.3512(−1) 7.2436(−1) 5.9424(−1) 8.3761(−4) 2.7652(−3)
0.6 1.7019(−1) 1.3205(−1) 7.1433(−1) 5.8455(−1) 1.5696(−3) 3.2532(−3)
0.7 1.6572(−1) 1.2617(−1) 6.9803(−1) 5.6636(−1) 2.3234(−3) 3.7557(−3)
0.8 1.5882(−1) 1.1639(−1) 6.7267(−1) 5.3564(−1) 3.0706(−3) 4.2538(−3)
0.9 1.4786(−1) 9.9969(−2) 6.3148(−1) 4.8193(−1) 3.7379(−3) 4.6988(−3)
1.0 1.2437(−1) 5.9234(−2) 5.3915(−1) 3.3921(−1) 4.0610(−3) 4.9141(−3)

Table 9

Concentration-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
Ne-Ar mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) U2(−a + 2ηa) Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 8.5004(−2) 3.3436(−2) 3.2208(−2) 9.7700(−3) 7.5261(−3) −6.8152(−3)
0.1 8.6279(−2) 3.4967(−2) 3.2792(−2) 1.0403(−2) 4.0901(−3) −4.5245(−3)
0.2 8.6795(−2) 3.5673(−2) 3.3027(−2) 1.0691(−2) 6.8986(−4) −2.2577(−3)
0.3 8.6903(−2) 3.5997(−2) 3.3081(−2) 1.0828(−2) −2.6950(−3) −1.1075(−6)
0.4 8.6666(−2) 3.6015(−2) 3.2985(−2) 1.0847(−2) −6.0786(−3) 2.2546(−3)
0.5 8.6094(−2) 3.5752(−2) 3.2742(−2) 1.0758(−2) −9.4735(−3) 4.5179(−3)
0.6 8.5173(−2) 3.5201(−2) 3.2347(−2) 1.0559(−2) −1.2892(−2) 6.7972(−3)
0.7 8.3857(−2) 3.4331(−2) 3.1777(−2) 1.0236(−2) −1.6349(−2) 9.1014(−3)
0.8 8.2054(−2) 3.3072(−2) 3.0988(−2) 9.7578(−3) −1.9858(−2) 1.1441(−2)
0.9 7.9550(−2) 3.1254(−2) 2.9878(−2) 9.0476(−3) −2.3442(−2) 1.3830(−2)
1.0 7.5288(−2) 2.8012(−2) 2.7939(−2) 7.7216(−3) −2.7137(−2) 1.6294(−2)

Table 10

Concentration-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
He-Xe mixture with 2a = 0.1, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) U2(−a + 2ηa) Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 9.3618(−2) 3.3805(−2) 4.3904(−2) 9.3958(−3) 7.6577(−3) −6.9794(−3)
0.1 9.4798(−2) 3.5686(−2) 4.4496(−2) 1.0264(−2) 4.1248(−3) −4.6241(−3)
0.2 9.5276(−2) 3.6496(−2) 4.4737(−2) 1.0627(−2) 6.1580(−4) −2.2848(−3)
0.3 9.5370(−2) 3.6870(−2) 4.4785(−2) 1.0800(−2) −2.8838(−3) 4.8252(−5)
0.4 9.5131(−2) 3.6911(−2) 4.4669(−2) 1.0833(−2) −6.3842(−3) 2.3819(−3)
0.5 9.4572(−2) 3.6648(−2) 4.4392(−2) 1.0741(−2) −9.8947(−3) 4.7222(−3)
0.6 9.3677(−2) 3.6077(−2) 4.3949(−2) 1.0523(−2) −1.3425(−2) 7.0757(−3)
0.7 9.2405(−2) 3.5164(−2) 4.3317(−2) 1.0161(−2) −1.6985(−2) 9.4488(−3)
0.8 9.0671(−2) 3.3826(−2) 4.2455(−2) 9.6159(−3) −2.0586(−2) 1.1850(−2)
0.9 8.8280(−2) 3.1859(−2) 4.1263(−2) 8.7885(−3) −2.4244(−2) 1.4288(−2)
1.0 8.4274(−2) 2.8114(−2) 3.9260(−2) 7.1141(−3) −2.7987(−2) 1.6783(−2)

tail in [8] and [11]. To be more specific, we note that we have used 20 ≤ L ≤ 95,
100 ≤ M ≤ 400, 20 ≤ K ≤ 35, 20 ≤ N ≤ 50, and 80 ≤ Ks − 2 ≤ 1280. In addition to
the profiles reported in Tables 1–12, we report in Tables 13–15 mass- and heat-flow
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Table 11

Concentration-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
Ne-Ar mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) U2(−a + 2ηa) Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 1.6697(−1) 6.1119(−2) 5.0453(−2) 5.4942(−3) 1.9191(−2) −1.7106(−2)
0.1 1.7575(−1) 7.0455(−2) 5.3750(−2) 7.7513(−3) 1.1026(−2) −1.1663(−2)
0.2 1.7865(−1) 7.4230(−2) 5.4732(−2) 8.3674(−3) 4.9631(−3) −7.6208(−3)
0.3 1.7964(−1) 7.6312(−2) 5.5100(−2) 8.6958(−3) −1.8189(−4) −4.1908(−3)
0.4 1.7935(−1) 7.7304(−2) 5.5117(−2) 8.9489(−3) −4.9955(−3) −9.8168(−4)
0.5 1.7796(−1) 7.7372(−2) 5.4846(−2) 9.1930(−3) −9.9215(−3) 2.3023(−3)
0.6 1.7537(−1) 7.6472(−2) 5.4254(−2) 9.4308(−3) −1.5388(−2) 5.9467(−3)
0.7 1.7122(−1) 7.4366(−2) 5.3204(−2) 9.6061(−3) −2.1898(−2) 1.0287(−2)
0.8 1.6470(−1) 7.0492(−2) 5.1378(−2) 9.5542(−3) −3.0148(−2) 1.5786(−2)
0.9 1.5379(−1) 6.3444(−2) 4.7937(−2) 8.7972(−3) −4.1284(−2) 2.3211(−2)
1.0 1.2756(−1) 4.5357(−2) 3.8020(−2) 4.3594(−3) −5.7978(−2) 3.4340(−2)

Table 12

Concentration-driven flow: species-specific velocity, heat-flow, and shear-stress profiles for the
He-Xe mixture with 2a = 1.0, α1 = 0.2, α2 = 0.4, β1 = 0.6, β2 = 0.8, and n1/n2 = 2/3.

η −U1(−a + 2ηa) U2(−a + 2ηa) Q1(−a + 2ηa) −Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 1.9140(−1) 6.6006(−2) 8.6133(−2) 2.3421(−3) 2.0835(−2) −1.8831(−2)
0.1 1.9968(−1) 7.6638(−2) 9.0237(−2) 4.9463(−3) 1.2501(−2) −1.3275(−2)
0.2 2.0272(−1) 8.0883(−2) 9.1762(−2) 5.6234(−3) 5.6487(−3) −8.7065(−3)
0.3 2.0383(−1) 8.3276(−2) 9.2365(−2) 6.0203(−3) −5.6862(−4) −4.5616(−3)
0.4 2.0357(−1) 8.4413(−2) 9.2316(−2) 6.3456(−3) −6.6101(−3) −5.3396(−4)
0.5 2.0206(−1) 8.4450(−2) 9.1676(−2) 6.6616(−3) −1.2845(−2) 3.6227(−3)
0.6 1.9919(−1) 8.3338(−2) 9.0391(−2) 6.9674(−3) −1.9640(−2) 8.1526(−3)
0.7 1.9461(−1) 8.0837(−2) 8.8283(−2) 7.2021(−3) −2.7422(−2) 1.3341(−2)
0.8 1.8755(−1) 7.6392(−2) 8.4971(−2) 7.1972(−3) −3.6768(−2) 1.9571(−2)
0.9 1.7615(−1) 6.8612(−2) 7.9529(−2) 6.4773(−3) −4.8586(−2) 2.7450(−2)
1.0 1.5069(−1) 4.8837(−2) 6.7082(−2) 1.7050(−3) −6.4896(−2) 3.8323(−2)

rates, as defined by (4.14)–(4.17), for several values of the channel width. We note
that the composition and the wall interaction data used to generate Tables 13–15 were
the same as those used for Tables 1–12, and that the numerical results for the flow
rates are also thought to be correct to within ±1 in the last reported digit.

While an implementation of our solutions for the three considered problems re-
quires, in general, some hours of computer time to establish the high-quality results we
are reporting in our tables, solutions good enough for graphical presentation require
very modest computational expense. To have an idea of the CPU time for what we
might consider “practical results,” we found, for example, that all of the He-Xe results
given in Tables 1–15 could be obtained with essentially three figures of accuracy in
less than one minute on an Apple MacBook running at 2 GHz.

Finally, we note that we have (for the three considered problems) compared nu-
merical results from our approach based on the LBE for binary mixtures with those
of the McCormack model, as developed and implemented in [23]. Due to different
ways of the defining the dimensionless space variables in [23] and in this work, we
have used the relationship

a = ξMaM ,
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Table 13

Pressure-driven flow: mass- and heat-flow rates for the case α1 = 0.2, α2 = 0.4, β1 = 0.6,
β2 = 0.8, and n1/n2 = 2/3.

Ne-Ar mixture

2a −U1 −U2 Q1 Q2

1.0(−2) 7.02875 4.57921 3.05198 1.90616
1.0(−1) 3.97126 3.34605 1.31567 1.01481
5.0(−1) 2.88363 3.26237 5.15113(−1) 4.87750(−1)
1.0 2.80472 3.50334 3.07392(−1) 3.07713(−1)
2.0 3.02335 4.02064 1.72501(−1) 1.77501(−1)
5.0 3.94713 5.45691 7.46936(−2) 7.77126(−2)
1.0(1) 5.49952 7.68822 3.82931(−2) 3.99837(−2)
1.0(2) 3.27996(1) 4.61398(1) 3.90604(−3) 4.09657(−3)

He-Xe mixture

2a −U1 −U2 Q1 Q2

1.0(−2) 7.28191 4.43169 3.45590 1.72889
1.0(−1) 3.42560 3.62500 1.46027 1.05889
5.0(−1) 1.68434 3.80750 5.26626(−1) 5.60196(−1)
1.0 1.31140 4.18704 2.99703(−1) 3.63014(−1)
2.0 1.16837 4.90801 1.61420(−1) 2.13010(−1)
5.0 1.32920 6.86910 6.77017(−2) 9.41384(−2)
1.0(1) 1.80118 9.93900 3.43884(−2) 4.85365(−2)
1.0(2) 1.10778(1) 6.34092(1) 3.48652(−3) 4.98132(−3)

Table 14

Temperature-driven flow: mass- and heat-flow rates for the case α1 = 0.2, α2 = 0.4, β1 = 0.6,
β2 = 0.8, and n1/n2 = 2/3.

Ne-Ar mixture

2a U1 U2 −Q1 −Q2

1.0(−2) 3.08637 1.87391 1.49378(1) 9.36209
1.0(−1) 1.38130 9.53251(−1) 6.68507 4.71728
5.0(−1) 5.65163(−1) 4.40808(−1) 2.59532 2.04733
1.0 3.41095(−1) 2.76103(−1) 1.51266 1.23229
2.0 1.91966(−1) 1.59245(−1) 8.25888(−1) 6.85471(−1)
5.0 8.29642(−2) 6.99555(−2) 3.48778(−1) 2.92661(−1)
1.0(1) 4.25182(−2) 3.60209(−2) 1.77504(−1) 1.49452(−1)
1.0(2) 4.34037(−3) 3.68920(−3) 1.80306(−2) 1.52261(−2)

He-Xe mixture

2a U1 U2 −Q1 −Q2

1.0(−2) 3.47992 1.63717 1.59823(1) 8.73594
1.0(−1) 1.51411 8.53282(−1) 6.79083 4.41149
5.0(−1) 5.71005(−1) 3.90743(−1) 2.45191 1.85972
1.0 3.30863(−1) 2.44038(−1) 1.39410 1.10712
2.0 1.80382(−1) 1.40608(−1) 7.49405(−1) 6.11321(−1)
5.0 7.61935(−2) 6.17139(−2) 3.13429(−1) 2.59709(−1)
1.0(1) 3.87787(−2) 3.17730(−2) 1.59023(−1) 1.32410(−1)
1.0(2) 3.93853(−3) 3.25543(−3) 1.61100(−2) 1.34710(−2)

where ξM is the conversion factor defined by equation (7.19) of [9], to relate the
channel half-width a used in this work with the aM used in [23]. For the mass-
and heat-flow rates, this is the only conversion that is required; for the profiles, in
addition to the channel half-width conversion, the LBE results must be divided by ξM ,
in order to be properly compared to the results of [23]. Thus, concerning the mass-
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Table 15

Concentration-driven flow: mass- and heat-flow rates for the case α1 = 0.2, α2 = 0.4, β1 = 0.6,
β2 = 0.8, and n1/n2 = 2/3.

Ne-Ar mixture

2a −U1 U2 Q1 −Q2

1.0(−2) 3.96894 1.59880 1.75432 6.58115(−1)
1.0(−1) 1.68853 6.87292(−1) 6.40069(−1) 2.04304(−1)
5.0(−1) 6.06366(−1) 2.50910(−1) 1.95828(−1) 4.19489(−2)
1.0 3.41892(−1) 1.43652(−1) 1.05381(−1) 1.73285(−2)
2.0 1.82236(−1) 7.77918(−2) 5.47167(−2) 6.98903(−3)
5.0 7.57830(−2) 3.25972(−2) 2.23853(−2) 2.28975(−3)
1.0(1) 3.84251(−2) 1.64751(−2) 1.12765(−2) 1.05773(−3)
1.0(2) 3.89650(−3) 1.65480(−3) 1.13525(−3) 9.79098(−5)

He-Xe mixture

2a −U1 U2 Q1 Q2

1.0(−2) 4.30486 1.52721 2.07209 −5.94298(−1)
1.0(−1) 1.85963 7.02653(−1) 8.71981(−1) −2.01990(−1)
5.0(−1) 6.81859(−1) 2.67760(−1) 3.11395(−1) −3.71345(−2)
1.0 3.89145(−1) 1.56308(−1) 1.76153(−1) −1.22203(−2)
2.0 2.09485(−1) 8.63759(−2) 9.43221(−2) −3.14174(−3)
5.0 8.76311(−2) 3.70753(−2) 3.93363(−2) −3.25368(−4)
1.0(1) 4.44688(−2) 1.89313(−2) 1.99386(−2) 6.323 (−7)
1.0(2) 4.50724(−3) 1.91922(−3) 2.01820(−3) 1.48122(−5)

flow rates reported in Tables 1–9 of [23], we have found maximum relative deviations
(with respect to our LBE results) of 33%, 62%, and 33% for the problems driven
by pressure, temperature, and concentration gradients, respectively. For the heat-
flow rates reported in these same tables of [23], we have found maximum relative
deviations of 40%, 34%, and 300%, respectively, for the pressure-, temperature-, and
concentration-driven problems. In all cases but one, the maximum deviations were
found to occur for the following input parameters considered in [23]: the heaviest
gas particle (Xe), the widest channel (2aM = 100), and the largest concentration
of the lighter species (c1 = 0.9). Large maximum relative deviations between the
McCormack profiles reported in Tables 10–18 of [23] and those computed with our
current (LBE) approach were also observed.

6. Onsager relationships. In [23], Siewert and Valougeorgis established three
independent (generalized) Onsager relationships relevant to the flow of binary gas
mixtures in a plane-parallel channel driven by pressure, temperature, and concentra-
tion gradients. While the derivations reported in [23] were based on the McCormack
kinetic model [15], little work is required to establish those same relationships [23] for
the LBE (for rigid-sphere interactions) used in this work. For that purpose, we follow
here a procedure described in detail for half-space flow problems in [9]. However,
before starting our derivation, we should mention that, to denote the solutions and
the driving terms of two different problems (among the three that can be defined by
considering separately pressure, temperature, and concentration gradients), we attach
subscripts X and Y to Ψ(τ, c, μ) and to Υ(c).

In short, using the fact that the kernel defined by (2.25) is such that

(6.1) SKT (c : c′) = K(c′ : c)S,
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where

(6.2) S =

[
c2 0
0 c1a1,2

]

and a1,2 is given by (2.23), we can multiply (2.47) with μ changed to −μ and subscript
Y added to Ψ(τ, c, μ) and Υ(c) by

c2(1 − μ2)e−c2ΨT
X(τ, c, μ)S−1,

multiply (2.47) with subscript X added to Ψ(τ, c, μ) and Υ(c) by

c2(1 − μ2)e−c2ΨT
Y (τ, c,−μ)S−1,

subtract the resulting equations, one from the other, and integrate the result of this
operation over all μ, over all c, and over τ from −a to a to find, after using (2.62),

(6.3)

∫ a

−a

∫ ∞

0

∫ 1

−1

e−c2c2(1 − μ2)
[
ΨT

X(τ, c, μ)S−1ΥY (c)

− ΨT
Y (τ, c,−μ)S−1ΥX(c)

]
dμdcdτ = 0.

Taking all possible combinations of X and Y (with the restriction that X �= Y ) when
these subscripts are set equal to P , T , and C in (6.3) and using the forms of the
driving terms appropriate to each problem, we find the relationships

KT [c1a1,2 c2]QP = KP [c1a1,2 c2]UT ,(6.4a)

KT [c1a1,2 c2]QC = c1c2KC [a1,2 −1]UT ,(6.4b)

and

(6.4c) c1c2KC [a1,2 −1]UP = KP [c1a1,2 c2]UC ,

where we have added subscripts P , T , C to the quantities defined by (4.14) and
(4.15) as tags for the problems driven, respectively, by pressure, temperature, and
concentration gradients. As a (minor) test of our computations, we have confirmed
the three identities listed as (6.4) for the data sets used to define the numerical results
reported in this work. Moreover, since Kosuge et al. [13] have tabulated numerical
results related to our (6.4), we include in Table 16 our numerical results for the
quantities used in [13] to express the (generalized) Onsager relationships. We note
that the results listed in Table 16 are relevant to the special case [13] of strictly diffuse
reflection at both walls, equal-diameter particles, mass ratio m2/m1 = 2, and density
ratio n2/n1 = 1 at equilibrium. In order to compare with [13], we used the channel
half-width

(6.5) a =

(
1

k

)[
(c1 + c2d2/d1)

2

4(21/2)c1 + c2(1 + d1/d2)2(1 + m1/m2)1/2

]
,

where k is the Knudsen number used in [13], and the following expressions (valid for
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Table 16

The quantities ΛXY , X �= Y , X,Y = P, T, C as defined in [13] for various values of k with
α1 = 1.0, α2 = 1.0, β1 = 1.0, β2 = 1.0, m2/m1 = 2, d2/d1 = 1, and n2/n1 = 1.

k ΛTP ΛPT −ΛCP −ΛPC ΛCT ΛTC

0.05 4.622713(−2) 4.622713(−2) 1.248352(−2) 1.248352(−2) 8.743064(−3) 8.743064(−3)
0.10 8.584004(−2) 8.584004(−2) 2.371949(−2) 2.371949(−2) 1.646907(−2) 1.646907(−2)
1.00 3.497536(−1) 3.497536(−1) 1.202181(−1) 1.202181(−1) 7.322853(−2) 7.322853(−2)
10.0 7.076139(−1) 7.076139(−1) 2.785816(−1) 2.785816(−1) 1.472278(−1) 1.472278(−1)
20.0 8.340453(−1) 8.340453(−1) 3.317800(−1) 3.317800(−1) 1.717606(−1) 1.717606(−1)

KP , KT , and KC set equal to ε0) for the quantities defined in [13]:

ΛPT =
1

2c1
a2,1 [c1a1,2 c2]UT ,(6.6a)

ΛPC =
1

2c1c2
a2,1 [c1a1,2 c2]UC ,(6.6b)

ΛTP =
1

2c1
a2,1 [c1a1,2 c2]QP ,(6.6c)

ΛTC =
1

2c1c2
a2,1 [c1a1,2 c2]QC ,(6.6d)

ΛCP =
1

2
a2,1 [a1,2 −1]UP ,(6.6e)

and

(6.6f) ΛCT =
1

2
a2,1 [a1,2 −1]UT .

Note that subscript D is used in [13] with the same meaning as subscript C in this work
(i.e., a tag for the concentration-driven problem). To be clear, we have listed identical
results in various columns of Table 16 in order to emphasize that all quantities were
computed as defined.

Finally, we note that we have also confirmed that

p∗ = [c1 c2]P (τ) + (KP /ε0)τ,

where the second term on the right-hand side should not be taken into account for the
cases of temperature and concentration gradients, is a (problem-dependent) constant.

7. Concluding remarks. We have reported in this work what we believe to
be a compact, fast, and accurate method of solving channel-flow problems driven
by pressure, temperature, and concentration gradients and described by the (vector)
LBE for a binary mixture of rigid spheres. Accurate numerical results were given for
the velocity, heat-flow, and shear-stress profiles, as well as for the mass- and heat-flow
rates, for selected cases based on Ne-Ar and He-Xe mixtures.
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Table 17

Refined results for Tables 10, 11, and 12 of [21] in the notation of [21].

−UP QP

2a α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

0.10 2.0244(1) 4.3874 1.9504 4.1702 1.5684 7.9969(−1)
1.00 1.7564(1) 3.3264 1.5067 7.1258(−1) 5.2875(−1) 3.8908(−1)
10.0 1.8743(1) 4.5346 2.7296 7.9139(−2) 8.4299(−2) 8.9950(−2)

UT −QT

2a α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

0.10 4.1702 1.5684 7.9969(−1) 2.0650(1) 7.7804 3.9044
1.00 7.1258(−1) 5.2875(−1) 3.8908(−1) 3.4557 2.5138 1.7830
10.0 7.9139(−2) 8.4299(−2) 8.9950(−2) 3.7488(−1) 3.6167(−1) 3.4674(−1)

In addition to the comparisons with the numerical results of the McCormack
model that are discussed in section 5, we have also performed comparisons with the
single-gas LBE results of [21], using three different ways of achieving the single-gas
limit in our formulation:

(i) c1 = 0, (ii) c2 = 0, or (iii) m1 = m2, d1 = d2, α1 = α2, and β1 = β2.

We note that to convert our results to the same spatial units used in [21] we made
use of the factor

ξS,p = 0.449027806 . . . ,

which (for a single-species case) is the ratio between our dimensionless spatial variable,
as defined by (2.41) and (2.42), and that used in [21] for channel-flow problems. Doing
this, we found good but not perfect agreement with the five-figure results for the mass-
and heat-flow rates and for the velocity and heat-flow profiles that are tabulated
in [21]. In regard to the flow rates, while we found at most a difference of one unit
in the fifth digit listed in Table 10 of [21], where the accommodation coefficients are
taken to be equal to 0.1, we did find a maximum difference of 7 units in the fifth digit
listed in Table 11 of [21] (case with accommodation coefficients equal to 0.5) and a
maximum difference of 4 units in the fourth digit listed in Table 12 of [21] (case with
accommodation coefficients equal to 1.0). The largest differences always occurred for
the smallest channel width considered in Tables 10–12 of [21]. For the velocity and
heat-flow profiles listed in Tables 13 and 14 of [21], we have observed, respectively,
maximum differences of 5 and 3 units in the fifth digit listed in these tables. The
maximum differences for the profiles were found to always occur at the channel walls.
We have confirmed that the loss of accuracy in Tables 10–14 of [21] was due to using
L = 8 in those computations, and so we list in Tables 17–19 our improved results
(based on L = 30) for the cases studied in Tables 10–14 of [21].

Finally, we should like to mention that, considering the large deviations between
the numerical results from the LBE and those from the McCormack model that were
observed in this and other [9, 10] works, we are of the opinion that the McCormack
model has a limited value as an economical alternative to the LBE for gas mixtures.
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Table 18

Refined results for Table 13 of [21] in the notation of [21].

α = 0.1 α = 0.5 α = 1.0

τ/a −uP (τ) qP (τ) −uP (τ) qP (τ) −uP (τ) qP (τ)

0.0 8.8693 3.7271(−1) 1.7574 2.8921(−1) 8.5378(−1) 2.2669(−1)
0.1 8.8671 3.7230(−1) 1.7549 2.8859(−1) 8.5116(−1) 2.2589(−1)
0.2 8.8602 3.7106(−1) 1.7475 2.8672(−1) 8.4327(−1) 2.2348(−1)
0.3 8.8486 3.6895(−1) 1.7350 2.8355(−1) 8.2994(−1) 2.1938(−1)
0.4 8.8320 3.6592(−1) 1.7172 2.7898(−1) 8.1090(−1) 2.1348(−1)
0.5 8.8101 3.6187(−1) 1.6935 2.7288(−1) 7.8568(−1) 2.0559(−1)
0.6 8.7822 3.5667(−1) 1.6635 2.6501(−1) 7.5357(−1) 1.9539(−1)
0.7 8.7473 3.5006(−1) 1.6258 2.5499(−1) 7.1335(−1) 1.8239(−1)
0.8 8.7035 3.4160(−1) 1.5785 2.4212(−1) 6.6281(−1) 1.6568(−1)
0.9 8.6461 3.3023(−1) 1.5167 2.2483(−1) 5.9696(−1) 1.4323(−1)
1.0 8.5500 3.1009(−1) 1.4143 1.9464(−1) 4.8982(−1) 1.0466(−1)

Table 19

Refined results for Table 14 of [21] in the notation of [21].

α = 0.1 α = 0.5 α = 1.0

τ/a uT (τ) −qT (τ) uT (τ) −qT (τ) uT (τ) −qT (τ)

0.0 3.6061(−1) 1.7429 2.8168(−1) 1.3193 2.2268(−1) 9.9636(−1)
0.1 3.6050(−1) 1.7425 2.8125(−1) 1.3178 2.2198(−1) 9.9383(−1)
0.2 3.6018(−1) 1.7414 2.7995(−1) 1.3132 2.1987(−1) 9.8616(−1)
0.3 3.5963(−1) 1.7395 2.7775(−1) 1.3054 2.1629(−1) 9.7311(−1)
0.4 3.5883(−1) 1.7368 2.7457(−1) 1.2942 2.1113(−1) 9.5424(−1)
0.5 3.5777(−1) 1.7332 2.7032(−1) 1.2790 2.0422(−1) 9.2884(−1)
0.6 3.5640(−1) 1.7284 2.6484(−1) 1.2593 1.9530(−1) 8.9575(−1)
0.7 3.5466(−1) 1.7223 2.5785(−1) 1.2340 1.8392(−1) 8.5314(−1)
0.8 3.5242(−1) 1.7144 2.4886(−1) 1.2011 1.6928(−1) 7.9764(−1)
0.9 3.4941(−1) 1.7036 2.3677(−1) 1.1561 1.4960(−1) 7.2184(−1)
1.0 3.4412(−1) 1.6844 2.1575(−1) 1.0763 1.1583(−1) 5.8840(−1)
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