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Abstract

The ADO (analytical discrete ordinates) method is used to establish a concise and accurate solution for a multi-layer

radiative-transfer problem with Fresnel boundary and interface conditions. A finite plane-parallel medium composed of a

number (K) of sub-strata with different material properties is considered to be illuminated by isotropically incident

radiation. While a general result is obtained, emphasis in the numerical work is given to computing accurately the currents

and the intensities that exit each of the two exterior surfaces. Monochromatic forms (with anisotropic scattering) of the

radiative-transfer equation are used, and numerical results are given for several specific cases. The complications

introduced by the Fresnel boundary and interface conditions are well resolved, so that the numerical results obtained are

thought to define a very high standard.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In two recent papers, Cassell and Williams [1,2] have pointed out the importance of using the Fresnel
boundary and interface conditions for radiative-transfer applications related to optical tomography [3] and
fiber optics [4]. And most interestingly, Elias and co-workers [5–7] have included the Fresnel boundary and
interface conditions in their studies of the surfaces (and sub-strata) of old masterpiece paintings. While the
vast majority of radiative-transfer problems studied and solved in the past has been based on the (easy to
apply) classical specular/diffuse boundary conditions, the use of the Fresnel conditions introduces new
mathematical and computational challenges. In addition to Refs. [1–7] already mentioned, the Fresnel
formulas have been used by Aronson [8,9] in work associated with applications in the medical field and by
Tanaka and Nakajima [10] in studies of the atmosphere–ocean system. A look at two useful texts, Born and
Wolf [11] and Modest [12], can give a good idea about the complexity of the Fresnel/Snell laws in general.
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Our work here makes use of the contributions of Cassell and Williams [1,2] who, as others [10,13–15] have
done, expressed the Fresnel boundary and interface conditions in forms appropriate for use with the
monochromatic version of the equation of transfer [16]. As a first part of our work, we have rewritten the
Fresnel boundary/interface conditions of Refs. [1] and [2] in what we believe to be a more ‘‘user friendly’’ way.

In this work, we investigate the case of a multi-layer medium with any number (K) of layers with different
materials properties. And although our numerical work is based on the ADO (analytical discrete ordinates)
method [17], a significant part of our analysis is carried out before any approximations are introduced. We
have succeeded in formulating the multi-layer problem in such a way that the interface conditions can be
expressed without any shift in the direction cosines as radiation either passes through or is reflected by an
interface. We consider that this ‘‘preliminary analysis’’ is especially important since we are able to implement
the interface conditions without interpolations (between direction cosines) as has been done, for example, by
Liou and Wu [18]. Our preliminary analysis allows us to express the interface conditions in terms of simple
independent variables (the direction cosines �m 2 ð0; 1� of the radiation intensity). And so, we are also able to
identify the points (we call them break points) where discontinuities in the derivatives (with respect to the
angular variables �m) are introduced into the intensities by the various Fresnel/Snell functions that are used to
define all of the boundary and interface conditions. As a consequence of this preliminary analysis, we are able
to define the minimum number (and location) of break points that we use to build our quadrature scheme (for
a given layer). And so we do not resort to postulated quadrature schemes that either miss break points [18] or
include more break points [19] than those absolutely necessary, when defining the composite quadrature
scheme to be used for each layer.

While there are other works on this subject, we consider the two important papers by Liou and Wu [14,20]
that report analyses of (and numerical results for) the case of isotropic scattering in each layer of a two-layer
system to be the ones most closely related to our work.
2. Mathematical formulation

To define our notation, we consider that there are K distinct layers and that in each layer the radiation field
is described by the monochromatic or grey equation of transfer, which we write as [16]

m
q
qt

Ikðt;mÞ þ Ikðt;mÞ ¼
$k

2

XLk

l¼0

bk;lPlðmÞ
Z 1

�1

Plðm0ÞIkðt; m0Þdm0, (2.1)

for k ¼ 1; 2; . . . ;K , m 2 ½�1; 1�, and t 2 ðak�1; akÞ. Here we use a0 to define the location of the first surface and
aK for the last surface. In addition, t is the optical variable (defined differently for each of the K layers, as
discussed in Section 9), $k 2 ½0; 1� and fbk;lg are, respectively, the single-scattering albedo and the coefficients
in a Legendre expansion of the scattering law appropriate to each of the K layers. As we are considering, in
this work, problems without azimuthal dependence, the intensities Ikðt;mÞ depend only on t and the polar
angle y ¼ arccos m. The interior sub-strata meet at t ¼ ak, for k ¼ 1; 2; . . . ;K � 1, and so it is at these values of
t that we must introduce the appropriate interface conditions.

In regard to the boundary (surface) conditions, we assume there is incident on the surface located at t ¼ a0,
from a medium characterized by an index of refraction n0, a known distribution of radiation described by
c0ðmÞ, and similarly there is incident on the surface located at t ¼ aK , from a medium characterized by index
of refraction nKþ1, a known distribution cK ðmÞ. And so, using the Fresnel and Snell laws, we express these
conditions as [2,21,22]

I1ða0; mÞ ¼ X ðn1;0;mÞI1ða0;�mÞ þ Y ðn1;0;mÞc0½f ðn1;0;mÞ� (2.2a)

and

IK ðaK ;�mÞ ¼ X ðnK ;Kþ1; mÞIK ðaK ; mÞ þ Y ðnK ;Kþ1;mÞcK ½f ðnK ;Kþ1;mÞ�, (2.2b)

for m 2 ð0; 1�. Here,

f ðn;mÞ ¼ ½1� n2ð1� m2Þ�1=2, (2.3)
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the reflection coefficient X ðn; mÞ is defined as

X ðn;mÞ ¼
Gðn;mÞ; np1;

Rðn;mÞ; nX1;

(
(2.4)

and the transmission coefficient Y ðn; mÞ is defined as

Y ðn;mÞ ¼ n2½1� X ðn;mÞ�. (2.5)

In addition, we use the Heaviside step function HðxÞ to express the basic elements of the Fresnel and Snell laws
as

Rðn;mÞ ¼ 1þ ½Gðn;mÞ � 1�H½m� mcðnÞ�, (2.6)

Gðn;mÞ ¼
1

2

m� nf ðn;mÞ
mþ nf ðn;mÞ

� �2
þ

nm� f ðn;mÞ
nmþ f ðn;mÞ

� �2( )
(2.7)

and

mcðnÞ ¼ ð1� 1=n2Þ
1=2. (2.8)

In the process of writing Eqs. (2.2), we have also used

na;b ¼ na=nb, (2.9)

where na and nb denote the indices of refraction for layers a and b, respectively. At each of the interfaces we
have conditions similar to Eqs. (2.2) except that now there are no known driving terms. We have worked with
the expressions reported by Cassel and Williams [2] so that we can write these conditions (in an improved
notation) for the multi-layer case as

Ikðak;�mÞ ¼ X ðnk;kþ1;mÞIkðak;mÞ þ Y ðnk;kþ1;mÞIkþ1½ak;�f ðnk;kþ1;mÞ� (2.10a)

and

Ikþ1ðak;mÞ ¼ X ðnkþ1;k;mÞIkþ1ðak;�mÞ þ Y ðnkþ1;k;mÞIk½ak; f ðnkþ1;k;mÞ�, (2.10b)

for m 2 ð0; 1� and k ¼ 1; 2; . . . ;K � 1.
In this work, we compute the radiation intensities exiting the multi-layer system and the currents

exiting each of the two external surfaces (normalized by the sum of the incoming currents at the two surfaces).
To be clear, we note that the two incoming currents have not (yet) entered the layers and so are given
simply by

Jþ0 ¼

Z 1

0

c0ðmÞmdm and J�K ¼

Z 1

0

cK ðmÞmdm. (2.11a,b)

On the other hand, it turns out that we can express the currents exiting the two surfaces as

J�0 ¼

Z 1

0

½1� X ðn1;0; mÞ�I1ða0;�mÞmdmþ
Z 1

0

X ðn0;1;mÞc0ðmÞmdm (2.12a)

and

JþK ¼

Z 1

0

½1� X ðnK ;Kþ1;mÞ�IK ðaK ; mÞmdmþ
Z 1

0

X ðnKþ1;K ;mÞcK ðmÞmdm. (2.12b)

Note that the first terms in Eqs. (2.12) represent radiation that has passed through the surfaces, while the
second terms in those equations describe radiation that is reflected at the bounding surfaces. And so, in
addition to the intensities exiting the multi-layer system, we also report

A ¼
1

N0
J�0 and B ¼

1

N0
JþK , (2.13a,b)
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where

N0 ¼ Jþ0 þ J�K . (2.14)

And so, summarizing, we seek for each of the K regions solutions of Eq. (2.1), subject to the boundary and
interface conditions

I1ða0; mÞ � X ðn1;0; mÞI1ða0;�mÞ ¼ Y ðn1;0;mÞc0½f ðn1;0;mÞ� (2.15a)

and

I1ða1;�mÞ � X ðn1;2;mÞI1ða1;mÞ ¼ Y ðn1;2;mÞI2½a1;�f ðn1;2;mÞ�, (2.15b)

for m 2 ð0; 1�,

Ikðak�1;mÞ � X ðnk;k�1;mÞIkðak�1;�mÞ ¼ Y ðnk;k�1;mÞIk�1½ak�1; f ðnk;k�1;mÞ� (2.15c)

and

Ikðak;�mÞ � X ðnk;kþ1;mÞIkðak; mÞ ¼ Y ðnk;kþ1;mÞIkþ1½ak;�f ðnk;kþ1;mÞ�, (2.15d)

for m 2 ð0; 1� and k ¼ 2; 3; . . . ;K � 1, and

IK ðaK�1; mÞ � X ðnK ;K�1;mÞIK ðaK�1;�mÞ ¼ Y ðnK ;K�1;mÞIK�1½aK�1; f ðnK ;K�1;mÞ� (2.15e)

and

IK ðaK ;�mÞ � X ðnK ;Kþ1;mÞIK ðaK ;mÞ ¼ Y ðnK ;Kþ1;mÞcK ½f ðnK ;Kþ1;mÞ�, (2.15f)

for m 2 ð0; 1�.
It is clear from Eqs. (2.15) that we have a complication here that we would not encounter with the more

often used specular/diffuse boundary and interface conditions: in addition to requiring the intensities
evaluated at �m 2 ð0; 1�, we also require

Ikþ1½ak;�f ðnk;kþ1; mÞ�; k ¼ 1; 2; . . . ;K � 1,

and

Ik�1½ak�1; f ðnk;k�1;mÞ�; k ¼ 2; 3; . . . ;K .

However, as developed in the following section of this work, we can carry out some preliminary analysis that
will allow us to express all of the boundary and interface conditions in terms of known functions and radiation
intensities evaluated at simple (angular) arguments, i.e., Ikðak�1;�mÞ and Ikðak;�mÞ, for m 2 ð0; 1� and
k ¼ 1; 2; . . . ;K .

3. Preliminary analysis

As we consider this part of our analysis (what we call ‘‘pre-processing of the interface conditions’’) to be
especially important, we first give an extended presentation for the case of only two layers (K ¼ 2). In this
way, the ideas behind this pre-processing can be seen clearly before the significant extensions required for the
general case of a multi-layer (K42) medium are formulated.

3.1. The two-layer case

For K ¼ 2, we have

m
q
qt

I1ðt;mÞ þ I1ðt;mÞ ¼F1ðt;mÞ, (3.1a)

for m 2 ½�1; 1� and t 2 ða0; a1Þ, and

m
q
qt

I2ðt;mÞ þ I2ðt;mÞ ¼F2ðt;mÞ, (3.1b)
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for m 2 ½�1; 1� and t 2 ða1; a2Þ, where,

F1ðt;mÞ ¼
$1

2

XL1

l¼0

b1;lPlðmÞ
Z 1

�1

Plðm0ÞI1ðt;m0Þdm0 (3.2a)

and

F2ðt;mÞ ¼
$2

2

XL2

l¼0

b2;lPlðmÞ
Z 1

�1

Plðm0ÞI2ðt;m0Þdm0, (3.2b)

subject to

I1ða0; mÞ � X ðn1;0;mÞI1ða0;�mÞ ¼ Y ðn1;0;mÞc0ðx1;0Þ, (3.3a)

I1ða1;�mÞ � X ðn1;2;mÞI1ða1;mÞ ¼ Y ðn1;2;mÞI2ða1;�x1;2Þ, (3.3b)

I2ða1; mÞ � X ðn2;1;mÞI2ða1;�mÞ ¼ Y ðn2;1;mÞI1ða1; x2;1Þ (3.3c)

and

I2ða2;�mÞ � X ðn2;3;mÞI2ða2;mÞ ¼ Y ðn2;3;mÞc2ðx2;3Þ, (3.3d)

for m 2 ð0; 1�. Here, in writing Eqs. (3.3), we have compacted our notation by using

xa;b ) xa;bðmÞ ¼ f ðna;b; mÞ. (3.4)

Looking at the interface conditions, Eqs. (3.3b) and (3.3c), we see that we require I2ða1;�x1;2Þ and
I1ða1; x2;1Þ, in addition to the usual intensities evaluated at simple angular arguments, �m 2 ð0; 1�. Our way of
dealing with this complication is based on combining Eqs. (3.3) with integrated forms of Eqs. (3.1). So, for the
moment, we assume that the right-hand sides of Eqs. (3.1) are known (for example, from a previous iterate
when using an iterative procedure), and we integrate those equations to obtain

I1ðt;mÞ ¼ I1ða0;mÞ e�ðt�a0Þ=m þ
1

m

Z t

a0

F1ðx;mÞ e�ðt�xÞ=m dx (3.5a)

and

I1ðt;�mÞ ¼ I1ða1;�mÞ e�ða1�tÞ=m þ
1

m

Z a1

t
F1ðx;�mÞ e�ðx�tÞ=m dx, (3.5b)

for m 2 ð0; 1� and t 2 ða0; a1Þ, and

I2ðt;mÞ ¼ I2ða1;mÞ e�ðt�a1Þ=m þ
1

m

Z t

a1

F2ðx;mÞ e�ðt�xÞ=m dx (3.6a)

and

I2ðt;�mÞ ¼ I2ða2;�mÞ e�ða2�tÞ=m þ
1

m

Z a2

t
F2ðx;�mÞ e�ðx�tÞ=m dx, (3.6b)

for m 2 ð0; 1� and t 2 ða1; a2Þ.
We now discuss our way of using Eqs. (3.3), (3.5), and (3.6) to express the intensities I2ða1;�x1;2Þ and

I1ða1; x2;1Þ in terms of intensities evaluated at the simple arguments �m 2 ð0; 1�. We begin by using Eq. (3.5a)
for t ¼ a1 in Eq. (3.3a) and Eq. (3.5b) for t ¼ a0 in Eq. (3.3b) to find

I1ða1; mÞ ¼ X ðn1;0;mÞI1ða0;�mÞ e�D1=m þ Kþ1 ðmÞ (3.7a)

and

I1ða0;�mÞ ¼ X ðn1;2; mÞI1ða1;mÞ e�D1=m þ K�1 ðmÞ, (3.7b)

where D1 ¼ a1 � a0 is the optical thickness of layer one,

Kþ1 ðmÞ ¼ Qþ1 ðmÞ þ Y ðn1;0; mÞc0ðx1;0Þ e
�D1=m (3.8a)
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and

K�1 ðmÞ ¼ Q�1 ðmÞ þ Y ðn1;2; mÞI2ða1;�x1;2Þ e
�D1=m. (3.8b)

Here

Qþ1 ðmÞ ¼
1

m

Z a1

a0

F1ðx;mÞ e�ða1�xÞ=m dx (3.9a)

and

Q�1 ðmÞ ¼
1

m

Z a1

a0

F1ðx;�mÞ e�ðx�a0Þ=m dx. (3.9b)

We can now substitute Eq. (3.7b) into the right-hand side of Eq. (3.7a) to find

I1ða1; mÞ ¼ X�2 ðmÞ½K
þ
1 ðmÞ þ X ðn1;0;mÞK�1 ðmÞ e

�D1=m�, (3.10)

where

X�2 ðmÞ ¼ ½1� X ðn1;0; mÞX ðn1;2; mÞ e�2D1=m��1. (3.11)

In a similar way, using Eq. (3.6a) for t ¼ a2 in Eq. (3.3c) and Eq. (3.6b) for t ¼ a1 in Eq. (3.3d), we find, for
region two,

I2ða2; mÞ ¼ X ðn2;1;mÞI2ða1;�mÞ e�D2=m þ Kþ2 ðmÞ (3.12a)

and

I2ða1;�mÞ ¼ X ðn2;3; mÞI2ða2; mÞ e�D2=m þ K�2 ðmÞ, (3.12b)

where D2 ¼ a2 � a1 is the optical thickness of layer two,

Kþ2 ðmÞ ¼ Qþ2 ðmÞ þ Y ðn2;1; mÞI1ða1; x2;1Þ e
�D2=m (3.13a)

and

K�2 ðmÞ ¼ Q�2 ðmÞ þ Y ðn2;3; mÞc2ðx2;3Þ e
�D2=m. (3.13b)

Here

Qþ2 ðmÞ ¼
1

m

Z a2

a1

F2ðx;mÞ e�ða2�xÞ=m dx (3.14a)

and

Q�2 ðmÞ ¼
1

m

Z a2

a1

F2ðx;�mÞ e�ðx�a1Þ=m dx. (3.14b)

And so, substituting Eq. (3.12a) into the right-hand side of Eq. (3.12b), we find

I2ða1;�mÞ ¼ Xþ1 ðmÞ½K
�
2 ðmÞ þ X ðn2;3; mÞKþ2 ðmÞ e

�D2=m�, (3.15)

where

Xþ1 ðmÞ ¼ ½1� X ðn2;3; mÞX ðn2;1; mÞ e�2D2=m��1. (3.16)

Finally, changing the argument m to, respectively, x2;1 and x1;2 in Eqs. (3.10) and (3.15), we are able to
establish our desired expressions for I1ða1; x2;1Þ and I2ða1;�x1;2Þ, viz.

I1ða1; x2;1Þ ¼ X�2 ðx2;1ÞfQ
þ
1 ðx2;1Þ þ Y ðn1;0; x2;1Þc0ðx2;0Þ e

�D1=x2;1

þ X ðn1;0; x2;1Þ e
�D1=x2;1 ½Q�1 ðx2;1Þ þ Y ðn1;2; x2;1ÞI2ða1;�mÞ e�D1=x2;1 �g ð3:17aÞ
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and

I2ða1;�x1;2Þ ¼ Xþ1 ðx1;2ÞfQ
�
2 ðx1;2Þ þ Y ðn2;3; x1;2Þc2ðx1;3Þ e

�D2=x1;2

þ X ðn2;3; x1;2Þ e
�D2=x1;2 ½Qþ2 ðx1;2Þ þ Y ðn2;1; x1;2ÞI1ða1;mÞ e�D2=x1;2 �g. ð3:17bÞ

And so, using Eqs. (3.17) on the right-hand sides of Eqs. (3.3b) and (3.3c), we can rewrite the boundary and
interface conditions (for K ¼ 2) as

I1ða0; mÞ � X ðn1;0;mÞI1ða0;�mÞ ¼ Y ðn1;0;mÞc0ðx1;0Þ, (3.18a)

I1ða1;�mÞ � Zþ1 ðmÞI1ða1;mÞ ¼ Vþ1 ðmÞ þWþ
1 ðmÞ, (3.18b)

I2ða1; mÞ � Z�2 ðmÞI2ða1;�mÞ ¼ V�2 ðmÞ þW�
2 ðmÞ (3.18c)

and

I2ða2;�mÞ � X ðn2;3;mÞI2ða2;mÞ ¼ Y ðn2;3;mÞc2ðx2;3Þ, (3.18d)

for m 2 ð0; 1�. In writing Eqs. (3.18), we have introduced some additional notation:

Zþ1 ðmÞ ¼ X ðn1;2;mÞ þ Y ðn1;2;mÞXþ1 ðx1;2ÞX ðn2;3; x1;2ÞY ðn2;1; x1;2Þ e
�2D2=x1;2 , (3.19a)

Z�2 ðmÞ ¼ X ðn2;1;mÞ þ Y ðn2;1;mÞX�2 ðx2;1ÞX ðn1;0; x2;1ÞY ðn1;2; x2;1Þ e
�2D1=x2;1 , (3.19b)

Vþ1 ðmÞ ¼ Y ðn1;2;mÞXþ1 ðx1;2ÞY ðn2;3; x1;2Þc2ðx1;3Þ e
�D2=x1;2 , (3.20a)

V�2 ðmÞ ¼ Y ðn2;1;mÞX�2 ðx2;1ÞY ðn1;0; x2;1Þc0ðx2;0Þ e
�D1=x2;1 , (3.20b)

Wþ
1 ðmÞ ¼ Y ðn1;2; mÞXþ1 ðx1;2Þ½Q

�
2 ðx1;2Þ þ X ðn2;3; x1;2ÞQ

þ
2 ðx1;2Þ e

�D2=x1;2 � (3.21a)

and

W�
2 ðmÞ ¼ Y ðn2;1; mÞX�2 ðx2;1Þ½Q

þ
1 ðx2;1Þ þ X ðn1;0; x2;1ÞQ

�
1 ðx2;1Þ e

�D1=x2;1 �. (3.21b)

3.2. The multi-layer case

A generalization of the procedure that we have called ‘‘pre-processing of the interface conditions’’ (and
explained in detail in the first part of this section for the case K ¼ 2) was carried out for the multi-layer case.
To this end, we have explicitly derived the improved interface conditions for the cases of three, four, and five
layers, and then showed (rigorous proof by mathematical induction) that the same formulas hold for any
number of layers. The resulting boundary/interface conditions can be written in the compact form

Ikðak�1;mÞ � Z�k ðmÞIkðak�1;�mÞ ¼ V�k ðmÞ þW�
k ðmÞ (3.22a)

and

Ikðak;�mÞ � Zþk ðmÞIkðak;mÞ ¼ Vþk ðmÞ þWþ
k ðmÞ, (3.22b)

for k ¼ 1; 2; . . . ;K . Here the Z�k ðmÞ and Zþk ðmÞ functions are defined by the following recursive schemes:

Z�1 ðmÞ ¼ X ðn1;0;mÞ, (3.23a)

ZþK ðmÞ ¼ X ðnK ;Kþ1; mÞ, (3.23b)

Z�k ðmÞ ¼ X ðnk;k�1;mÞ þ Y ðnk;k�1;mÞL�k ½f ðnk;k�1;mÞ�; k ¼ 2; 3; . . . ;K , (3.24a)

and

Zþk ðmÞ ¼ X ðnk;kþ1;mÞ þ Y ðnk;kþ1;mÞLþk ½f ðnk;kþ1;mÞ�; k ¼ K � 1;K � 2; . . . ; 1, (3.24b)
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where

L�k ðxÞ ¼ X�k ðxÞZ
�
k�1ðxÞY ðnk�1;k; xÞ e�2Dk�1=x (3.25a)

and

Lþk ðxÞ ¼ Xþk ðxÞZ
þ
kþ1ðxÞY ðnkþ1;k; xÞ e�2Dkþ1=x, (3.25b)

with

X�k ðxÞ ¼ ½1� Z�k�1ðxÞX ðnk�1;k; xÞ e�2Dk�1=x��1 (3.26a)

and

Xþk ðxÞ ¼ ½1� Zþkþ1ðxÞX ðnkþ1;k; xÞ e�2Dkþ1=x��1. (3.26b)

We note that in Eqs. (3.25) and (3.26) and hereafter we use

Dk ¼ ak � ak�1 (3.27)

to denote the optical thickness of layer k. Similarly, the V�k ðmÞ and Vþk ðmÞ functions are defined by the
recursive schemes

V�1 ðmÞ ¼ Y ðn1;0;mÞc0½f ðn1;0;mÞ�, (3.28a)

VþK ðmÞ ¼ Y ðnK ;Kþ1; mÞcK ½f ðnK ;Kþ1; mÞ�, (3.28b)

V�k ðmÞ ¼ Y ðnk;k�1;mÞP�k ½f ðnk;k�1;mÞ�; k ¼ 2; 3; . . . ;K , (3.29a)

and

Vþk ðmÞ ¼ Y ðnk;kþ1;mÞPþk ½f ðnk;kþ1;mÞ�; k ¼ K � 1;K � 2; . . . ; 1, (3.29b)

where

P�k ðxÞ ¼ X�k ðxÞV
�
k�1ðxÞ e

�Dk�1=x (3.30a)

and

Pþk ðxÞ ¼ Xþk ðxÞV
þ
kþ1ðxÞ e

�Dkþ1=x. (3.30b)

Finally, the W�
k ðmÞ and Wþ

k ðmÞ functions are defined by the recursive schemes

W�
1 ðmÞ ¼ 0, (3.31a)

Wþ
K ðmÞ ¼ 0, (3.31b)

W�
k ðmÞ ¼ Y ðnk;k�1;mÞO�k ½f ðnk;k�1;mÞ�; k ¼ 2; 3; . . . ;K , (3.32a)

and

Wþ
k ðmÞ ¼ Y ðnk;kþ1;mÞOþk ½f ðnk;kþ1;mÞ�; k ¼ K � 1;K � 2; . . . ; 1, (3.32b)

where

O�k ðxÞ ¼ X�k ðxÞfQ
þ
k�1ðxÞ þ ½Z

�
k�1ðxÞQ

�
k�1ðxÞ þW�

k�1ðxÞ� e
�Dk�1=xg (3.33a)

and

Oþk ðxÞ ¼ Xþk ðxÞfQ
�
kþ1ðxÞ þ ½Z

þ
kþ1ðxÞQ

þ
kþ1ðxÞ þWþ

kþ1ðxÞ� e
�Dkþ1=xg. (3.33b)

Here

Qþk ðmÞ ¼
1

m

Z ak

ak�1

Fkðt; mÞ e�ðak�tÞ=m dt (3.34a)
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and

Q�k ðmÞ ¼
1

m

Z ak

ak�1

Fkðt;�mÞ e�ðt�ak�1Þ=m dt, (3.34b)

where

Fkðt;mÞ ¼
$k

2

XLk

l¼0

bk;lPlðmÞ
Z 1

�1

Plðm0ÞIkðt;m0Þdm0. (3.35)

4. Break points in the quadrature scheme

Since our approach in this work is essentially a direct use of the ADO method [17] and the radiation
intensities display, as discussed in the Introduction, discontinuities in their derivatives with respect to the
angular variables �m, it is clear that we can compute the quantities of interest with good accuracy only if we
introduce partitions in the angular interval, when defining the quadrature scheme to be used by the method.
To this end, we introduce break points in ½0; 1�, in such a way that the angular variation of the intensity within
each of the subintervals of the composite quadrature so defined be smooth. It turns out that the required break
points are layer-dependent, and consequently a different quadrature set will be applied to each layer.

To establish the required set of break points, we must find all points where the Heaviside function in
Eq. (2.6) can have an effect (which could be large or small depending on the data that defines a particular
problem) on our solution. And so, since we have expressed the boundary/interface conditions in the form of
Eqs. (3.22), we conclude that the break points can be determined by finding how the Heaviside function affects
the input data given by the Z;V , and W functions. As we have been able to show that the set of break points
due to the W functions contains all of the break points due to the Z and V functions, it is sufficient to consider
the functions W�

k ðmÞ and Wþ
k ðmÞ when looking for the desired set of break points for layer k.

The W functions are defined recursively by Eqs. (3.31)–(3.33) and depend on Z, X, and Y functions of
varying arguments. The Z functions are also defined recursively according to Eqs. (3.23)–(3.26) and depend on
X and Y functions of varying arguments. Since the Y function is simply defined in terms of the X function by
Eq. (2.5), we conclude that the points of discontinuity in the derivatives of the W functions are introduced by
the various X functions of different arguments that appear along the recursive definition of the Z and W

functions. However, the Y functions also play a role in this process: since Y ðn;mÞ ¼ 0 for momcðnÞ when nX1,
we must reject, when performing the break-point analysis for a given recursive step of definition of the Z and
W functions, any break point that happens to be located in the range where the corresponding Y function is
zero.

The details of the analysis are too lengthy to be reported in this paper, and so here we only mention that the
property

xa;b½xi;jðmÞ� ¼ ½1� n2
a;bn2

i;jð1� m2Þ�1=2 (4.1)

and the fact that the function X ðna;b; xc;aÞ can introduce a derivative discontinuity at the critical point

m ¼ mcðnc;bÞ; if na;b41 and nc;b41, (4.2)

were used in our derivation. We found that the desired set of break points for layer k consists of the critical
points

mcðnk;aÞ; a ¼ 0; 1; . . . ;K þ 1, (4.3)

that satisfy the conditions

nk;aX1 and naþ1;aX1; a ¼ 0 and 1, (4.4a)

nk;aX1 and ðnaþ1;aX1 or na�1;aX1Þ; a ¼ 2; 3; . . . ;K � 1; K42, (4.4b)

nk;aX1 and na�1;aX1; a ¼ K and K þ 1, (4.4c)
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nb;aX1 or nb;kX1 or nb;bþ1X1; a ¼ 0; 1; . . . ; k � 2 and

b ¼ aþ 1; aþ 2; . . . ; k � 1; k41, (4.5a)

and

nb;aX1 or nb;kX1 or nb;b�1X1; a ¼ k þ 2; k þ 3; . . . ;K þ 1 and

b ¼ k þ 1; k þ 2; . . . ; a� 1; koK . (4.5b)

And so, before accepting mcðnk;aÞ as a break point of layer k for some value of a, we must be sure that all of the
conditions applicable to that value of a are satisfied in Eqs. (4.4) and (4.5).

Finally, to complete this section, we specify how the break points are used to define the quadrature scheme
for layer k in our ADO solution. To begin, we sort, by increasing order of magnitude, the nonzero critical
points of Eq. (4.3) that satisfy the conditions imposed by Eqs. (4.4) and (4.5). This defines a sequence of break
points bj, j ¼ 1; 2; . . . ;mk, where mk denotes the number of nonzero, nonrepeated critical points of Eq. (4.3)
that satisfy Eqs. (4.4) and (4.5). Then, we map (linearly) a standard Gauss–Legendre quadrature of order M

onto each of the subintervals

½0; b1�; ½b1; b2�; . . . ; ½bmk�1; bmk
� and ½bmk

; 1�,

to obtain a composite quadrature of order Nk ¼ ðmk þ 1ÞM for layer k.

5. A solution for nonconservative layers

Here we use the ADO version [17] of the discrete-ordinates method used [23] to solve Chandrasekhar’s basic
problem in radiative transfer [16]. Since much of what we require here is already available [17,23], our
presentation is brief. To begin we write (for the case of a nonconservative layer: $ka1)

Ikðt;�miÞ ¼
XNk

j¼1

½Ak;jfkðnk;j ;�miÞ e
�ðt�ak�1Þ=nk;j þ Bk;jfkðnk;j ;�miÞ e

�ðak�tÞ=nk;j �, (5.1)

for t 2 ðak�1; akÞ. We allow the use of a different quadrature scheme in each of the layers; however, to avoid
cluttering our equations with too much notation, we suppress the k dependence that could be affixed to the
weights and nodes fwi;mig. Nevertheless, we do show explicitly the k dependence of the separation constants
fnk;jg and the elementary solutions fkðnk;j ;�miÞ, as well as the arbitrary coefficients fAk;jg and fBk;jg. We note
that the elementary solutions and the separation constants for each region are obtained by solving an
eigensystem of order Nk that can be constructed as explained in detail in Refs. [17] and [23].

In order to complete the solution listed as Eq. (5.1) we must determine, for each of the K regions, the
coefficients fAk;j ;Bk;jg. Noting the boundary/interface conditions listed as Eqs. (3.22), we conclude that, in
addition to the discrete-ordinates solutions listed as Eqs. (5.1), we require the integrated quantities listed as
Eqs. (3.34) in order to compute the quantities listed by Eqs. (3.33) and then the quantities listed by Eqs. (3.32)
that are required in Eqs. (3.22). And so, we use Eq. (5.1) in a discrete-ordinates version of Eq. (3.35) to find

Qþk ðmÞ ¼
$k

2

XLk

l¼0

bk;lPlðmÞ
XNk

j¼1

nk;j½Ak;jCðDk : nk;j ; mÞ þ ð�1Þ
lBk;jSðDk : nk;j ;mÞ�Gk;lðnk;jÞ (5.2a)

and

Q�k ðmÞ ¼
$k

2

XLk

l¼0

bk;lPlðmÞ
XNk

j¼1

nk;j½ð�1Þ
lAk;jSðDk : nk;j ;mÞ þ Bk;jCðDk : nk;j ;mÞ�Gk;lðnk;jÞ; (5.2b)

where

Gk;lðnk;jÞ ¼
XNk

i¼1

wiPlðmiÞ½fkðnk;j ;miÞ þ ð�1Þ
lfkðnk;j ;�miÞ�. (5.3)
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In addition, the S and C functions are given by

Sðt : x; yÞ ¼
1� e�t=x e�t=y

xþ y
(5.4a)

and

Cðt : x; yÞ ¼
e�t=x � e�t=y

x� y
. (5.4b)

We note that the right-hand sides of Eqs. (3.22) depend on the W functions, which in turn depend on the Q

functions, which, in fact, depend on the solution we seek. And so our approach will be iterative. To start, we
take the Q functions to be zero, we use Eq. (5.1) in discrete-ordinates versions of Eqs. (3.22), and then we solve
the resulting systems of linear algebraic equations as we use a ‘‘left-right’’ sweep and a ‘‘right-left’’ sweep [24]
through the layers to find the first estimates of the coefficients fAk;j ;Bk;jg. These estimates are then used to
compute new values for the Q functions, and this procedure is continued until some convergence criteria is
met. On the other hand, an iterative approach can be avoided by considering the defining equations for all K

regions at the same time. And while avoiding iteration is a reasonable choice for the case of, say, K ¼ 2, such
an approach quickly becomes impractical when K is increased and high-order discrete-ordinates solutions are
sought.

Once the coefficients fAk;j ;Bk;jg have been found, we can compute the desired A and B from Eqs. (2.13) and
discrete-ordinates versions of Eqs. (2.12), viz.,

J�0 ¼
XN1

i¼1

wimi½1� X ðn1;0;miÞ�I1ða0;�miÞ þ

Z 1

0

X ðn0;1;mÞc0ðmÞmdm (5.5a)

and

JþK ¼
XNK

i¼1

wimi½1� X ðnK ;Kþ1;miÞ�IK ðaK ;miÞ þ

Z 1

0

X ðnKþ1;K ; mÞcK ðmÞmdm. (5.5b)
6. A solution for conservative layers

The solutions listed in the previous section require modification for conservative layers. And so here we
make use of the solutions, as reported in Ref. [23], for the case of a conservative layer ð$k ¼ 1Þ.

For conservative layers, the largest separation constant becomes unbounded, and so in our ADO solution,
we simply ignore the ADO solution associated with the largest separation constant, say nk;1, and use instead
two exact solutions listed in Ref. [23]. And so here we replace Eq. (5.1) with

Ikðt;�miÞ ¼ I�kðt;�miÞ þ
XNk

j¼2

½Ak;jfkðnk;j ;�miÞ e
�ðt�ak�1Þ=nk;j þ Bk;jfkðnk;j ;�miÞ e

�ðak�tÞ=nk;j �, (6.1)

for t 2 ðak�1; akÞ, where the exact elements of Eq. (6.1) are given by

I�kðt;mÞ ¼ Ak;1 þ Bk;1ðt� 3m=hk;1Þ (6.2)

with

hk;1 ¼ 3� bk;1. (6.3)

Consequently, for conservative layers we replace Eqs. (5.2) with

Qþk ðmÞ ¼ Eþk ðmÞ þ
1

2

XLk

l¼0

bk;lPlðmÞ
XNk

j¼2

nk;j½Ak;jCðDk : nk;j ; mÞ þ ð�1Þ
lBk;jSðDk : nk;j ;mÞ�Gk;lðnk;jÞ (6.4a)



ARTICLE IN PRESS
R.D.M. Garcia et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 109 (2008) 752–769 763
and

Q�k ðmÞ ¼ E�k ðmÞ þ
1

2

XLk

l¼0

bk;lPlðmÞ
XNk

j¼2

nk;j½ð�1Þ
lAk;jSðDk : nk;j ;mÞ þ Bk;jCðDk : nk;j ;mÞ�Gk;lðnk;jÞ, (6.4b)

where

Eþk ðmÞ ¼ ½Ak;1 þ Bk;1ðak�1 � 3m=hk;1Þ�ð1� e�Dk=mÞ þ Bk;1Dk (6.5a)

and

E�k ðmÞ ¼ ½Ak;1 þ Bk;1ðak þ 3m=hk;1Þ�ð1� e�Dk=mÞ � Bk;1Dk. (6.5b)

7. Boundary and interface intensities

Once the coefficients fAk;j ;Bk;jg are available, we can use Eq. (5.1) [or Eq. (6.1), if the layer is conservative]
to compute the radiation intensities Ikðt;�miÞ for any value of t 2 ½ak�1; ak�. However, if we wish to know the
intensities for values of m other than f�mig, we need to add a post-processing step to our approach, as
described next for the boundary/interface intensities and in Section 8 for the interior intensities.

We start by integrating Eq. (2.1) and a form of Eq. (2.1) with m changed to �m over t, from ak�1 to ak, to
obtain

Ikðak�1;�mÞ ¼ Ikðak;�mÞ e�Dk=m þQ�k ðmÞ (7.1a)

and

Ikðak;mÞ ¼ Ikðak�1;mÞ e�Dk=m þQþk ðmÞ, (7.1b)

for m 2 ð0; 1�. After we use Eqs. (7.1) to eliminate the Ikðak;�mÞ and Ikðak�1; mÞ terms in Eqs. (3.22), we obtain,
for the radiation intensities exiting layer k,

Ikðak�1;�mÞ ¼ UkðmÞC�k ðmÞ (7.2a)

and

Ikðak;mÞ ¼ UkðmÞCþk ðmÞ, (7.2b)

for m 2 ð0; 1�. Here

UkðmÞ ¼ ½1� Z�k ðmÞZ
þ
k ðmÞ e

�2Dk=m��1 (7.3)

and

C�k ðmÞ ¼ Q�k ðmÞ þ e�Dk=m½V�k ðmÞ þW�

k ðmÞ� þ Z�k ðmÞ e
�Dk=mfQ�k ðmÞ þ e�Dk=m½V�k ðmÞ þW�

k ðmÞ�g. (7.4)

Next we substitute Eqs. (7.2) into Eqs. (3.22) to find the the radiation intensities entering layer k, viz.

Ikðak�1;mÞ ¼ UkðmÞDþk ðmÞ (7.5a)

and

Ikðak;�mÞ ¼ UkðmÞD�k ðmÞ, (7.5b)

for m 2 ð0; 1�. Here

D�k ðmÞ ¼ Z�k ðmÞ e
�Dk=m½Z�k ðmÞQ

�
k ðmÞ þ V�k ðmÞ þW�

k ðmÞ� þ Z�k ðmÞQ
�

k ðmÞ þ V�k ðmÞ þW�

k ðmÞ. (7.6)

To conclude this section, we note that the radiation intensities exiting the multi-layer systembIða0;�mÞ ¼ Y ðn0;1;mÞI1½a0;�f ðn0;1;mÞ� þ X ðn0;1; mÞc0ðmÞ (7.7a)

and bIðaK ;mÞ ¼ Y ðnKþ1;K ; mÞIK ½aK ; f ðnKþ1;K ;mÞ� þ X ðnKþ1;K ;mÞcK ðmÞ, (7.7b)
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for m 2 ð0; 1�, are usually the most important for applications. It can be mentioned that the first terms in
Eqs. (7.7) describe the radiation that exits from inside the multi-layer system through the external boundaries,
while the second terms in Eqs. (7.7) define those parts of the incoming radiation that are reflected externally.
Simpler formulas expressed in terms of a single argument m can be derived for these quantities by following a
procedure similar to that used to derive Eqs. (3.22). We findbIða0;�mÞ ¼ Zþ0 ðmÞc0ðmÞ þ Vþ0 ðmÞ þWþ

0 ðmÞ (7.8a)

and bIðaK ;mÞ ¼ Z�Kþ1ðmÞcK ðmÞ þ V�Kþ1ðmÞ þW�
Kþ1ðmÞ, (7.8b)

for m 2 ð0; 1�. Here the functions Zþ0 ðmÞ, Vþ0 ðmÞ, and Wþ
0 ðmÞ are defined simply by carrying the recursive

schemes of Eqs. (3.24b), (3.29b), and (3.32b) one step further, i.e., by stopping the use of these equations at
k ¼ 0 instead of at k ¼ 1. Similarly, the functions Z�Kþ1ðmÞ, V�Kþ1ðmÞ, and W�

Kþ1ðmÞ are defined by stopping the
use of Eqs. (3.24a), (3.29a), and (3.32a) at k ¼ K þ 1 instead of at k ¼ K .
8. Interior intensities

To complete the presentation of our solution, we now wish to report our way of computing the intensities
Ikðt;�mÞ for any t 2 ðak�1; akÞ, m 2 ð0; 1�, and k ¼ 1; 2; . . . ;K . Since the boundary/interface intensities are now
explicitly available from Eqs. (7.2) and (7.5), we can obtain expressions for the desired interior intensities
simply by post-processing a version of Eq. (2.1) where the integral over m0 is approximated by the quadrature
rule for layer k and the solution expressed by Eq. (5.1) [or Eq. (6.1) if the layer is conservative] is used to define
the resulting right-hand side. Considering m40 and integrating the resulting equation between ak�1 and an
arbitrary interior point t 2 ðak�1; akÞ, we find, for $ka1 and m 2 ð0; 1�,

Ikðt;mÞ ¼ Ikðak�1;mÞ e�ðt�ak�1Þ=m þ Qkðt; mÞ, (8.1)

where

Qkðt; mÞ ¼
$k

2

XLk

l¼0

bk;lPlðmÞ
XNk

j¼1

nk;j ½Ak;jCðt� ak�1 : nk;j ; mÞ

þ ð�1ÞlBk;j e
�ðak�tÞ=nk;j Sðt� ak�1 : nk;j ;mÞ�Gk;lðnk;jÞ. ð8:2Þ

Similarly, changing m to �m in the approximated version of Eq. (2.1) and integrating the resulting equation
between an arbitrary interior point t 2 ðak�1; akÞ and ak, we find, for $ka1 and m 2 ð0; 1�,

Ikðt;�mÞ ¼ Ikðak;�mÞ e�ðak�tÞ=m þ Qkðt;�mÞ, (8.3)

where

Qkðt;�mÞ ¼
$k

2

XLk

l¼0

bk;lPlðmÞ
XNk

j¼1

nk;j½ð�1Þ
lAk;j e

�ðt�ak�1Þ=nk;j Sðak � t : nk;j ; mÞ

þ Bk;jCðak � t : nk;j ;mÞ�Gk;lðnk;jÞ. ð8:4Þ

Repeating the above procedure with Eq. (6.1) in place of Eq. (5.1), we find that our post-processed
expressions for the interior intensities for $k ¼ 1 and m 2 ð0; 1� can still be expressed as Eqs. (8.1) and (8.3)),
but now, for a conservative case, we must use

Qkðt; mÞ ¼ Ekðt;mÞ þ
1

2

XLk

l¼0

bk;lPlðmÞ
XNk

j¼2

nk;j½Ak;jCðt� ak�1 : nk;j ;mÞ

þ ð�1ÞlBk;j e
�ðak�tÞ=nk;j Sðt� ak�1 : nk;j ;mÞ�Gk;lðnk;jÞ ð8:5aÞ
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and

Qkðt;�mÞ ¼ Ekðt;�mÞ þ
1

2

XLk

l¼0

bk;lPlðmÞ
XNk

j¼2

nk;j ½ð�1Þ
lAk;j e

�ðt�ak�1Þ=nk;j Sðak � t : nk;j ;mÞ

þ Bk;jCðak � t : nk;j ;mÞ�Gk;lðnk;jÞ, ð8:5bÞ

where

Ekðt;mÞ ¼ Ak;1½1� e�ðt�ak�1Þ=m� þ Bk;1ft� ak�1 þ ðak�1 � 3m=hk;1Þ½1� e�ðt�ak�1Þ=m�g (8.6a)

and

Ekðt;�mÞ ¼ Ak;1½1� e�ðak�tÞ=m� þ Bk;1ft� ak þ ðak þ 3m=hk;1Þ½1� e�ðak�tÞ=m�g, (8.6b)

for m 2 ð0; 1�, are used in Eqs. (8.5) to denote the parts of the solution that result from the unbounded
separation constant nk;1. To conclude this section, we note that Eqs. (8.1) and (8.3) require the intensities
entering layer k, Ikðak�1; mÞ and Ikðak;�mÞ for m 2 ð0; 1�, which are available from Eqs. (7.5).

9. Numerical results

In this work, which we consider to be a ‘‘methods paper,’’ we do not report extensive numerical results or
present any graphical material. Instead, we report, first of all in Tables 1 and 2, some basic results (that we
consider to be of a very high standard) for numerous cases defined for two-layer media. Here, we consider that
the ‘‘bi-slab’’ is surrounded by vacuum, so that n0 ¼ 1 and n3 ¼ 1. While most of the defining data for the
numerical results listed in Tables 1 and 2 are given within the titles of the tables, we still must define the
scattering laws used. In order to make our results accessible to anyone seeking to make use of our solution or
to compare to some independent calculation, we use scattering laws that are easy to implement: we introduce
the binomial scattering law for both regions. To be clear, we use [25]

pðcosYÞ ¼
Lþ 1

2L
ð1þ cosYÞL (9.1)
Table 1

The normalized exiting currents for two-layer problems: c0ðmÞ ¼ 2 and c2ðmÞ ¼ 0, with D1 ¼ 0:4, D2 ¼ 0:6, $1 ¼ 0:9, $2 ¼ 0:99, L1 ¼ 10,

and L2 ¼ 100

A B

n1 n2 ¼ 4=3 n2 ¼ 1:6 n2 ¼ 1:9 n2 ¼ 4=3 n2 ¼ 1:6 n2 ¼ 1:9

1.1 1.229044(–1) 1.700122(–1) 2.207497(–1) 7.740266(–1) 7.177744(–1) 6.571845(–1)

1.4 1.557771(–1) 1.840196(–1) 2.206218(–1) 7.259716(–1) 6.889740(–1) 6.422040(–1)

1.8 2.141451(–1) 2.260156(–1) 2.475060(–1) 6.464151(–1) 6.270166(–1) 5.956496(–1)

2.0 2.428920(–1) 2.493952(–1) 2.653249(–1) 6.076314(–1) 5.943900(–1) 5.690639(–1)

Table 2

The normalized exiting currents for two-layer problems: c0ðmÞ ¼ 2 and c2ðmÞ ¼ 0, with D1 ¼ 5:0, D2 ¼ 7:0,$1 ¼ 1:0,$2 ¼ 0:99, L1 ¼ 200,

and L2 ¼ 100

A B

n1 n2 ¼ 4=3 n2 ¼ 1:6 n2 ¼ 1:9 n2 ¼ 4=3 n2 ¼ 1:6 n2 ¼ 1:9

1.1 1.805408(–1) 2.274339(–1) 2.685735(–1) 6.358881(–1) 5.471086(–1) 4.610808(–1)

1.4 2.128375(–1) 2.372061(–1) 2.613893(–1) 6.015017(–1) 5.305965(–1) 4.571950(–1)

1.8 2.801588(–1) 2.843818(–1) 2.937984(–1) 5.437957(–1) 4.877804(–1) 4.276678(–1)

2.0 3.136204(–1) 3.101404(–1) 3.140405(–1) 5.157670(–1) 4.655563(–1) 4.102323(–1)
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to describe the scattering process, with L ¼ L1 in region one and L ¼ L2 in region two. We note that Y is the
scattering angle and that L is a nonnegative integer. It is known that Eq. (9.1) can be rewritten in terms of
Legendre polynomials as

pðcosYÞ ¼
XL

l¼0

blPlðcosYÞ, (9.2)

where, as reported by McCormick and Sanchez [26], the b coefficients can be computed from the recursion
formula

bl ¼
2l þ 1

2l � 1

� �
Lþ 1� l

Lþ 1þ l

� �
bl�1, (9.3)

for l ¼ 1; 2; . . . ;L, with b0 ¼ 1.
In regard to the challenging multi-layer problems, we report in Tables 4–6 numerical results (also thought to

be of a very high standard) for the five test cases defined in terms of the data given in Table 3.
For these test cases too, we consider that the multi-layer media are surrounded by vacuum so that n0 ¼ 1

and nKþ1 ¼ 1. Again, we use the binomial scattering law with L ¼ Lk in each layer and we consider the case of
(isotropic) radiation incident only on the surface located at a0, i.e.,

c0ðmÞ ¼ 2 and cK ðmÞ ¼ 0. (9.4a,b)

To complete the data required for our calculation, we must note the way in which the interfaces and the
boundaries of the considered multi-layer problem are defined. As Eq. (2.1) is written in terms of the same
spatial variable t, we must make clear how this variable is defined in each of the layers. To start, we consider
that z is the spatial variable (in physical units), that the boundaries and interfaces are located at z0; z1; . . . ; zK ,
and that the total cross-section (extinction coefficient) is sk for region k, k ¼ 1; 2; . . . ;K. And so, in writing
Eq. (2.1) in terms of the t variable, we have used

t ¼ ak�1 þ skðz� zk�1Þ; zk�1ozozk, (9.5)
Table 3

Basic data for multi-layer problems

Layer # D $ L n

1 1.0 0.95 40 1.65

2 1.2 0.94 60 2.00

3 1.3 0.93 30 1.70

4 0.6 0.96 70 1.60

5 1.9 0.90 20 1.80

6 1.4 0.92 50 1.85

7 0.5 0.97 80 1.55

8 0.3 0.98 90 1.50

9 1.6 0.91 10 1.75

10 5.2 1.00 100 1.30

Table 4

The normalized exiting currents for multi-layer problems

Problem Layers A B

I 1–3 1.950158(–1) 3.769879(–1)

II 6–10 2.157887(–1) 2.739887(–1)

III 4–10 1.498979(–1) 1.631278(–1)

IV 1–9 1.450329(–1) 9.725498(–2)

V 1–10 1.452098(–1) 9.790916(–2)
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Table 5

The exiting intensity bIða0;�mÞ for multi-layer problems

m Problem I Problem II Problem III Problem IV Problem V

0.00 2.0 2.0 2.0 2.0 2.0

0.05 1.5685 1.5649 1.5380 1.5349 1.5350

0.10 1.2555 1.2557 1.2025 1.1982 1.1983

0.15 1.0242 1.0307 9.5492(–1) 9.4997(–1) 9.5012(–1)

0.20 8.5108(–1) 8.6391(–1) 7.6980(–1) 7.6444(–1) 7.6462(–1)

0.25 7.1996(–1) 7.3844(–1) 6.3009(–1) 6.2429(–1) 6.2450(–1)

0.30 6.1982(–1) 6.4302(–1) 5.2395(–1) 5.1762(–1) 5.1785(–1)

0.35 5.4282(–1) 5.6985(–1) 4.4295(–1) 4.3601(–1) 4.3625(–1)

0.40 4.8329(–1) 5.1341(–1) 3.8099(–1) 3.7339(–1) 3.7365(–1)

0.45 4.3707(–1) 4.6972(–1) 3.3358(–1) 3.2530(–1) 3.2558(–1)

0.50 4.0102(–1) 4.3584(–1) 2.9737(–1) 2.8843(–1) 2.8872(–1)

0.55 3.7278(–1) 4.0956(–1) 2.6982(–1) 2.6027(–1) 2.6057(–1)

0.60 3.5052(–1) 3.8920(–1) 2.4900(–1) 2.3890(–1) 2.3923(–1)

0.65 3.3284(–1) 3.7347(–1) 2.3342(–1) 2.2287(–1) 2.2321(–1)

0.70 3.1863(–1) 3.6136(–1) 2.2191(–1) 2.1102(–1) 2.1137(–1)

0.75 3.0704(–1) 3.5208(–1) 2.1358(–1) 2.0246(–1) 2.0284(–1)

0.80 2.9738(–1) 3.4499(–1) 2.0771(–1) 1.9650(–1) 1.9690(–1)

0.85 2.8912(–1) 3.3959(–1) 2.0376(–1) 1.9258(–1) 1.9300(–1)

0.90 2.8186(–1) 3.3549(–1) 2.0128(–1) 1.9026(–1) 1.9070(–1)

0.95 2.7527(–1) 3.3236(–1) 1.9992(–1) 1.8919(–1) 1.8967(–1)

1.00 2.6913(–1) 3.2994(–1) 1.9942(–1) 1.8910(–1) 1.8960(–1)

Table 6

The exiting intensity bIðaK ; mÞ for multi-layer problems

m Problem I Problem II Problem III Problem IV Problem V

0.00 0.0 0.0 0.0 0.0 0.0

0.05 1.4852(–1) 1.3826(–1) 8.5044(–2) 4.5866(–2) 5.1805(–2)

0.10 2.5861(–1) 2.3750(–1) 1.4604(–1) 7.8980(–2) 8.8944(–2)

0.15 3.4258(–1) 3.0972(–1) 1.9031(–1) 1.0356(–1) 1.1588(–1)

0.20 4.0859(–1) 3.6303(–1) 2.2286(–1) 1.2227(–1) 1.3565(–1)

0.25 4.6215(–1) 4.0305(–1) 2.4713(–1) 1.3688(–1) 1.5034(–1)

0.30 5.0711(–1) 4.3374(–1) 2.6553(–1) 1.4856(–1) 1.6144(–1)

0.35 5.4618(–1) 4.5791(–1) 2.7981(–1) 1.5814(–1) 1.6999(–1)

0.40 5.8136(–1) 4.7759(–1) 2.9119(–1) 1.6621(–1) 1.7674(–1)

0.45 6.1411(–1) 4.9424(–1) 3.0057(–1) 1.7321(–1) 1.8224(–1)

0.50 6.4555(–1) 5.0895(–1) 3.0862(–1) 1.7945(–1) 1.8689(–1)

0.55 6.7653(–1) 5.2253(–1) 3.1582(–1) 1.8518(–1) 1.9098(–1)

0.60 7.0772(–1) 5.3559(–1) 3.2252(–1) 1.9058(–1) 1.9472(–1)

0.65 7.3962(–1) 5.4857(–1) 3.2902(–1) 1.9580(–1) 1.9827(–1)

0.70 7.7264(–1) 5.6184(–1) 3.3551(–1) 2.0097(–1) 2.0177(–1)

0.75 8.0707(–1) 5.7567(–1) 3.4216(–1) 2.0617(–1) 2.0530(–1)

0.80 8.4310(–1) 5.9026(–1) 3.4910(–1) 2.1151(–1) 2.0894(–1)

0.85 8.8086(–1) 6.0579(–1) 3.5644(–1) 2.1703(–1) 2.1275(–1)

0.90 9.2035(–1) 6.2239(–1) 3.6427(–1) 2.2282(–1) 2.1677(–1)

0.95 9.6150(–1) 6.4014(–1) 3.7267(–1) 2.2892(–1) 2.2105(–1)

1.00 1.0042 6.5912(–1) 3.8170(–1) 2.3539(–1) 2.2563(–1)
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along with the definition

ak ¼ ak�1 þ skðzk � zk�1Þ, (9.6)

where, for both of Eqs. (9.5) and (9.6), k ¼ 1; 2; . . . ;K . Note that a0 is arbitrary in these definitions.
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In regard to the numerical results reported in Tables 1,2, 4–6, we have carried out several calculations using
different orders of the discrete-ordinates quadrature schemes (and, for the two-layer cases, with and without
iteration). In this way we have found the converged results listed in the tables. And, in order to have results
based on an alternative methodology, we have used the Monte Carlo method to confirm, in most cases with
three or four figures of agreement (but with a minimum of two figures), the numerical results listed in our
tables.

It is important now to make a few comments about the value of M, the number of Gauss quadrature points
used in each of the subintervals into which the overall half-range interval [0,1] is partitioned. For a given
accuracy level, we have found that the value M to be used in our solution depends weakly on the numerous
physical issues (the number of layers, the amount of absorption and the scattering law in each layer, the
optical thickness of each layer, and the values of the indices of refraction used to define the problem). We have
concluded that M ¼ 20 was sufficient to obtain results valid to at least three significant figures for all of the
solved problems. On the other hand, we have used a maximum value of M ¼ 720 to obtain the results
(considered to be definitive) listed in our tables.

Finally, we have confirmed all five figures of the numerical results for A and B reported by Wu and Liou
[14], for the case of K ¼ 2 and isotropic scattering, in their Table 7.
10. Concluding remarks

In this work we have solved a very basic problem in radiative transfer, viz., the case of a multi-layer, plane-
parallel medium (illuminated by azimuthally-independent impinging radiation) for which the Fresnel/Snell
laws are used to define the two boundary conditions and all of the interface conditions. The radiation field in
each of the K layers is described by an equation of transfer for a grey medium, and anisotropic scattering (of
order Lk) is allowed in each ðk ¼ 1; 2; . . . ;KÞ of the layers.

While the solution developed and evaluated in this work is based on the ADO method, there are two
important aspects of our analysis that could be used to great effect for other numerical/analytical studies. First
of all, the preliminary analysis discussed in Section 3 makes it possible to formulate the boundary and
interface conditions for the unknown intensities in terms of a single simple variable (the direction cosine m).
This ‘‘pre-processing’’ procedure allows us to avoid interpolations, as have been used by some workers,
between direction cosines in the different layers. Our pre-processing procedure has also made it possible to
analyze carefully the boundary and/or interface conditions to the extent that we could establish (and have
confidence in) our definitions of all the important break points (see what follows) used to construct our
quadrature schemes for each individual layer in the composite medium.

A second general and very important component of our work here is the study of the break points
discussed in Section 4. Since the Fresnel/Snell boundary and interface functions can have discontinuous
derivatives, these discontinuities can be introduced into the boundary/interface intensities. And so
any discrete-ordinates method, or in fact any way of representing the intensities, should take into
account these induced discontinuities. We account for these discontinuities by finding the break points
(for each layer) and then using these break points in order to partition our interval of integration.
For emphasis, we note that the classical spherical-harmonics method, for example, where the intensities
are expressed in terms of global polynomials, cannot be expected to recover the mentioned angular
discontinuities.

It is clear to us that we could not have obtained the very high-quality results reported here without the use
of our ‘‘pre-processing’’ procedure and our ‘‘break-point’’ analysis.

To conclude, we believe that we have provided a general theory for an arbitrary number of different layers,
each with a given albedo for single scattering, a specified optical thickness, a general scattering law, and an
index of refraction. We have also implemented the established ADO solution to find five figures of accuracy
for the intensities exiting the medium and seven figures of accuracy for the exiting currents. And so we believe
this work could be used to great effect for important applications like those discussed, for example, by Elias
and co-workers [6,7].
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