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Abstract

A concise and accurate solution to the problem of plane Couette flow for a binary mixture of rigid-sphere gases described by
the linearized Boltzmann equation and general (specular-diffuse) Maxwell boundary conditions for each of the two species of gas
particles is developed. An analytical version of the discrete-ordinates method is used to establish the velocity, heat-flow, and shear-
stress profiles for both types of particles, as well as the particle-flow and heat-flow rates associated with each of the two species.
Accurate numerical results are given for the case of a mixture of helium and argon confined between molybdenum and tantalum
plates.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The study of the internal gas flow induced by two infinite plates that are moving with respect to each other in
parallel directions constitutes a classical problem in rarefied gas dynamics known as plane Couette flow. The problem
can be adequately modeled by the linearized Boltzmann equation (LBE) if the plate velocities vw,1 and vw,2 can be
considered small when compared to the reference Maxwellian speed (2kT0/mα)1/2 for all species present in the gas.
Here, k is the Boltzmann constant, T0 is the (unperturbed) gas temperature, and mα is the mass of a gas particle of
species α.

A list of all the works dedicated to the study of linearized plane Couette flow of a single gas would be too lengthy
to be included here, and so, for reference, we mention the books by Cercignani [1–3], Williams [4] and Ferziger and
Kaper [5], as well as the review papers by Sharipov and Seleznev [6] and Williams [7], where discussions of many
important papers on the single-gas case and useful background material can be found. On the other hand, the literature
on solutions of this problem for gas mixtures is scarce. We are aware of only five works [8–12] on linearized plane
Couette flow of gas mixtures; however, all of these works are based on model equations. In this paper, we extend
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our recent work with the linearized Boltzmann equation (for rigid-sphere interactions) to the important problem of
Couette flow for gas mixtures.

2. Basic formulation

Before starting our work that is specific to Couette flow between parallel plates, we review briefly our analytical
formulation of the linearized Boltzmann equation for a binary mixture of rigid spheres. This formulation was started
in Ref. [13], was further developed in Refs. [14] and [15], and was applied in Refs. [16–19] to various basic problems
in rarefied gas dynamics. Considering what has gone before this work, we write the coupled linearized Boltzmann
equations for variations only in the z direction (perpendicular to the confining plates) for the considered binary mixture
of rigid spheres as

cμ
∂

∂z
H (z, c) + ε0V (c)H (z, c) = ε0

∫
e−c′2K(c′ : c)H (z, c′)d3c′, (2.1)

where

H (z, c) =
[

h1(z, c)

h2(z, c)

]
, (2.2)

V (c) = (1/ε0)�(c), (2.3)

and

K(c′ : c) = (1/ε0)K(c′ : c). (2.4)

Here, ε0 is an arbitrary parameter that we choose as

ε0 = (n1 + n2)π
1/2

(
n1d1 + n2d2

n1 + n2

)2

, (2.5)

and, as defined in Appendix A, �(c) is a 2 × 2 diagonal matrix with elements expressed in terms of the collision
frequencies and K(c′ : c) is a 2 × 2 matrix with the scattering kernels as elements. In addition, since Eq. (2.1) is
written in terms of a dimensionless velocity variable c, we note that the basic velocity distribution functions are given
by

fα(z,v) = fα,0(v)
[
1 + hα(z,λ1/2

α v)
]
, α = 1,2, (2.6)

where λα = mα/(2kT0), and where

fα,0(v) = nα(λα/π)3/2e−λαv2
(2.7)

is the Maxwellian distribution for nα particles (of mass mα and diameter dα) in equilibrium at temperature T0. It
can be noted from Eq. (2.6) that, at this point, the particle distribution functions fα(z,v) have been linearized about
the absolute Maxwellian distributions fα,0(v). Continuing, we note that we use spherical coordinates {c, θ,φ}, with
μ = cos θ , to describe the dimensionless velocity vector, so that

H (z, c) ⇔ H (z, c,μ,φ).

In our notation, cμ is the component of the (dimensionless) velocity vector in the positive z direction, and so if we let

cx = c(1 − μ2)1/2 cosφ (2.8)

denote the component of the velocity in the x direction (parallel to the confining plates) of the flow, then we can
express the velocity, the shear-stress, and the heat-flow profiles for the considered flow problem as

U(z) = 1

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
H (z, c)c3(1 − μ2)

1/2
cosφ dφ dμdc, (2.9)

P (z) = 2

π3/2

∞∫ 1∫ 2π∫
e−c2

H (z, c)c4μ(1 − μ2)
1/2

cosφ dφ dμdc, (2.10)
0 −1 0
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and

Q(z) = 1

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
H (z, c)(c2 − 5/2)c3(1 − μ2)

1/2
cosφ dφ dμdc, (2.11)

where the components of U(z), P (z), and Q(z) are, respectively, the functions Uα(z), Pα(z), and Qα(z), α = 1,2,
that can be used as in Appendix A of Ref. [17] to define macroscopic quantities for a binary mixture.

We now introduce the dimensionless spatial variable

τ = zε0 (2.12)

and rewrite Eq. (2.1) as

cμ
∂

∂τ
H (τ/ε0, c) + V (c)H (τ/ε0, c) =

∫
e−c′2K(c′ : c)H (τ/ε0, c

′)d3c′. (2.13)

At the walls located at τ = −a and τ = a, we use a combination of specular and diffuse reflection, and so, in regard
to Eq. (2.13), we write the boundary conditions as [7,12]

H (−a/ε0, c,μ,φ) − (I − α)H (−a/ε0, c,−μ,φ) − αI−{H }(−a/ε0) = 2cxuw,1αr (2.14a)

and

H (a/ε0, c,−μ,φ) − (I − β)H (a/ε0, c,μ,φ) − βI+{H }(a/ε0) = 2cxuw,2βr, (2.14b)

for c ∈ [0,∞), μ ∈ (0,1], and φ ∈ [0,2π]. Here

I∓{H }(z) = 2

π

∞∫
0

1∫
0

2π∫
0

e−c′2
H (z, c′,∓μ′, φ′)μ′c′3 dφ′ dμ′ dc′, (2.15)

α = diag{α1, α2}, and β = diag{β1, β2}, (2.16a,b)

where α1, α2, β1, and β2 are the accommodation coefficients. In addition, uw,1 and uw,2 are dimensionless plate
velocities expressed in units of v0 = (2kT0/m)1/2, where

m = n1m1 + n2m2

n1 + n2
, (2.17)

and r is a vector with components rα = (mα/m)1/2, α = 1,2.
As in Refs. [17] and [19], it is clear that an expansion of H (z, c) in a Fourier series (in the angle φ) requires only

one term – viz., one proportional to cosφ. And so, we write

H (τ/ε0, c) = �(τ, c,μ)(1 − μ2)1/2 cosφ, (2.18)

where �(τ, c,μ) is the (vector-valued) function to be determined. We deduce from Eqs. (2.13) and (2.14) that
�(τ, c,μ) must satisfy

cμ
∂

∂τ
�(τ, c,μ) + V (c)�(τ, c,μ) =

∞∫
0

1∫
−1

e−c′2
f (μ′,μ)K(c′,μ′ : c,μ)�(τ, c′,μ′)c′2 dμ′ dc′, (2.19)

for τ ∈ (−a, a), c ∈ [0,∞), and μ ∈ [−1,1], subject to

�(−a, c,μ) − (I − α)�(−a, c,−μ) = 2cuw,1αr (2.20a)

and

�(a, c,−μ) − (I − β)�(a, c,μ) = 2cuw,2βr, (2.20b)

for c ∈ [0,∞) and μ ∈ (0,1]. In Eq. (2.19),

f (μ′,μ) =
(

1 − μ′2
2

)1/2

(2.21)

1 − μ
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and

K(c′,μ′ : c,μ) cosφ′ =
2π∫

0

K(c′ : c) cosφ dφ, (2.22)

which can be expressed as

K(c′,μ′ : c,μ) = (1/2)

∞∑
n=1

(2n + 1)P 1
n (μ′)P 1

n (μ)Kn(c
′, c). (2.23)

Here, Kn(c
′, c) is defined in Appendix A and P 1

n (x) is used to denote one of the normalized associated Legendre
functions. More explicitly,

P m
l (μ) =

[
(l − m)!
(l + m)!

]1/2

(1 − μ2)m/2 dm

dμm
Pl(μ), (2.24)

where Pl(μ) is the Legendre polynomial.
Once Eqs. (2.19) and (2.20) are solved, we can immediately determine the quantities of interest from

U(τ ) = 1

π1/2

∞∫
0

1∫
−1

e−c2
�(τ, c,μ)c3(1 − μ2)dμdc, (2.25)

P (τ ) = 2

π1/2

∞∫
0

1∫
−1

e−c2
�(τ, c,μ)c4(1 − μ2)μdμdc, (2.26)

and

Q(τ ) = 1

π1/2

∞∫
0

1∫
−1

e−c2
�(τ, c,μ)(c2 − 5/2)c3(1 − μ2)dμdc. (2.27)

It should be noted that, to avoid excessive notation, we have, in writing Eqs. (2.25)–(2.27), followed the (often-
used) procedure of not always introducing new labels for dependent quantities (in this case U ,P , and Q) when
the independent variable is changed. In addition to the profiles defined by Eqs. (2.25)–(2.27), we intend to compute
“normalized” particle-flow and heat-flow rates given by

U = 1

2a

a∫
−a

U(τ )dτ (2.28)

and

Q = 1

2a

a∫
−a

Q(τ )dτ, (2.29)

where the factor 1/(2a) has been included in order to be consistent with definitions used when the considered Couette-
flow problem was solved [12] in terms of the McCormack kinetic model [20].

3. A solution

Our way of solving Eqs. (2.19) and (2.20) is based on an expansion of the form

�(τ, c,μ) =
K∑

Πk(c)Gk(τ,μ), (3.1)

k=0
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with the choice Πk(c) = Pk(2e−c −1), followed by a projection procedure, and an application of the analytic discrete-
ordinates (ADO) method [21] for solving the resulting set of integro-differential equations and boundary conditions
that are obtained for the coefficients, Gk(τ,μ), of the expansion. This procedure has been successfully used to solve
other basic problems in rarefied gas dynamics described by the linearized Boltzmann equation for binary mixtures
[16–19]. Since the details of the procedure are readily available, our discussion here can be brief.

We begin by expressing our solution of Eq. (2.19) at the N pairs of discrete ordinates ±μi , where {μi} are the
nodes of our N -point half-range quadrature scheme, as

�(τ, c,±μi) = �∗(τ, c,±μi) + �app(τ, c,±μi) (3.2)

for i = 1,2, . . . ,N . We note that �∗(τ, c,μ) is given in terms of two of the exact elementary solutions we reported in
a previous work [15], i.e.

�∗(τ, c,μ) = A1c� + B1
[
cτ� − μB(c)

]
, (3.3)

where

� =
[

1
r2/r1

]
, (3.4)

and where B(c) is one of the generalized Chapman–Enskog (vector-valued) functions discussed in Ref. [15]. We also
note that the approximate part of our solution in Eq. (3.2) is given by

�app(τ, c,±μi) = �(c)

J∑
j=2

[
Aj�(νj ,±μi)e

−(a+τ)/νj + Bj�(νj ,∓μi)e
−(a−τ)/νj

]
, (3.5)

where J = 2N(K + 1), the 2 × 2(K + 1) matrix �(c) is defined as

�(c) = [
P0(2e−c − 1)I P1(2e−c − 1)I · · ·PK(2e−c − 1)I

]
, (3.6)

the separation constants {νj } and the elementary solutions {�(νj ,±μi)} can be obtained as discussed in Ref. [17],
and the arbitrary constants {Aj ,Bj } are to be determined from the boundary conditions applied at τ = ±a. To this
end, we substitute Eq. (3.2) into discrete-ordinates versions of Eqs. (2.20), multiply the resulting equations by

c2 exp{−c2}�T (c),

where the superscript T is used to denote the transpose operation, and integrate over c from 0 to ∞ to define a system
of 2J linear algebraic equations for the 2J unspecified constants. Once this linear system is solved, we can compute
the quantities of interest from

U(τ ) = (1/2)(A1 + B1τ)� +
J∑

j=2

[
Aj e−(a+τ)/νj + Bj e−(a−τ)/νj

]
U j , (3.7a)

P (τ ) = −(1/2)B1εp +
J∑

j=2

[
Aj e−(a+τ)/νj − Bj e−(a−τ)/νj

]
Pj , (3.7b)

and

Q(τ ) =
J∑

j=2

[
Aj e−(a+τ)/νj + Bj e−(a−τ)/νj

]
Qj , (3.7c)

where

εp = 16

15π1/2

∞∫
0

e−c2
B(c)c4 dc, (3.8)

U j = �1Xj , (3.9a)

Pj = 2�2Y j , (3.9b)
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and

Qj = [
�3 − (5/2)�1

]
Xj . (3.9c)

Here, to write Eqs. (3.9) in a compact form, we have used

Xj = 1

π1/2

N∑
k=1

wk(1 − μ2
k)

[
�(νj ,μk) + �(νj ,−μk)

]
, (3.10a)

Y j = 1

π1/2

N∑
k=1

wkμk(1 − μ2
k)

[
�(νj ,μk) − �(νj ,−μk)

]
, (3.10b)

where {wk} are the weights of our N -point half-range quadrature scheme, and

�n =
∞∫

0

e−c2
�(c)cn+2 dc. (3.11)

Since we have the analytical expressions for the velocity and heat-flow profiles given by Eqs. (3.7a) and (3.7c), we
can use those expressions in Eqs. (2.28) and (2.29) to find the normalized particle-flow and heat-flow rates, viz.

U = 1

2a

[
aA1� +

J∑
j=2

νj (Aj + Bj )
(
1 − e−2a/νj

)
U j

]
(3.12)

and

Q = 1

2a

J∑
j=2

νj (Aj + Bj )
(
1 − e−2a/νj

)
Qj . (3.13)

As our solution is complete, we are now ready to consider a specific set of physical data so as to be able to report
some numerical results.

4. Numerical results

To begin this section, we note that the computational implementation of our ADO solution is similar to that of two
of our recent works [17,19], and so we report only a summary of important computational aspects of our solution here.
First of all, the kernel K(c′,μ′ : c,μ) defined by Eq. (2.23) was truncated at n = L, and the Legendre components
Kn(c

′, c) that are required in Eq. (2.23) were computed using a 200-point Gauss–Legendre quadrature set with the
integration algorithms reported in Appendix A of Ref. [15]. Along with the order M of the Gaussian quadrature used
for integration over the speed variable, as for example in Eq. (3.11), the order K of the approximate representation
of Eq. (3.1), the order N of the half-range Gaussian quadrature scheme used by our ADO approximation, and the
number of spline functions Ks used to compute, without post-processing [15], the generalized Chapman–Enskog
vector function B(c), the kernel truncation parameter L defines the set of five approximation parameters

{L,M,K,N,Ks},
upon which our numerical results are based. We should also note that the integral involving B(c) in Eq. (3.8) was
performed in this work as in Ref. [15], by applying a Gaussian quadrature of order four to each of the subintervals of
integration defined by two consecutive knots in the applied spline representation.

In order to facilitate a comparison with the numerical results (based on the McCormack model) that are reported in
Ref. [12], we elected to use here the same test case used in that work. We thus consider the case of a He-Ar mixture
confined between Mo and Ta plates, the basic data for which are:

m1 = 4.0026, m2 = 39.948, d2/d1 = 1.665, n2/n1 = 7/3,

α1 = 0.20, α2 = 0.67, β1 = 0.46, β2 = 0.78,

uw,1 = 1.0, uw,2 = −1.0, aM = 1.5.
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Table 1
The velocity, heat-flow, and shear-stress profiles for the He–Ar test case with a = ξMaM , where aM = 1.5 and ξM = 0.403373063 . . .

η U1(−a + 2ηa) U2(−a + 2ηa) Q1(−a + 2ηa) Q2(−a + 2ηa) P1(−a + 2ηa) P2(−a + 2ηa)

0.0 9.0558(−2) 5.8034(−1) −1.3383(−2) −5.6728(−2) 3.9485(−2) 3.8599(−1)

0.1 6.8612(−2) 3.7886(−1) −9.6947(−3) −2.6592(−2) 6.4093(−2) 3.7545(−1)

0.2 4.4780(−2) 2.4772(−1) −6.9586(−3) −1.5587(−2) 7.9490(−2) 3.6885(−1)

0.3 1.9170(−2) 1.3024(−1) −4.7035(−3) −8.7247(−3) 8.9669(−2) 3.6449(−1)

0.4 −7.5691(−3) 1.8526(−2) −2.7345(−3) −3.6880(−3) 9.6174(−2) 3.6170(−1)

0.5 −3.5015(−2) −9.0706(−2) −9.1534(−4) 5.7745(−4) 9.9785(−2) 3.6015(−1)

0.6 −6.2874(−2) −1.9950(−1) 8.6957(−4) 4.7760(−3) 1.0086(−1) 3.5969(−1)

0.7 −9.0932(−2) −3.0981(−1) 2.7351(−3) 9.5798(−3) 9.9457(−2) 3.6029(−1)

0.8 −1.1906(−1) −4.2450(−1) 4.8173(−3) 1.5920(−2) 9.5286(−2) 3.6208(−1)

0.9 −1.4735(−1) −5.5032(−1) 7.3178(−3) 2.5745(−2) 8.7554(−2) 3.6539(−1)

1.0 −1.7927(−1) −7.3522(−1) 1.0822(−2) 5.1331(−2) 7.3898(−2) 3.7125(−1)

Table 2
The particle-flow and heat-flow rates for the He–Ar test case with various choices of the half-distance
between plates a = ξMaM , where ξM = 0.403373063 . . .

aM −U1 −U2 −Q1 −Q2

0.001 1.67457(−1) 1.38507(−1) 1.08598(−4) 3.01787(−5)

0.01 1.56800(−1) 1.37346(−1) 6.04352(−4) 4.76324(−5)

0.1 1.14610(−1) 1.32332(−1) 1.99862(−3) −8.83751(−5)

0.5 6.57181(−2) 1.15727(−1) 2.07309(−3) 7.38842(−5)

1.0 4.68382(−2) 1.00035(−1) 1.47878(−3) 2.78915(−5)

2.0 3.12969(−2) 7.84716(−2) 7.72503(−4) −4.40149(−5)

5.0 1.64375(−2) 4.70441(−2) 2.00374(−4) −2.18928(−5)

10.0 9.31898(−3) 2.80046(−2) 5.90387(−5) −6.55253(−6)

20.0 5.01357(−3) 1.54455(−2) 1.61741(−5) −1.79517(−6)

50.0 2.10423(−3) 6.58089(−3) 2.74571(−6) −3.04748(−7)

We note that the above masses were taken from Ref. [22], the diameter ratio from Ref. [23], and the accommodation
coefficients from Ref. [24]. In addition, we note that aM is used in this work to denote the dimensionless half-distance
between plates of Ref. [12] (the subscript M stands for “McCormack”). The analogous quantity in this work (a) is
related to aM by

a = ξMaM, (4.1)

where ξM is a conversion factor explicitly defined in Refs. [16] and [17]. For the present case, ξM = 0.403373063 . . . .
In Table 1, we report our converged numerical results for the velocity, heat-flow, and shear-stress profiles for the

selected test case. Note that the shear-stress profiles are defined in this work with a factor 2 not present in the definition
of Ref. [12]. Thus, while the velocity and heat-flow profiles reported in Table 1 can immediately be compared with
those reported in Table I of Ref. [12], the shear-stress profiles must be halved for a proper comparison with the
shear-stress profiles reported in Table I of Ref. [12]. In Table 2, converged numerical results for the particle-flow
and heat-flow rates are given for various choices of the dimensionless half-distance between plates a and, in Table 3,
converged values of the ratio p/pf m are reported for the same choices of a used in Table 2. We note that the quantities
involved in the definition of the ratio p/pf m reported in Table 3 are the total stress

p = c1P1(τ ) + c2P2(τ ) (4.2)

and the free-molecular total stress

pf m = 1

π1/2
(uw,1 − uw,2)

[
c1r1

α1β1

α1 + β1 − α1β1
+ c2r2

α2β2

α2 + β2 − α2β2

]
, (4.3)

where cα = nα/(n1 + n2), α = 1,2. The results reported in Tables 2 and 3 of this work can be directly compared with
those of Tables II and III of Ref. [12].

All of the numerical results tabulated in this work are thought to be accurate to within ±1 in the last reported
figure, except possibly some of the Q2 results reported in Table 2, which may not be that accurate in the range
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Table 3
The ratio p/pf m for the He–Ar test case with various choices of the accommodation coefficients and
the half-distance between plates a = ξMaM , where ξM = 0.403373063 . . .

α1 = β1 = 0.4 α1 = β1 = 0.6 α1 = β1 = 0.8 α1 = β1 = 1.0
aM α2 = β2 = 0.7 α2 = β2 = 0.8 α2 = β2 = 0.9 α2 = β2 = 1.0

0.001 9.98968(−1) 9.98734(−1) 9.98452(−1) 9.98105(−1)

0.01 9.90220(−1) 9.88082(−1) 9.85531(−1) 9.82428(−1)

0.1 9.22896(−1) 9.08000(−1) 8.90860(−1) 8.70834(−1)

0.5 7.46495(−1) 7.07224(−1) 6.65114(−1) 6.19702(−1)

1.0 6.16913(−1) 5.67208(−1) 5.16846(−1) 4.65717(−1)

2.0 4.64123(−1) 4.10965(−1) 3.60915(−1) 3.13624(−1)

5.0 2.68717(−1) 2.26478(−1) 1.90326(−1) 1.58947(−1)

10.0 1.58065(−1) 1.29629(−1) 1.06501(−1) 8.72590(−2)

20.0 8.66805(−2) 6.98719(−2) 5.66239(−2) 4.58767(−2)

50.0 3.68094(−2) 2.93214(−2) 2.35445(−2) 1.89358(−2)

of aM values where sign changes occur (0.01 < aM < 2.0). Numerical convergence in the results of Tables 1–3 was
achieved by running the developed computer code for different values of the approximation parameters in the intervals
60 � L � 115, 100 � M � 400, 20 � K � 35, 60 � N � 120, and 80 � Ks − 2 � 1280, except in the case of the
heat-flow rates for aM � 0.5 reported in Table 2, as discussed next.

At this point, we should note that we have encountered a difficulty while generating some of the numerical results
reported in Table 2: the convergence of the heat-flow rates as the ADO approximation is increased has been found to
become progressively slower as a → 0, i.e. when the free-molecular flow regime is approached. Thus, to accelerate
the convergence of Qα , α = 1,2, for small values of a, we have developed a post-processed version of our solution,
following and generalizing, for the case of a binary mixture, the procedure reported in Ref. [25] for the single-gas
case.

Our post-processed formula for Q was derived by using the solution expressed by Eqs. (3.2)–(3.5) on the right-
hand side of Eq. (2.19) multiplied by the integrating factor exp[V (c)τ/(cμ)], approximating the integral over μ′ of
the ADO part of our solution with the half-range quadrature scheme and integrating over τ the resulting equation, viz.

cμ
∂

∂τ

[
eV (c)τ/(cμ)�pp(τ, c,μ)

] = eV (c)τ/(cμ)

{ ∞∫
0

1∫
−1

e−c′2
f (μ′,μ)K(c′,μ′ : c,μ)�∗(τ, c′,μ′)c′2 dμ′ dc′

+
∞∫

0

e−c′2
N∑

k=1

wkf (μk,μ)
[
K(c′,μk : c,μ)�app(τ, c

′,μk) + K(c′,−μk : c,μ)�app(τ, c
′,−μk)

]
c′2dc′

}
,

(4.4)

and its counterpart with μ changed to −μ. We note that the subscript pp attached to �(τ, c,μ) on the left side of
Eq. (4.4) has the meaning that the solution of this equation yields a post-processed formula for �(τ, c,μ). The result-
ing expressions for �pp(τ, c,μ) and �pp(τ, c,−μ), μ ∈ (0,1], were used in Eq. (2.27) to obtain a post-processed
expression for Q(τ ). This expression was then used in Eq. (2.29) to yield our desired post-processed formula for Q,
viz.

Qpp = 1

2π1/2a

∞∫
0

1∫
0

e−c2
	(c,μ)(c2 − 5/2)c3(1 − μ2)dμdc, (4.5)

where

	(c,μ) =
a∫

−a

[
�pp(τ, c,μ) + �pp(τ, c,−μ)

]
dτ (4.6)

is given by
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	(c,μ) = cμV −1(c)
[
I − e−2aV (c)/(cμ)

]{
E(c,μ)
(c,μ) − 2cA1�

}
+

J∑
j=2

νj (Aj + Bj )
[
F j (c,μ)W+

j (c,μ) + Gj (c,μ)W−
j (c,μ)

]
. (4.7)

Here,

E(c,μ) = {
I − [

I − ρ(c,μ,α)
][

I − ρ(c,μ,β)
]}−1

, (4.8)

F j (c,μ) = V −1(c)
{
I − [

νjV (c) − cμI
]−1[

νjV (c)e−2a/νj − cμe−2aV (c)/(cμ)
]}

, (4.9)

Gj (c,μ) = V −1(c)
{[

νjV (c) + cμI
]−1[

νjV (c) + cμe−2a/νj e−2aV (c)/(cμ)
] − Ie−2a/νj

}
, (4.10)

and

W±
j (c,μ) = (1/2)

L∑
l=1

(2l + 1)(±1)l−1J l (c)Zj,l(μ), (4.11)

where the definitions

ρ(c,μ,x) = I + (I − x)e−2aV (c)/(cμ), (4.12)

J l(c) =
∞∫

0

e−c′2Kl (c
′, c)�(c′)c′2 dc′, (4.13)

and

Zj,l(μ) = (1 − μ2)−1/2P 1
l (μ)

N∑
k=1

wk(1 − μ2
k)

1/2P 1
l (μk)

[
�(νj ,μk) + (−1)l−1�(νj ,−μk)

]
(4.14)

have been used. Finally, the term 
(c,μ) in Eq. (4.7) can be written as


(c,μ) = 
bcs(c,μ) + 
∗(c,μ) + 
app(c,μ), (4.15)

where the terms on the right side come, respectively, from the boundary conditions, the exact part of the solution, and
the approximate part of the solution. These three terms are explicitly given by


bcs(c,μ) = 2c
[
uw,1αρ(c,μ,β) + uw,2βρ(c,μ,α)

]
r, (4.16a)


∗(c,μ) = cA1
[
(I − β)ρ(c,μ,α) + (I − α)ρ(c,μ,β)

][
I − e−2aV (c)/(cμ)

]
�

+ B1(α − β)
{
ac

[
I + e−2aV (c)/(cμ)

]
� − μ

[
I − e−2aV (c)/(cμ)

]
B(c)

}
, (4.16b)

and


app(c,μ) =
J∑

j=2

νj

{[
(I − β)ρ(c,μ,α)Aj + (I − α)ρ(c,μ,β)Bj

]
Cj (c,μ)W+

j (c,μ)

+ [
(I − α)ρ(c,μ,β)Aj + (I − β)ρ(c,μ,α)Bj

]
Sj (c,μ)W−

j (c,μ)
}
, (4.16c)

where

Cj (c,μ) = [
νjV (c) − cμI

]−1[e−2a/νj I − e−2aV (c)/(cμ)
]

(4.17a)

and

Sj (c,μ) = [
νjV (c) + cμI

]−1[
I − e−2a/νj e−2aV (c)/(cμ)

]
. (4.17b)

We have used the post-processed formula expressed by Eqs. (4.5)–(4.17) to compute the heat-flow rates reported in
Table 2 for aM � 0.5. For this purpose, all approximation parameters were varied as mentioned before, except L, the
upper limit of which was extended to 285. The μ-integration in Eq. (4.5) was performed by a shifted Gauss–Legendre
quadrature of order 380.
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5. Concluding remarks

We have reported in this work what we believe to be a concise and accurate solution of the plane Couette-flow
problem, as described by the (vector) linearized Boltzmann equation for a binary mixture of rigid-sphere gases. In
addition to reporting, for a specific set of data, the velocity, heat-flow, and shear-stress profiles for a fixed value of the
channel thickness, we have listed the particle-flow and the heat-flow rates for the same data and channel widths that
vary from aM = 0.001 to aM = 50.0.

In comparing the results of our previous work [12] based on the McCormack kinetic model [20] with our current
results (both relevant to the case of rigid-sphere interactions and based on the same test case defined in terms of a
He–Ar mixture confined between Mo and Ta plates), we have seen that the results of the McCormack model can be
considered as reasonable (1–3 figures of accuracy) for the velocity profile for the heavier species in the mixture (ar-
gon), the shear-stress profiles for both types of particles, and the ratio p/pf m. However, the results of the McCormack
model for the velocity profile for the lighter species in the mixture (helium) and especially the heat-flow profiles for
both types of particles display large errors (well above 100% for some entries). With regard to the heat-flow rates
which, due to the asymmetry of the problem (plates of different materials), are small but not zero, we can see that
the results from the McCormack model compare very poorly with our results. We note that the fact that heat-flow
quantities are the most difficult to reproduce by approaches based on model equations for plane Couette flow has also
been observed in the single-gas case (see, for example, Refs. [26] and [27]).

In addition to the comparisons with numerical results from the McCormack kinetic model, we have also performed
comparisons with the single-gas LBE results of Ref. [27], using three different ways of achieving the single-gas limit
in our formulation:

(i) c1 = 0, (ii) c2 = 0, or (iii) m1 = m2, d1 = d2, α1 = α2, and β1 = β2.

We note that to convert our results to the same spatial units used in Ref. [27] we made use of the factor

ξS,p = 0.449027806 . . . ,

which (for the single-species case) is the ratio between our dimensionless spatial variable, as defined by Eqs. (2.5)
and (2.12), and that of Ref. [27]. Doing this, we found good but not perfect agreement with the five-figure results for
the “half-channel” particle-flow and heat-flow rates, the five-figure results for the velocity and heat-flow profiles, and
the six-figure results for a component of the reduced pressure tensor Pxy (see definition in Ref. [27]) that are tabulated
in Ref. [27]. While we found at least five-figure agreement for Pxy , we did find some cases where the half-channel
flow rates and the profiles of Ref. [27] are good only to three figures. We have confirmed that the loss of accuracy in
Tables 6–9 of Ref. [27] was due to using L = 8 in those computations. To make available our current results (based
on L = 90), we list in Tables 4–6 improved versions of Tables 6–9 of Ref. [27]. To be clear, we note that in Ref. [27]
the mean-free path was defined in terms of viscosity, and so the conversion factor ξS,p was used. In addition, to be
consistent with Tables 7 and 8 of Ref. [27], we have made use of the slightly different normalization factor 1/(2a2) to
generate the results in our Table 5, instead of the normalization factor 1/(2a) used for the flow rates U and Q defined

Table 4
Single-species gas: Pxy

2a α = 0.1 α = 1.0

1.0(−7) 2.96942(−2) 5.64190(−1)

1.0(−3) 2.96927(−2) 5.63647(−1)

1.0(−1) 2.95534(−2) 5.20872(−1)

1.0 2.85927(−2) 3.40502(−1)

1.0(1) 2.26781(−2) 8.35098(−2)

1.0(3) 9.67029(−4) 9.98029(−4)

1.0(7) 9.99997(−8) 1.00000(−7)
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Table 5
Single-species gas: the half-channel particle-flow and heat-flow rates

α = 0.1 α = 1.0

2a −Uh Qh −Uh Qh

0.10 5.3171(−2) 9.3507(−3) 7.2916(−1) 1.1882(−1)

1.00 2.3114(−2) 3.2990(−3) 2.2737(−1) 2.2450(−2)

10.0 1.1584(−2) 1.7731(−4) 4.2192(−2) 3.0697(−4)

Table 6
Single-species gas: velocity and heat-flow profiles for the case 2a = 1

α = 0.1 α = 1.0

τ/a −U(τ) Q(τ) −U(τ) Q(τ)

0.0 0.0 0.0 0.0 0.0
0.1 4.2247(−3) 5.7606(−4) 4.3188(−2) 4.0654(−3)

0.2 8.4806(−3) 1.1590(−3) 8.6559(−2) 8.1678(−3)

0.3 1.2802(−2) 1.7564(−3) 1.3031(−1) 1.2347(−2)

0.4 1.7229(−2) 2.3767(−3) 1.7469(−1) 1.6647(−2)

0.5 2.1814(−2) 3.0311(−3) 2.1998(−1) 2.1125(−2)

0.6 2.6631(−2) 3.7347(−3) 2.6662(−1) 2.5854(−2)

0.7 3.1798(−2) 4.5104(−3) 3.1525(−1) 3.0945(−2)

0.8 3.7524(−2) 5.3993(−3) 3.6704(−1) 3.6586(−2)

0.9 4.4291(−2) 6.4940(−3) 4.2461(−1) 4.3189(−2)

1.0 5.4765(−2) 8.3159(−3) 5.0205(−1) 5.2951(−2)

by Eqs. (2.28) and (2.29). In conclusion, we note that we have computed the half-channel particle-flow rate Uh and
the half-channel heat-flow rate Qh reported in Table 5 of this work from

Uh = ξS,p

2a2

a∫
0

Uα(τ)dτ (5.1)

and

Qh = ξS,p

2a2

a∫
0

Qα(τ)dτ, (5.2)

where the appropriate components (α = 1 or 2) were used, depending on the way the single-gas case was approached
in our calculation.
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Appendix A. Basic definitions

In this appendix, we follow our previous work reported in Refs. [14] and [15] and provide some basic definitions
that are needed to complete our formulation of Section 2.

First of all, the 2 × 2 diagonal matrix �(c) that appears on the right-hand side of Eq. (2.3) is defined as [14,15]

�(c) =
[

�1(c) 0
0 �2(c)

]
, (A.1)

with

�α(c) = �(1)
α (c) + �(2)

α (c) (A.2)
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and

�(β)
α (c) = 4π1/2nβσα,βaβ,αν(aα,βc). (A.3)

Here, nβ denotes the equilibrium particle density of species β ,

ν(c) = 2c2 + 1

c

c∫
0

e−x2
dx + e−c2

, (A.4)

and

aα,β = (mβ/mα)1/2, α,β = 1,2, (A.5)

where m1 and m2 are the masses of the two types of gas particles. In addition, we use σα,β to denote the differential-
scattering cross section, which for the case of rigid-sphere scattering that is isotropic in the center-of-mass system, we
can write as [28]

σα,β = 1

4

(
dα + dβ

2

)2

, (A.6)

where d1 and d2 are the atomic diameters of the two types of gas particles.
Continuing to follow Refs. [14] and [15], we write the 2 × 2 matrix K(c′ : c) that appears on the right-hand side of

Eq. (2.4) as

K(c′ : c) =
[

K1,1(c
′ : c) K1,2(c

′ : c)
K2,1(c

′ : c) K2,2(c
′ : c)

]
, (A.7)

where

K1,1(c
′ : c) = 4n1σ1,1π

1/2P(c′ : c) + n2σ1,2π
1/2F1,2(c

′ : c), (A.8a)

K1,2(c
′ : c) = 4n2σ1,2π

1/2G1,2(c
′ : c), (A.8b)

K2,1(c
′ : c) = 4n1σ2,1π

1/2G2,1(c
′ : c), (A.8c)

and

K2,2(c
′ : c) = 4n2σ2,2π

1/2P(c′ : c) + n1σ2,1π
1/2F2,1(c

′ : c). (A.8d)

Here,

P(c′ : c) = 1

π

(
2

|c′ − c| exp

{ |c′ × c|2
|c′ − c|2

}
− |c′ − c|

)
(A.9)

is the basic single-gas kernel used by Pekeris [29]. In addition,

Fα,β(c′ : c) = F(aα,β; c′ : c) (A.10)

and

Gα,β(c′ : c) = G(aα,β; c′ : c), (A.11)

where

F(a; c′ : c) = (a2 + 1)2

a3π |c′ − c| exp

{
a2 |c′ × c|2

|c′ − c|2 − (1 − a2)2(c′2 + c2)

4a2
− (a4 − 1)c′ · c

2a2

}
(A.12)

and

G(a; c′ : c) = 1

aπ
|c′ − ac|[J (a; c′ : c) − 1

]
, (A.13)

with

J (a; c′ : c) = (a + 1/a)2

′ exp

{−2C(a; c′ : c)
2

}
sinh

{
2�(a; c′ : c)

2

}
, a 	= 1, (A.14a)
2�(a; c : c) (a − 1/a) (a − 1/a)
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or

J (a; c′ : c) = 1

|c′ − c|2 exp

{ |c′ × c|2
|c′ − c|2

}
, a = 1. (A.14b)

We note that, to write Eq. (A.14a), we have used the definitions [14,15]

�(a; c′ : c) = {
C2(a; c′ : c) + (a − 1/a)2|c′ × c|2}1/2 (A.15)

and

C(a; c′ : c) = c′2 + c2 − (a + 1/a)c′ · c. (A.16)

Finally, the 2 × 2 coefficient matrices {Kn(c
′, c)} in the expansion given by Eq. (2.23) are defined as [15]

Kn(c
′, c) =

[K(1,1)
n (c′, c) K(1,2)

n (c′, c)
K(2,1)

n (c′, c) K(2,2)
n (c′, c)

]
, (A.17)

with

K(1,1)
n (c′, c) = p1P(n)(c′, c) + (g2/4)F (n)(a1,2; c′, c), (A.18a)

K(1,2)
n (c′, c) = g2G(n)(a1,2; c′, c), (A.18b)

K(2,1)
n (c′, c) = g1G(n)(a2,1; c′, c), (A.18c)

and

K(2,2)
n (c′, c) = p2P(n)(c′, c) + (g1/4)F (n)(a2,1; c′, c). (A.18d)

Here, the Legendre moments P(n)(c′, c), F (n)(a; c′, c), and G(n)(a; c′, c) can be computed as discussed in Appendix A
of Ref. [15],

pα = cα

(
ndα

n1d1 + n2d2

)2

, α = 1,2, (A.19a)

and

gα = cα

(
ndavg

n1d1 + n2d2

)2

, α = 1,2, (A.19b)

where

cα = nα/n, n = n1 + n2, and davg = (d1 + d2)/2. (A.20a,b,c)
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