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A set of normal modes for the two-group steady-state neutron transport equation in spherical geom-
etry is constructed. The singular eigenfunction-expansion technique is then used to develop a rigorous
solution to the isotropically emitting spherical shell-source problem in an infinite medium.

I. INTRODUCTION

The singular eigenfunction-expansion technique
introduced by Case has been used extensively in the
areas of neutron transport theory and radiative trans-
fer to construct rigorous solutions to a certain class
of model problems.!~®> This method has enjoyed
particular success for energy-dependent problems,’
for time-dependent theory,® for anisotropic scattering
models,? for reactor-cell calculations,? and for several
astrophysical applications.*'8 Although Case’s normal-
mode expansion technique has been found suitable
for a large number of applications, one of the major
restrictions of the method is the difficulty with which
the extension to nonplanar geometries is made.

Mitsis, by introducing a transform technique,
solved the critical-sphere problem and he made an
exhaustive study of the normal modes of the one-speed
equation with spherical symmetry.® Leonard and
Mullikin®® and Erdmann and Siewert'! also solved
several problems in spherical one-speed theory. In
the latter paper, two distinct approaches to spherical
problems were employed: The first relied upon
the spherical-to-plane geometry transformation for
the density, and the second utilized more directly the
normal modes of the equation for the angular density.

The N-group formulation discussed by Davison has
been employed for investigating energy-dependent
problems in neutron-transport theory.* This model
also has been examined inlight of the Case technique??;
Leonard and Ferziger,!* Siewert and Shieh,’® and
Yoshimura and Katsuragi’® have made contributions
to the theory of multigroup neutron transport, and
Metcalf and Zweifel'” have used this work to make
numerical calculations for the Milne problem in two-
group theory.

The purpose of the present paper is to blend the
methods of Erdmann and Siewert!! for spherical
problems with the two-group analysis of Siewert and
Shieh® in order to solve the isotropically emitting
spherical-shell source problem for the two-group
model in an infinite medium. In Sec. II the basic
equations for this problem are given, and the normal

modes of the two-group equation in spherical geom-
etry are constructed, while Sec. III is devoted to the
solution of the considered problem.

II. GENERAL ANALYSIS

We consider the Green’s function associated with
an isotropically emitting spherical-shell source in an
infinite medium. Thus we seek a solution to the time-
independent transport equation
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subject to the constraint that W(ry; r, u) must be
bounded for all r, since the considered medium must
be nonmultiplying. Here W (ry: r, u) is a vector whose
two components represent the angular neutron fluxes
in each of the energy groups, u is the direction cosine
of the propagating radiation, and r is the optical
variable defined in terms of the smaller of the two
total cross sections. Thus, the £ matrix takes the form
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where o is the ratio of the total cross section in the
first group to the total cross section in the second
group, and C is the transfer matrix with elements c;; .
In addition the components of Q, g, and ¢,,are used
to indicate the intensities of the two group sources.
In the usual manner,2 we need consider only the
homogeneous version of Eq. (1); we thus replace the
source term by the equivalent boundary coundition

ulE(ro: rd, ) — ¥(ro: 13, W] = (187r5)Q. (3)

We should like to construct the solution to this
problem in a manner analogous to that used so
successfully in plane geometry, i.e., Case’s method
of singular eigenfunction expansions.! First, a general
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set of solutions, denoted as normal modes, to the
homogeneous transport equation is determined. The
desired solution is then written as a linear sum of these
normal modes, and the arbitrary expansion coefficients
in this sum are selected such that the boundary con-
ditions of the problem are satisfied. This procedure is,
of course, a classical technique; however, in contrast
to problems in plane geometry where the necessary
completeness theorems are usually available,® the
solution here cannot be effected quite so readily.

We begin by constructing a set of normal modes for
the equation

2
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Careful inspection of the similarities between the
normal modes in one-speed transport theory for
plane? and spherical'* geometries suggests a form for
the solutions here. In addition, the relationships
between the normal modes for one-speed? and two-
group®s theory in plane geometry may also be used to
advantage. It is therefore proposed that Eq. (4) has
solutions of the form

W (r, u) = i;o[%(zm + DIP (U (s DGl (5)

Here the Legendre polynomials are represented by
P, (1), and
Un(r, ) = A(mkn(r[n) + B)(=1)"i(r[n), (6)

with 4(n), B(n), and, at this point, 5 being arbitrary.
In addition,

lm(x) = (W/ZX)%I"H_%(X) (73.)

k(%) = (/220K 4 (). (7b)

Following Watson’s notation, we have used I, (x)
and K, 1(x) to denote the modified Bessel functions.®

If the proposed solution is substituted into Eq. (4),
we observe that the G-vectors must be solutions of the
recursion relation

@2m + DnEG,(n) = 271CGyn)dy, ., + (m + 1)G,,11(n)
+ mG, (), m=0,1,2,---. (8)

In order to establish Eq. (8) the following expressions
have been utilized*®:

@m + DuP, (1) = (m + DP,, (1) + mP,,_4(u),
(%a)

(1 — ) i P = (m + D[EPo() — Praa(@)]
(9b)

and

767
Ly =—1Umin)
dar 7
- %(m + DU, (90)
and
"7(2’" + 1)Um(r: 77) = r[Um-i-l(r’ 77) - Um—l(rs 7])]
(9d)

Previous work by Siewert and Shieh!® can now be used
to find a set of G-vectors and thus to complete the
justification of the solutions given by Eq. (5). In Ref.
15 an eigenvalue equation

1
(0 — W¥G ) = nC [ Ry d (10

was encountered, and the eigenvalue spectrum and
corresponding eigenvectors were established. If we
multiply Eq. (10) by P,,(u), integrate over u from —1
to 1, and make the identification

G, 2 f P (REGr ) da (11)

we note that G,(n) will be a solution to Eq. (8).
Since F(#, ) is known for all acceptable values of 5
in the complex plane,' the G-vectors as given by Eq.
(11) are determined; more explicitly, the discrete
spectrum yields

2¢157,Qm(0n)
29{cae ~ 2Cn,T(1061)1Q m(75)

where the #, are the “positive” zeros of the dispersion
function

Q(z) = 1 — 2¢432T(1]0z) — 2¢452T(1/2)
+ 4C2T(1/2)T(1o2),
the degenerate spectrum % € (0, 1/0) yields

Gm(ni) = ’ (12)

(13)

Gy (1) = =P (o) 0.1
b = oz + ewpain | 7O
(14a)
2C[o)Z, 92 P
6o oy = | CCIZ0 + caPoon
_021Pm(??)
n € (0, 1/6), (14b)
and the spectrum 7 € (1/o, 1) leads to
2¢15mQ m(0n)
G, m(n) = | 2[cye — 29CT(1[om)]Zn(7) )
+ Pl — eunT(l]/on)]
ne /e, 1). (15
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Here we have used the notation T(x) = tanh™ x and
C = det C; the Legendre functions of the second kind
are denoted by Q,(x), and the mth-order poly-
nomials Z,,(x),

220 & g P20 gy~ 1P, 19

-1 X

satisfy the same recursion formula, viz., Eq. (9a), as
the Legendre polynomials; they begin differently,
however,

Zyx) =0, Zy(x)=—x, and Zy(x) = —3x%

Now that a set of normal modes for Eq. (4) has been
established, and before continuing to the final section
where the considered problem is solved, several addi-
tional comments can be made: (a) Although the
construction here of the normal modes has not been a
formal derivation, these results should follow from an
analysis similar to that used by Mitsis® for one-speed
theory. (b) By no means have we proved that all
solutions to Eq. (4) are given by these results; on the
other hand, we do have solutions sufficiently general
~ for the construction of the solution to the shell-source
problem. (c) We have used the results for F(7, u)
given by Siewert and Shieh?® for the two-group model;
however, the method employed here may also be used
to extend the N-group theory of Yoshimura and
Katsuragi'® to spherical geometry.

III. SPHERICAL SHELL-SOURCE PROBLEM

We seek a bounded solution to Eq. (1) or, alterna-
tively, a bounded solution to Eq. (4) subject to the
“jump” boundary condition, Eq. (3). Since the Bessel
functions i,,(x) diverge as x increases without bound,
and since the k,,(x) behave similarly in the vicinity of
the origin, we separate the desired solution in the
usual manner?:

Wry: 1) = 3[4 + DIPWWRI0) 7> roy

(17a)
and
W(ry:r, p) = 2_0[%(21% + DIPRL(D), 7 <1y,
(17b)
where

1o
RAO) 2 5 AGIGHnknlrin) + [ TAGa)
+ A2(77)G2,m(n)]km(r/n) d"?

1
+ j A)Go Dl i (18a)
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and

R (1) £ 3 BOIG 0N —D)"in(r/n)
1/a
+ f (B m1)
1]
+ By(n)Gy, (I — D)™ (rn) dn
1
+ f B Ga = D"intri) d. (18)

The solution given by Egs. (17) clearly satisfies the
homogeneous transport equation; there remains then
only the necessity to constrain this solution to meet
the condition given by Eq. (3) and thus to determine
all of the unknown expansion coefficients, 4(#,), B(#,),
Ay (), and B,(n), « = 1, 2, 3, appearing in the ex-
pression for ¥(r, x). We therefore substitute Eqgs. (17)
into Eq. (3) to find

3 PA + D80 + 1S, ,(9) = Q (19

or, alternatively,

(m 4+ DS, 1(ry) + mS,,_(ry) = Qéo,m,

m=0,1,2,-, (20)
where we have defined
S,(ro) & 4nrdRi(r) — Rp(rol. (1)
Noting that the neutron flux
1
sevn 2| Woorma @)

is to be continuous across the surface r =r,, we
observe that Sy(r,) = 0, and thus Eq. (20) yields the
following sufficiency conditions on the unknown
vectors S,,(ro):

S,.(r,) =0, for meven, (23a)
Si(r0) = Q, (23b)
and
Sty = — 288 =D pyhimeng,

3-5-7-9-+(m)

m=23,57"--. (23¢)

Equations (23) now represent the conditions from
which we must extract the necessary results for all
unknown expansion coefficients. Following the pro-
cedure used by Erdmann and Siewert,*! we shall first
show how to satisfy these conditions for the cases
m = 0 and 1; further analysis will then reveal that
these conditions are met for all m.
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Referring to Eqgs. (18), we note that Sy(r,) can be
made identically zero simply by insisting that

A(n) _ B(n,)

= (24a)
irofn)  kolro/ny)

2 D(n,)

and

Afn) _ _Bdn)

= £ D), 7€(©,1), a=1,23.
o)~ atraf X *

(24b)

We now utilize Egs. (18), (21), and (23) to write the
condition on S,(r,) in the form

Q@7)7'Q = 3 D(n )G\’

1l/e
+ \ [DiMG1i(n) + Da(n)Gen(m)In® dn

+ f DG i, (25)

where we have made use of the property
ik (X) = (= 1)™ia(x)ko(x)

T &1
B 4xza§o(2x)°‘

Wrll — (=)™, (262)

with!®

W™ =(m+o)lfa! (m —a)l. (26b)

The form of Eq. (25) is suggestive of a full-range
expansion in terms of the eigenvectors F(7, x) of Eq.
(10). We therefore use the results of Siewert and
Shieh!® and write

@n)'Q = u{; DO)IF.. () — F, ()it
1l/a
+ f DyIFL () — FO(—n, by diy
1/e
+ f Dun)EL () — FP(=n, wby* dy

1
+ f Dun)F0r.) = F (=, )} ).

@n

The various F-vectors appearing in Eq. (27) are given
explicitly in Ref. 15 [see Egs. (6), (7), and (10)] and,
for the sake of brevity, will not be repeated here. We
note, however, that F(%, —u) = F(—7, u), and thus
the full-range completeness theorem'® ensures that
Eq. (27) has a solution. In addition the full-range
orthogonality theorem!® may be employed to obtain
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explicit results for the unknown coefficients in Eq.
27):

D(n) = Rm*Nm)T*Gi)Q,
Dy(y) = RPN m)]™

X [Neo)Gi o) — Nyp()Gio(m)]Q, (28b)
Dy(n) = R="* Ny}

X [Nu@Gaom) — Nu)GlamIQ,  (28¢)

(28a)

and

Dy(n) = RN ,()I Gl Q.

Here the superscript tilde denotes the transpose
operation, the superscript dagger indicates an inter-
change of ¢; and ¢;;,

Nu(n) = nicieen + e — ZnCT(n)]z + ‘”2C2’?2}’

(28d)

(29a)
Nao(n) = 7}{‘912021 + o2 — ZﬂCTQU??)]2 + 772C2?72},
(29b)
and
Nifm) = —c;mien + ¢o0 — 29C[T(n) + T(on)l},
for isj. (29)

In addition,

Ng) = n%[cn - 2%?‘(—‘)]1 Q@)|ey,,  (300)
on;) 1dz

Ny(m) = 772C2({1 — 2neyy T(om) — 2nce,T(n)
+ 7*CHT()T(on) — =*}?
+ 772772{2C’?{T(9?) + T(omp)] — ¢y — 522}2)9

(30b)
and
No(m) = n({1 — e, T(Yon) — 2neqsT(n)
+ 4" CT(T(1fom)}*
+ 7 {cas — 29CT(1fom)}?). (30c)

If Eq. (27) is integrated over u from —1 to 1, the
resulting equation is identical with Eq. (25), and thus
the expressions given by Eqs. (28) for the expansion
coefficients D(n;) and D,(n), « =1,2,3, coupled
with Egs. (24), ensure that the conditions on S,,(r,)
are satisfied for m = 0 and 1. It remains to be shown
that these coefficients are correct for all m.

We begin the proof by considering the explicit
expression

Sn(r) = %ﬁ W2 IQrofl — (—1)™Hag,

m=20,1,2,---, (3la)
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where we have used Eqs. (24) and (26) and defined
a 2#{; D(1)G
+ﬁllalnl(n)cl,m(n> + Dy)Go, () iy
+f :ﬂus(n)cs,m(n)nm dn}. (31b)

In light of this expression the constraints on S,,(r,)
given by Egs. (23) can be imposed by requiring

I'=0, 0<k<m, m+k=357--, (32)

Ji=Q, (32b)
and
m 2:4:6-(m— 1)(_1)§(m+1)
Jo = - Qa
3:5:7-+-(m)
m=3,517"---. (32)

If we multiply Eq. (27) by u*-'P, () and integrate
over u from —1 to 1, we find

(4"2)’1flu"“Pm(u) auQ
= 3 DG PuuFo ) di
+ ”"[Dl(m [ Patiercr, y d
+ D) || P F 10 |

1 1
+ f D) f P GORE N ) dye’ i,
m>0, m4+k=1,35---. (33)

For k = 0 we observe that the right-hand side of Eq.
(33) is J7*/27* and thus for all odd m we obtain

1
Ji’)":lfl’m(/t)iﬁQ, m=1,35--. (34

2Ja u

The integral in the above result is nonsingular for m
odd, and, in fact, Eq. (34) establishes Eqgs. (32b) and
(32¢).

If we now consider 0 < k < m, the left-hand side of
Eq. (33) is clearly zero. Furthermore, inspection of the
eigenvectors in Ref. 15 reveals that we may use the
expression

v ke

—— =

at —u

1 _ a&-luk—2

(ab)*
(a€ —p)’

for

— (a';;:)z‘uk"3 —_

a=ocorl, (35
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to write
1
| Potnt e, iy d
1 k—1 —2 -
_ . -y = (o'&)‘u _— (aé‘)k 1
—J;1PM(M) —-,uk"l _ Eluk._z . Ek_l d‘u
1
+ 82 [ PLGORE
-1
for &=m, or 5€e(0,1), (36)

with Z* denoting the kth power of Z. For the values of
k considered, Eq. (36) reduces to

r1
J 1Pm(.u),ukF(5 , W) du = EE*G,, (&),

for £=9, or n€(0,1),
0<k<my m+k=3a517a“'s (37)

where G,,(£) is defined by Eq. (11). We note that Eq.
(33) now may be written as

TR =0, 0<k<m m+k=357--.
(38)
Since Z is a nonsingular matrix, Eq. (32a) follows
directly, and the proof is complete.

Having successfully determined all the unknown
expansion coefficients, we thus have a complete solu-
tion for the angular flux ¥(r,: r, u), and explicit ex-
pressions for the flux ¢ (r: r) and the current,

1
j("o: r) éf 1‘{,(7‘0: r, ,u).u‘ d.u’

are immediately available:

(39)

b(ro: 1) = (nf 2”'0){2_ D(#,)Go(n;)? sinh (rofn,)e "™

1/
+f [Dy(10)Gy ()
0
+ Dz("?)Gz,o("?)] sinh ("0/77)‘3_r/"772 dn
1
+ | Duo)Gatosinh (rape- ),

d r>ry, (40)
an

z-2 _ \

j(ro: ) = TE=20) (S PG rtH (2:2)

1/e
+ f [D.(n)G o)
0
+ Dym)Ga oI (ﬁ' : f)n?‘ dn
n 7

+ f jabs(n)ca,o(mﬂ (r; 7—:) ), (@ta)
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where
H(xy: x) 2 sinh xee *[(1/x) + 11, X > X,
(41b)
H{x,: x) 2 sinh xe” " [(1/x) — coth x}, x < x;.
(41c)

We note that the result for §(ry: r) r < ry is obtained
by interchanging r, and r in Eq. (40); in addition, we
have used the relation

Gi(&) = &XE — 2C)Gy(8), &é=m, or 5e(0,1),

(42)

to obtain Eq. (41a). Higher moments of ¥(r,; r, x)
may be obtained in a similar manner by integrating
Egs. (17), and finally, results for the two-group point-
source problem are obtained by observing the limit
as ry— 0 in Eqgs. (17a), (40), (41a), and (41b).
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