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A polynomial expansion procedure and the ADO (analytical discrete-ordinates) method are used to
solve a collection of basic flow problems based on the linearized Boltzmann equation for rigid-sphere
interactions and the Cercignani–Lampis boundary conditions with a free choice of the accommodation
coefficients at each boundary. In particular, three classical problems defined by flow in a plane-parallel
channel (Poiseuille, thermal-creep, and Couette flow) are solved (essentially) analytically and evaluated
to a very high numerical standard. Some comparisons with known kinetic models are also reported.
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1. Introduction

In a series of (somewhat) recent works [1–10], a newly intro-
duced polynomial expansion technique (relevant to the speed vari-
able) and an analytical discrete-ordinates (ADO) method [11] that
has evolved from Chandrasekhar’s work [12] in radiative transfer
were used to solve most of the classical flow and heat-transfer
problems for single-species gases [1–5] and for binary gas mix-
tures [6–10]. These works were all based on the linearized Boltz-
mann equation (LBE) for rigid-sphere interactions and the Maxwell
(specular/diffuse) boundary conditions. While the three basic half-
space problems (Kramers, temperature jump, and thermal creep)
have also been well solved [3] in terms of the LBE for a single-
species gas of rigid spheres and Cercignani–Lampis (C-L) boundary
conditions [13], that work [3] is only now being extended to the
standard problems of flow in a finite, plane-parallel channel. To the
best of our knowledge, this is the first time these problems have
been formulated (and solved) in terms of the LBE and C-L bound-
ary conditions. However, as discussed next, some solutions for flow
problems in plane channels formulated in terms of kinetic models
and C-L boundary conditions have been reported in the literature.

In two concurrent papers published in 2002, Siewert [14] and
Sharipov [15] solved the plane Poiseuille and thermal-creep flow
problems formulated in terms of the S model [16] and C-L bound-
ary conditions. The solution given in Ref. [14] was based on the
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ADO method, which provides a result that is continuous in both
the space and speed variables, while the solution in Ref. [15] was
based on an optimized discrete-velocities method with an error
estimation (reported to be) of less than 0.1%. A few months later,
Cercignani, Lampis, and Lorenzani [17] reported a variational so-
lution for plane Poiseuille flow formulated in terms of the BGK
model [18] and C-L boundary conditions. Shortly afterwards, these
authors developed [19] a solution that relies on a finite-difference
technique applied to an integral formulation of the same problem.
More recently, Knackfuss and Barichello [20] have used the ADO
method to solve the plane Poiseuille, thermal-creep, and Couette
flow problems formulated in terms of the BGK and S models and
C-L boundary conditions.

To be complete, we note that there are numerous works that
base the analysis of the considered problems on the LBE with
Maxwell boundary conditions. Since many of these works have
been referenced in most of Refs. [1–10], they are not reviewed
here other than to say that Refs. [21–32] should be consulted for
alternative (to our own) treatments of the LBE (for single-species
gases and for binary mixtures) with general or special forms of the
Maxwell boundary conditions.

2. Mathematical formulation

The flow problems considered in this work are driven by wall
movements or temperature and/or pressure gradients, and so we
base our linearization of the particle distribution function about
absolute conditions (for the Couette problem) and about local con-
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ditions (for the Poiseuille and thermal-creep problems). With re-
gard to the latter, we follow Williams [33], use x to measure
distance in the direction (parallel to the confining walls of the
plane-parallel channel) of the mentioned gradients, and write the
local Maxwellian as

f0(x, v) = n(x)

[
m

2πkT (x)

]3/2

exp

{
− mv2

2kT (x)

}
, (2.1)

where v is the magnitude of the velocity v , m is the mass of a
particle, and k is the Boltzmann constant. If we now express the
considered linear variations in the number density and the tem-
perature as

n(x) = n(1 + Rx) (2.2)

and

T (x) = T0(1 + KT x), (2.3)

where R and KT are considered to be given (small) constants, we
can linearize Eq. (2.1) to obtain the approximation

f ∗
0 (x, v) = f0(v)

[
1 + f (v)x

]
, (2.4)

where

f0(v) = n(λ/π)3/2e−λv2
, λ = m/(2kT0), (2.5)

is the absolute Maxwellian distribution for n particles in equilib-
rium at temperature T0. The function f (v) in Eq. (2.4) is to be
determined. If we express the pressure distribution as

p(x) = p0(1 + K P x), (2.6)

where p0 = nkT0 and K P is a given (small) constant, then using
the perfect gas law

p(x) = n(x)kT (x), (2.7)

we find, after neglecting 2nd-order effects,

R = K P − KT . (2.8)

And so, we find we can use

f (v) = [
mv2/(2kT0) − 5/2

]
KT + K P (2.9)

to complete Eq. (2.4). Using the variable z ∈ [−z0, z0] to measure
the transverse or cross-channel direction, we now write the true
velocity distribution as

f (x, z, v) = f0(v)
{

1 + f (v)x + h(z, λ1/2 v)
}
, (2.10)

where the perturbation h(z, λ1/2 v) is to be determined from a
form of the linearized Boltzmann equation that has an inhomo-
geneous driving term due to the x variation in Eq. (2.10).

And so, we proceed with an inhomogeneous form of the lin-
earized Boltzmann equation for a single-species of rigid spheres,
written as

S(c) + cμ
∂

∂z
h(z, c) + ε0ν(c)h(z, c)

= ε0

∫
e−c′ 2 P (c′ : c)h(z, c′)d3c′, (2.11)

where

ε0 = nπ1/2d2. (2.12)

Here d is used to denote the diameter of the particles, and we
express the inhomogeneous term in Eq. (2.11) as

S(c) = c
(
1 − μ2)1/2

cosφ
[(

c2 − 5/2
)

KT + K P
]
. (2.13)

In writing Eq. (2.11), we have introduced the variable change

c = λ1/2 v (2.14)
in order to work with the dimensionless velocity variable c . Con-
tinuing, we note that we use spherical coordinates {c, θ,φ}, with
μ = cos θ , to describe the dimensionless velocity vector c , so that

h(z, c) ⇔ h(z, c,μ,φ).

In our notation, cμ is the component of the (dimensionless) veloc-
ity vector in the positive z direction and

cx = c
(
1 − μ2)1/2

cosφ (2.15)

is the component of velocity in the direction x (parallel to the con-
fining surfaces) of the flow. Continuing to define Eq. (2.11), we
have the collision frequency

ν(c) = 2c2 + 1

c

c∫
0

e−x2
dx + e−c2

(2.16)

and the scattering kernel

P (c′ : c) = 1

π

(
2

|c′ − c| exp

{ |c′ × c|2
|c′ − c|2

}
− |c′ − c|

)
(2.17)

given, for example, by Pekeris [34].
As we wish to formulate the boundary conditions simultane-

ously for all three problems (Poiseuille, thermal creep, and Couette
flow), we follow [33] and write, first for the Maxwell case, the
boundary conditions at z = ±z0 as

h(−z0, c,μ,φ) − (1 − α1)h(−z0, c,−μ,φ) − α1 I1{h}(−z0)

= 2α1uw,1c
(
1 − μ2)1/2

cosφ (2.18a)

and

h(z0, c,−μ,φ) − (1 − α2)h(z0, c,μ,φ) − α2 I2{h}(z0)

= 2α2uw,2c
(
1 − μ2)1/2

cosφ, (2.18b)

for c ∈ [0,∞), μ ∈ (0,1], and φ ∈ [0,2π ]. Here the wall velocities
(for Couette flow) are uw,1 and uw,2, α1 and α2 are accommoda-
tion coefficients,

I1{h}(−z0)

= 2

π

∞∫
0

1∫
0

2π∫
0

e−c′ 2
h(−z0, c′,−μ′, φ′)μ′c′3 dφ′ dμ′ dc′, (2.19a)

and

I2{h}(z0)

= 2

π

∞∫
0

1∫
0

2π∫
0

e−c′ 2
h(z0, c′,μ′, φ′)μ′c′3 dφ′ dμ′ dc′. (2.19b)

Switching now to the case of the C-L boundary conditions, we
write, following Refs. [3] and [35],

h(−z0, c,μ,φ) − J1{h}(−z0, c,μ,φ)

= 2αt,1uw,1c
(
1 − μ2)1/2

cosφ (2.20a)

and

h(z0, c,−μ,φ) − J2{h}(z0, c,−μ,φ)

= 2αt,2uw,2c
(
1 − μ2)1/2

cosφ, (2.20b)

for c ∈ [0,∞), μ ∈ (0,1], and φ ∈ [0,2π ]. Here
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J1{h}(−z0, c,μ,φ) =
∞∫

0

1∫
0

2π∫
0

h(−z0, c′,−μ′, φ′)

× R1(c′,−μ′, φ′ : c,μ,φ)c′ 2 dφ′ dμ′ dc′ (2.21a)

and

J2{h}(z0, c,−μ,φ) =
∞∫

0

1∫
0

2π∫
0

h(z0, c′,μ′, φ′)

× R2(c′,μ′, φ′ : c,−μ,φ)c′ 2 dφ′ dμ′ dc′. (2.21b)

Since we are allowing the two surfaces that confine the gas to
be different, we must be careful with our definitions of the C-L
functions, and so we follow Ref. [3] and write, for μ′,μ ∈ [0,1],
R(c′,∓μ′, φ′ : c,±μ,φ)

= 2c′μ′

α̂αnπ
S(c′,∓μ′ : c,±μ)T (c′,∓μ′, φ′ : c,±μ,φ), (2.22)

where α̂ = αt(2 − αt), and where

S(c′,∓μ′ : c,±μ) = exp
{−[

(c′μ′)2 + (1 − αn)(cμ)2]/αn
}

× I0
[
2(1 − αn)1/2c′cμ′μ/αn

]
, (2.23a)

T (c′,∓μ′, φ′ : c,±μ,φ) = E(c′,μ′ : c,μ)

×exp
{−2c′cr(μ′)r(μ)

[|1 − αt | − (1 − αt) cos(φ′ − φ)
]
/α̂

}
,

(2.23b)

and

E(c′,μ′ : c,μ) = exp
{−[|1 − αt |cr(μ) − c′r(μ′)

]2
/α̂

}
, (2.23c)

with r(x) = (1 − x2)1/2. In writing Eq. (2.23a), we have used I0(x)
to label the lowest-order modified Bessel function of the first kind.
Continuing, we see that each wall has two accommodation co-
efficients that should be used in Eq. (2.22) to yield the reflec-
tion functions required in Eqs. (2.21): {αt,1,αn,1} for the wall lo-
cated at z = −z0 and {αt,2,αn,2} for the wall located at z = z0. It
should be noted that we have derived the inhomogeneous terms in
Eqs. (2.20) from Ref. [35] — while the notation is different, these
results agree with those of Sharipov and Kalempa [36]; clearly
these terms differ from the Maxwell case only in that αt,1 and
αt,2 have replaced α1 and α2.

In this work, we compute the velocity, shear-stress (given by
the xz-component of the stress tensor), and heat-flow profiles,
which we express as

u(z) = 1

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
h(z, c)c3(1 − μ2)1/2

× cosφ dφ dμdc, (2.24)

Pxz(z) = 2

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
h(z, c)c4μ

(
1 − μ2)1/2

× cosφ dφ dμdc, (2.25)

and

q(z) = 1

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
h(z, c)

(
c2 − 5/2

)
c3(1 − μ2)1/2

× cosφ dφ dμdc. (2.26)

Now since the driving terms in Eqs. (2.11), (2.18), and (2.20) have
a φ dependence given by cosφ, we can be sure that only one term
is required in a Fourier expansion, in terms of the φ variable, of
h(z, c), and so we can write

h(τ/ε0, c) = ψ(τ , c,μ)
(
1 − μ2)1/2

cosφ, (2.27)

where we have introduced the dimensionless spatial variable
τ = zε0, and where ψ(τ , c,μ) is the function to be determined.
We now let z = τ/ε0 in Eqs. (2.24)–(2.26) and consider that

u(τ ) = 1

π1/2

∞∫
0

1∫
−1

e−c2
ψ(τ , c,μ)c3(1 − μ2)dμdc, (2.28)

Pxz(τ ) = 2

π1/2

∞∫
0

1∫
−1

e−c2
ψ(τ , c,μ)c4(1 − μ2)μdμdc, (2.29)

and

q(τ ) = 1

π1/2

∞∫
0

1∫
−1

e−c2
ψ(τ , c,μ)

(
c2 − 5/2

)
c3(1 − μ2)dμdc (2.30)

are the quantities to be computed. It should be noted that in order
to avoid excessive notation, we have, in writing Eqs. (2.28)–(2.30),
followed the (often-used) procedure of not always introducing new
labels for dependent quantities (in this case u, Pxz , and q) when
the independent variable is changed.

We can now use Eq. (2.27) in Eq. (2.11), multiply the resulting
equation by cos φ, integrate over all φ, and use a Legendre expan-
sion of the scattering kernel to find

Υ (c) + cμ
∂

∂τ
ψ(τ , c,μ) + ν(c)ψ(τ , c,μ)

=
∞∫

0

1∫
−1

e−c′ 2
f (μ′,μ)P (c′,μ′ : c,μ)ψ(τ , c′,μ′)c′ 2 dμ′ dc′, (2.31)

where

f (μ′,μ) =
(

1 − μ′2

1 − μ2

)1/2

. (2.32)

In addition

P (c′,μ′ : c,μ) cosφ′ =
2π∫
0

P (c′ : c) cosφ dφ, (2.33)

which we can express, in the notation of Ref. [37], as

P (c′,μ′ : c,μ) = 1

2

∞∑
n=1

(2n + 1)P 1
n(μ′)P 1

n(μ)Pn(c′, c), (2.34)

where P 1
n(x) is used to denote one of the normalized associated

Legendre functions. More explicitly,

Pm
l (μ) =

[
(l − m)!
(l + m)!

]1/2(
1 − μ2)m/2 dm

dμm
Pl(μ), (2.35)

where Pl(μ) is the Legendre polynomial. We do not list here the
definition of Pn(c′, c) since it is given explicitly in Appendix A of
Ref. [37]. To complete Eq. (2.31) we note that

Υ (c) = (c/ε0)
[(

c2 − 5/2
)

KT + K P
]
. (2.36)

The boundary conditions that accompany Eq. (2.31) follow from
Eqs. (2.18) and (2.20) once we make use of Eq. (2.27). For the
Maxwell case, we find

ψ(−a, c,μ) − (1 − α1)ψ(−a, c,−μ) = 2α1uw,1c (2.37a)
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and

ψ(a, c,−μ) − (1 − α2)ψ(a, c,μ) = 2α2uw,2c, (2.37b)

for c ∈ [0,∞) and μ ∈ (0,1], where we have used a = z0ε0. Con-
tinuing, we deduce that the C-L conditions can be written as

ψ(−a, c,μ) −
∞∫

0

1∫
0

f (μ′,μ)ψ(−a, c′,−μ′)B1(c′,−μ′ : c,μ)

×c′ 2 dμ′ dc′ = 2αt,1uw,1c (2.38a)

and

ψ(a, c,−μ) −
∞∫

0

1∫
0

f (μ′,μ)ψ(a, c′,μ′)B2(c′,μ′ : c,−μ)

×c′ 2 dμ′ dc′ = 2αt,2uw,2c, (2.38b)

for c ∈ [0,∞) and μ ∈ (0,1]. Here

B(c′,∓μ′ : c,±μ) = sgn(1 − αt)
4c′μ′

α̂αn
S(c′,∓μ′ : c,±μ)

×U (c′,∓μ′ : c,±μ), (2.39)

where S(c′,∓μ′ : c,±μ) is given by Eq. (2.23a) and

U (c′,∓μ′ : c,±μ) = exp
{−[

c′ 2r2(μ′) + (1 − αt)
2c2r2(μ)

]
/α̂

}
× I1

[
2|1 − αt |c′cr(μ′)r(μ)/α̂

]
. (2.40)

The reflection functions B1(c′,−μ′ : c,μ) and B2(c′,μ′ : c,−μ)

that appear in Eqs. (2.38) are versions of Eqs. (2.39) based, respec-
tively, on the two pairs of accommodation coefficients {αt,1,αn,1}
and {αt,2,αn,2}. Note that in Eq. (2.40) we have used I1(x) to
denote the first-order modified Bessel function of the first kind.
To conclude this section we list our expressions, deduced from
Eqs. (2.23a), (2.39) and (2.40), for some special cases:

B(c′,∓μ′ : c,±μ) = 0, αt = 1, (2.41a)

lim
αn→0

B(c′,∓μ′ : c,±μ) = 2

α̂
sgn(1 − αt)

×U (c′,∓μ′ : c,±μ)δ(c′μ′ − cμ), (2.41b)

lim
αn→1

B(c′,∓μ′ : c,±μ) = 4c′μ′

α̂
sgn(1 − αt)

×U (c′,∓μ′ : c,±μ)exp
{−c′ 2μ′2}, (2.41c)

lim
α̂→0

B(c′,∓μ′ : c,±μ) = 2μ′

αnr(μ′)
sgn(1 − αt)

×S(c′,∓μ′ : c,±μ)δ
[
c′r(μ′) − cr(μ)

]
, (2.41d)

and

lim
α̂→0

lim
αn→0

B(c′,∓μ′ : c,±μ)

= 1

c2
sgn(1 − αt)δ(μ

′ − μ)δ(c′ − c). (2.41e)

In regard to the flow problems solved in this work, we see that
when αt = 1, for any value of αn , the C-L boundary condition re-
duces to the case of diffuse reflection (α = 1) — a special case of
the Maxwell boundary condition.
3. The ADO solution

At the start of this section, we note that we will rely heavily
on Ref. [2] since that work reports explicitly the solutions for the
special case of Maxwell boundary conditions characterized by the
same accommodation coefficient for each of the two walls. While
it is considered important to extend Ref. [2] to the general case
(different reflection properties on the two walls) of the Maxwell
and the Cercignani–Lampis boundary conditions, this task is rela-
tively straightforward in terms of our ADO method of solution.

We start with our solution to Eq. (2.31) expressed as

ψ(τ , c,μ) = ψ∗(τ , c,μ) + ψps(τ , c,μ), (3.1)

where the term ψps(τ , c,μ) represents a particular solution of
Eq. (2.31) and the term ψ∗(τ , c,μ) represents a (sufficiently gen-
eral) solution of the homogeneous version of Eq. (2.31). Noting that
in this work we use a dimensionless spatial variable expressed in
terms of the rigid-sphere mean-free path 1/ε0, we use here the
particular solution given in Refs. [2,22] written as

ψps(τ , c,μ) = (K P /ε0)
[
c
(
τ 2 − a2) − 2B(c)τμ + D(c)/5

+ E(c)
(
5μ2 − 1

)
/5

]
/εp − (KT /ε0)A(c). (3.2)

The functions A(c) and B(c) in Eq. (3.2) are the solutions of the
Chapman–Enskog equations for heat conduction and viscosity [38],
while the functions D(c) and E(c) are solutions of the (so-called)
Burnett equations [22,39]. A method for computing these four
functions (and numerical results) have been reported (for exam-
ple and in this notation) in Ref. [39]. In addition,

εp = 16

15π1/2

∞∫
0

e−c2
B(c)c4 dc. (3.3)

Continuing to follow Ref. [2], we now write our ADO solution rel-
evant to the homogeneous version of Eq. (2.31) as

ψ∗(τ , c,±μi) = A1c + B1
[
cτ ∓ μi B(c)

] + P (c)G∗(τ ,±μi), (3.4)

for i = 1,2, . . . , N . Here, we quote from Ref. [2] and write

P (c) = [
P0

(
2e−c − 1

)
P1

(
2e−c − 1

) · · · P K
(
2e−c − 1

)]
(3.5)

and

G∗(τ ,±μi) =
J∑

j=2

[
A jΦ(ν j,±μi)e−(a+τ )/ν j

+ B jΦ(ν j,∓μi)e−(a−τ )/ν j
]
. (3.6)

Some explanations: N is the number of (Gaussian) quadrature
points {μi} used for integrals defined on the half-range [0,1] and
J = N(K +1), where K +1 is the number of basis functions used to
model the speed dependence. In addition, the separation constants
{ν j} and the eigenvectors {Φ(ν j,±μi)} can be found by solving an
eigensystem of order J , as explained in detail in Ref. [2].

In regard to Ref. [2], we comment here on an error (of no con-
sequence) in that work. In Eqs. (104), (107), (109), (112), and (116)
of Ref. [2], the factor (−1)l should be replaced with (−1)l+1. The
net effect of this error is simply an interchange in the definitions
of the matrices E and H that are given by Eqs. (116) of Ref. [2].
Since the separation constants {ν j} and eigenvectors {Φ(ν j,±μi)}
can be found, as shown by Eqs. (118) of Ref. [2], from the eigen-
values and eigenvectors of either H E or E H , it is clear that the
use of the incorrect factor (−1)l had no effect in the calculation of
these quantities in Ref. [2].

Continuing, we note that the constants {A j, B j} in Eq. (3.6) are
arbitrary in regard to defining our solution to the homogeneous
version of Eq. (2.31). And so now, to establish these constants, we



R.D.M. Garcia, C.E. Siewert / European Journal of Mechanics B/Fluids 28 (2009) 387–396 391
substitute Eq. (3.1) into Eqs. (2.38), multiply the resulting equa-
tions by

Wk(c) = c2e−c2
Pk(2e−c − 1), k = 0,1,2, . . . , K , (3.7)

and integrate over all c to obtain a 2 J × 2 J system of linear alge-
braic equations for the required constants {A j, B j }. We then solve
the linear system to complete our ADO solution.

4. Quantities of interest

Having established our ADO solution, we now use that result to
find the quantities we wish to evaluate numerically. We can use
Eq. (3.1) in analytical/discrete-ordinates versions of Eq. (2.28) and
(2.30) to find

u(τ ) = (K P /ε0)
τ 2 − a2

2εp
+ 1

2
(A1 + B1τ )

+
J∑

j=2

[
A je

−(a+τ )/ν j + B je
−(a−τ )/ν j

]
N j, (4.1)

and

q(τ ) = (K P /ε0)
4d5

15εp
− (KT /ε0)

5εt

4

+
J∑

j=2

[
A je

−(a+τ )/ν j + B je
−(a−τ )/ν j

]
M j . (4.2)

Here, continuing to quote from Ref. [2], we write

N j = π−1/2 P 1 N(ν j) (4.3a)

and

M j = π−1/2[P 3 − (5/2)P 1
]
N(ν j), (4.3b)

where

N(ν j) =
N∑

n=1

wn
(
1 − μ2

n

)[
Φ(ν j,μn) + Φ(ν j,−μn)

]
, (4.4)

with {wn} denoting the Gaussian weights. To complete Eqs. (4.3)
we also have the definition [2]

Pn =
∞∫

0

e−c2
P (c)cn+2 dc. (4.5)

In addition,

εt = 16

15π1/2

∞∫
0

e−c2
A(c)c5 dc (4.6)

and

d5 = 1

π1/2

∞∫
0

e−c2
D(c)c5 dc. (4.7)

For the shear-stress profile, we find

Pxz(τ ) = −(K P /ε0)τ + P∗
xz, (4.8)

where the (problem-dependent) constant component P∗
xz is

P∗
xz = −1

2
εp B1 (4.9)

and we have neglected the contribution of the exponential terms,
since it can be shown that the exact result for Pxz(τ ) is of the
form of Eq. (4.8).
Finally, since we have Eqs. (4.1) and (4.2), we can simply in-
tegrate those expressions to obtain the (normalized) mass- and
heat-flow rates:

U = 1

2a

a∫
−a

u(τ )dτ (4.10)

and

Q = 1

2a

a∫
−a

q(τ )dτ . (4.11)

And so

U = 1

2a

[
−(K p/ε0)

2a3

3εp
+ aA1

+
J∑

j=2

ν j(A j + B j)
(
1 − e−2a/ν j

)
N j

]
(4.12)

and

Q = 1

2a

[
(K P /ε0)

8ad5

15εp
− (KT /ε0)

5aεt

2

+
J∑

j=2

ν j(A j + B j)
(
1 − e−2a/ν j

)
M j

]
. (4.13)

5. Kinetic models

Our solutions for the LBE can be easily modified to yield solu-
tions for a class of kinetic models. And so we include in this work,
in addition to our numerical results for the LBE, similar results for
five kinetic models: the BGK model [18], the S model [16], the
GJ model [40], the MRS model [5], and the CES model [41]. The
required expressions, relevant to these models, for the scattering
kernels, collision frequencies and the Chapman–Enskog functions
A(c) and B(c) are all given in Ref. [5], where the MRS model was
first introduced as a special case of the McCormack model [42].
However, here we also require the functions D(c) and E(c) for each
of the considered kinetic models. And so we supplement the ex-
pressions given in Ref. [5] with some additional results.

We note that for the BGK, S, GJ, and MRS models the functions
D(c) and E(c) can be written as

D(c) = 2εpεtc
(
c2 − 5/2

)
(5.1a)

and

E(c) = 2εpc3, (5.1b)

where the numerical values of εp and εt for these models are
listed in Ref. [5].

The CES model is based [41] on the use of the Chapman–Enskog
functions A(c) and B(c) to define synthetic scattering kernels that
can be used to approximate the true rigid-sphere kernels. The re-
quired results for the functions D(c) and E(c), for the CES model,
were reported in Ref. [43], and so we can write

D(c) = ν−1(c)
[
2cB(c) − 5cεp + �11c11Δ11(c) + �12c12Δ12(c)

]
(5.2)

and

E(c) = 2cB(c)/ν(c), (5.3)

where all quantities required here (and not defined in this work)
are given by Eqs. (8), (12), (62), and (63) of Ref. [43].
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Table 1
Defining data for various cases.

Case uw,1 uw,2 αt,1 αn,1 αt,2 αn,2 2a

1 1.0 −2.0 0.25 0.50 0.75 0.25 1.0
2 0.0 1.0 0.50 0.75 0.25 0.25 2.0
3 1.0 −2.0 0.75 0.25 0.50 0.25 0.1
4 0.0 1.0 1.50 0.00 1.25 0.25 1.0
5 1.0 −2.0 0.75 0.50 0.00 0.25 0.5
6 1.0 −2.0 0.25 0.75 2.00 0.00 3.0

6. Numerical results

As we have recently discussed [7] in considerable detail all the
numerical procedures we use to implement and evaluate our ADO
solution, our discussion here is very brief. While Ref. [7] deals with
a binary mixture of rigid spheres (it also includes the special case
of a single-species gas) and while Ref. [7] considers only the case
of Maxwell (specular/diffuse) boundary conditions, we can deduce
from that work all of the numerical approximations we require
here to evaluate our solutions for the case of the Cercignani–
Lampis boundary conditions.

In Table 1, we list six data sets that define the physical param-
eters of the specific problems we consider. It can be noted that we
have defined our input data for these test problems to be as gen-
eral as possible (the first three cases) and also to cover the special
cases of the C-L kernel listed as Eqs. (2.41) (the last three cases). In
this way the full merits of our solutions can be appreciated. To be
clear, we note that the values listed for uw,1 and uw,2 are relevant
only to the problem of Couette flow. In addition, for the problems
of Poiseuille and thermal-creep flow, we have used the normaliza-
tions K p = ε0 and KT = ε0, respectively.

In regard to the accuracy of our results, we can report that
we have varied all of the approximation parameters in order to
have some confidence that all of the data listed in Tables 2–10 are
correct to within ±1 on the last digit given. We note that in Ta-
bles 2–10 we have listed some exact results [reported as 1.0, 0.0,
−2.0 and/or 2.5(−1)] that we were able to establish using the
expressions

∞∫
0

1∫
0

f (μ′,μ)B(c′,∓μ′ : c,±μ)c′3 dμ′ dc′ = (1 − αt)c (6.1)

and

∞∫
0

1∫
0

e−c2
c4(1 − μ2)μ f (μ′,μ)B(c′,∓μ′ : c,±μ)dμdc

= (1 − αt)c′ 2μ′(1 − μ′ 2)e−c′ 2
, (6.2)

which can be found by carrying out the indicated integrations.
We also note that in the process of testing our solution we have
considered other cases in addition to those defined in Table 1, in
order to cover all flow regimes. The degree of the accuracy of the
numerical results in all tests was found to be the same as that
of the results reported in Tables 2–10, except in the case of the
near free-molecular-flow regime (say, 2a < 10−3). We have found
Table 2
Couette flow: the mass-flow rate, heat-flow rate, and shear stress.

Case Quantity BGK S GJ MRS CES LBE

1 U −1.29540 −1.29510 −1.32576 −1.19671 −1.19838 −1.19842
Q −2.86897(−3) −3.90158(−3) −5.20447(−3) −1.73468(−3) −1.47320(−3) −7.52959(−4)

Pxz 3.37454(−1) 3.37405(−1) 3.50504(−1) 2.95529(−1) 2.95493(−1) 2.95571(−1)

2 U 3.41735(−1) 3.41928(−1) 3.32125(−1) 3.70840(−1) 3.68740(−1) 3.68858(−1)

Q −1.68772(−3) −2.37941(−3) −3.43802(−3) −9.42740(−4) −9.02373(−4) −8.86343(−4)

Pxz −8.96764(−2) −8.96460(−2) −9.53125(−2) −7.31381(−2) −7.36032(−2) −7.35957(−2)

3 U −8.89955(−2) −8.90325(−2) −8.58338(−2) −1.00727(−1) −1.06966(−1) −1.06439(−1)

Q 2.78044(−3) 2.95224(−3) 3.10294(−3) 2.47985(−3) 4.61321(−3) 3.74207(−3)

Pxz 7.01001(−1) 7.00998(−1) 7.06499(−1) 6.80914(−1) 6.73609(−1) 6.74405(−1)

4 U 4.45971(−1) 4.46332(−1) 4.35727(−1) 4.66960(−1) 4.62568(−1) 4.63007(−1)

Q −7.93607(−3) −9.70441(−3) −1.37377(−2) −3.77342(−3) −4.30030(−3) −4.34793(−3)

Pxz −5.11351(−1) −5.11210(−1) −6.16051(−1) −3.10781(−1) −3.14162(−1) −3.14151(−1)

5 U 1.0 1.0 1.0 1.0 1.0 1.0
Q 0.0 0.0 0.0 0.0 0.0 0.0
Pxz 0.0 0.0 0.0 0.0 0.0 0.0

6 U −1.49499 −1.49376 −1.61093 −1.20885 −1.22457 −1.22394
Q −1.19968(−2) −1.62866(−2) −2.39937(−2) −6.10638(−3) −3.41900(−3) −3.59362(−3)

Pxz 3.20675(−1) 3.20577(−1) 3.58798(−1) 2.28294(−1) 2.30718(−1) 2.30693(−1)

Table 3
Couette flow: velocity and heat flow profiles based on the LBE.

η Case 1 Case 2 Case 3

u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη)

0.0 −7.7030(−1) −3.3402(−2) 1.8206(−1) 8.1009(−3) 7.7244(−2) −2.5328(−2)

0.1 −8.8870(−1) −2.3114(−2) 2.2961(−1) 4.3638(−3) 2.9633(−2) −1.7541(−2)

0.2 −9.7373(−1) −1.6319(−2) 2.6601(−1) 2.5670(−3) −7.3803(−3) −1.1651(−2)

0.3 −1.0515 −1.0703(−2) 3.0057(−1) 1.3515(−3) −4.1407(−2) −6.2973(−3)

0.4 −1.1261 −5.7162(−3) 3.3446(−1) 4.0016(−4) −7.4040(−2) −1.2005(−3)

0.5 −1.1993 −1.0070(−3) 3.6815(−1) −4.7282(−4) −1.0611(−1) 3.7836(−3)

0.6 −1.2724 3.7257(−3) 4.0193(−1) −1.4207(−3) −1.3825(−1) 8.7604(−3)

0.7 −1.3465 8.8020(−3) 4.3613(−1) −2.6134(−3) −1.7109(−1) 1.3834(−2)

0.8 −1.4233 1.4647(−2) 4.7135(−1) −4.2942(−3) −2.0548(−1) 1.9143(−2)

0.9 −1.5065 2.2024(−2) 5.0923(−1) −6.9070(−3) −2.4309(−1) 2.4951(−2)

1.0 −1.6204 3.4485(−2) 5.6248(−1) −1.2114(−2) −2.9191(−1) 3.2544(−2)
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Table 4
Couette flow: velocity and heat flow profiles based on the LBE.

η Case 4 Case 5 Case 6

u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη)

0.0 6.8048(−2) 8.7816(−3) 1.0 0.0 −3.8648(−1) −2.3596(−2)

0.1 1.5950(−1) 4.7822(−3) 1.0 0.0 −5.9585(−1) −1.1433(−2)

0.2 2.3757(−1) 2.5414(−3) 1.0 0.0 −7.5985(−1) −6.3089(−3)

0.3 3.1281(−1) 5.9499(−4) 1.0 0.0 −9.1773(−1) −3.5808(−3)

0.4 3.8694(−1) −1.2886(−3) 1.0 0.0 −1.0735 −2.0630(−3)

0.5 4.6079(−1) −3.2460(−3) 1.0 0.0 −1.2285 −1.1984(−3)

0.6 5.3496(−1) −5.4070(−3) 1.0 0.0 −1.3830 −6.9676(−4)

0.7 6.1016(−1) −7.9362(−3) 1.0 0.0 −1.5374 −3.9957(−4)

0.8 6.8760(−1) −1.1096(−2) 1.0 0.0 −1.6916 −2.1683(−4)

0.9 7.7016(−1) −1.5449(−2) 1.0 0.0 −1.8458 −9.5158(−5)

1.0 8.7745(−1) −2.4190(−2) 1.0 0.0 −2.0 0.0

Table 5
Poiseuille flow: the mass-flow rate, heat-flow rate, and the constant component of the shear stress.

Case Quantity BGK S GJ MRS CES LBE

1 U −1.63462 −1.64451 −1.60269 −1.80867 −1.71391 −1.72168
Q 1.67243(−1) 2.13317(−1) 2.61337(−1) 1.25515(−1) 1.48136(−1) 1.41313(−1)

P∗
xz −2.65133(−1) −2.65034(−1) −2.75253(−1) −2.32235(−1) −2.32795(−1) −2.32805(−1)

2 U −4.58634 −4.60590 −4.48284 −5.09494 −4.94816 −4.95873
Q 2.23824(−1) 3.06359(−1) 4.06377(−1) 1.57647(−1) 1.80625(−1) 1.73775(−1)

P∗
xz 3.16530(−1) 3.16145(−1) 3.35751(−1) 2.58320(−1) 2.62520(−1) 2.62284(−1)

3 U −1.62401(−1) −1.62937(−1) −1.62991(−1) −1.62973(−1) −1.41552(−1) −1.43420(−1)

Q 4.34626(−2) 4.60676(−2) 4.79853(−2) 4.00097(−2) 3.96778(−2) 3.99780(−2)

P∗
xz 1.37001(−2) 1.36989(−2) 1.38055(−2) 1.33091(−2) 1.31011(−2) 1.31187(−2)

4 U −5.13081(−1) −5.18960(−1) −4.95645(−1) −6.14811(−1) −5.44160(−1) −5.51298(−1)

Q 1.30240(−1) 1.59326(−1) 1.87362(−1) 1.01539(−1) 1.38766(−1) 1.28653(−1)

P∗
xz 5.40288(−2) 5.36678(−2) 6.42729(−2) 3.30405(−2) 3.74316(−2) 3.69930(−2)

5 U −1.04116 −1.04747 −1.02583 −1.14032 −1.07145 −1.07758
Q 1.36438(−1) 1.68492(−1) 1.99733(−1) 1.05707(−1) 1.29676(−1) 1.22122(−1)

P∗
xz 2.5(−1) 2.5(−1) 2.5(−1) 2.5(−1) 2.5(−1) 2.5(−1)

6 U −2.79683 −2.82654 −2.24433 −4.61142 −4.31590 −4.33686
Q 2.77167(−1) 3.74316(−1) 4.97558(−1) 1.91315(−1) 2.15938(−1) 2.07122(−1)

P∗
xz −9.94994(−1) −9.93759(−1) −1.11093 −7.08846(−1) −7.24570(−1) −7.23941(−1)

Table 6
Poiseuille flow: velocity and heat flow profiles based on the LBE.

η Case 1 Case 2 Case 3

u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη)

0.0 −1.6963 9.5650(−2) −3.2072 −1.9451(−2) −1.2100(−1) 3.0563(−2)

0.1 −1.8392 1.3997(−1) −4.0688 1.1373(−1) −1.3378(−1) 3.6314(−2)

0.2 −1.8981 1.5862(−1) −4.5847 1.6753(−1) −1.4086(−1) 3.9376(−2)

0.3 −1.9177 1.6819(−1) −4.9639 1.9740(−1) −1.4559(−1) 4.1350(−2)

0.4 −1.9051 1.7148(−1) −5.2334 2.1371(−1) −1.4860(−1) 4.2541(−2)

0.5 −1.8624 1.6941(−1) −5.4020 2.2063(−1) −1.5013(−1) 4.3064(−2)

0.6 −1.7894 1.6197(−1) −5.4725 2.1962(−1) −1.5027(−1) 4.2954(−2)

0.7 −1.6845 1.4839(−1) −5.4439 2.1026(−1) −1.4896(−1) 4.2185(−2)

0.8 −1.5427 1.2678(−1) −5.3099 1.8979(−1) −1.4603(−1) 4.0651(−2)

0.9 −1.3508 9.2457(−2) −5.0507 1.5061(−1) −1.4093(−1) 3.8070(−2)

1.0 −1.0242 1.9727(−2) −4.5117 5.2614(−2) −1.3078(−1) 3.2938(−2)
that while the ADO method could require the post-processing step
reported, for example, in Refs. [5] and [10] in order to yield nu-
merical results good to 5 or 6 figures of accuracy for the cases of
thin channels, but not so thin that the free-molecular result can be
used with great accuracy, the method does yield (for these cases)
without the post-processing step results good enough for graphical
presentation.

As an aid to check the accuracy of our results, we have fol-
lowed a procedure similar to that reported in Section 6 of Ref. [9]
for channel-flow of a binary mixture subject to Maxwell boundary
conditions to deduce the following Onsager relations:

KT Q P = K P U T , (6.3a)
KT Q C = KC P∗
xz,T (6.3b)

and

K P (UC − uw,av) = KC P∗
xz,P , (6.3c)

where

KC = uw,1 − uw,2

2z0
, (6.4)

uw,av = uw,1 + uw,2

2
, (6.5)

and P , T , and C subscripts were used to indicate for which prob-
lem (Poiseuille, thermal-creep, or Couette flow) the U , Q , and P∗

xz
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Table 7
Poiseuille flow: velocity and heat flow profiles based on the LBE.

η Case 4 Case 5 Case 6

u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη)

0.0 −1.4863(−1) 3.7516(−2) −7.2314(−1) 4.1421(−2) −4.7562 6.1052(−2)

0.1 −3.8673(−1) 9.8831(−2) −8.6863(−1) 8.0773(−2) −5.4639 1.8080(−1)

0.2 −5.2220(−1) 1.2778(−1) −9.5776(−1) 1.0187(−1) −5.7388 2.2171(−1)

0.3 −6.1291(−1) 1.4527(−1) −1.0266 1.1674(−1) −5.7779 2.4118(−1)

0.4 −6.6864(−1) 1.5510(−1) −1.0815 1.2759(−1) −5.6037 2.4990(−1)

0.5 −6.9291(−1) 1.5871(−1) −1.1250 1.3536(−1) −5.2224 2.5171(−1)

0.6 −6.8673(−1) 1.5654(−1) −1.1585 1.4050(−1) −4.6357 2.4736(−1)

0.7 −6.4922(−1) 1.4818(−1) −1.1825 1.4314(−1) −3.8419 2.3513(−1)

0.8 −5.7700(−1) 1.3220(−1) −1.1970 1.4312(−1) −2.8353 2.0951(−1)

0.9 −4.6024(−1) 1.0468(−1) −1.2009 1.3971(−1) −1.5970 1.5594(−1)

1.0 −2.3629(−1) 4.3238(−2) −1.1875 1.2831(−1) 0.0 0.0

Table 8
Thermal-creep flow: the mass-flow rate, heat-flow rate, and the shear stress.

Case Quantity BGK S GJ MRS CES LBE

1 U 1.67243(−1) 2.13317(−1) 2.61337(−1) 1.25515(−1) 1.48136(−1) 1.41313(−1)

Q −7.96628(−1) −1.01371 −1.23900 −6.00635(−1) −6.33890(−1) −6.24701(−1)

Pxz −9.56325(−4) −1.30053(−3) −1.73483(−3) −5.78227(−4) −4.91068(−4) −2.50986(−4)

2 U 2.23824(−1) 3.06359(−1) 4.06377(−1) 1.57647(−1) 1.80625(−1) 1.73775(−1)

Q −9.88903(−1) −1.34705 −1.77673 −7.03915(−1) −7.42614(−1) −7.35395(−1)

Pxz 3.37543(−3) 4.75881(−3) 6.87604(−3) 1.88548(−3) 1.80475(−3) 1.77269(−3)

3 U 4.34626(−2) 4.60676(−2) 4.79853(−2) 4.00097(−2) 3.96778(−2) 3.99780(−2)

Q −2.11338(−1) −2.23996(−1) −2.33313(−1) −1.94565(−1) −1.72889(−1) −1.74686(−1)

Pxz 9.26814(−5) 9.84082(−5) 1.03431(−4) 8.26616(−5) 1.53774(−4) 1.24736(−4)

4 U 1.30240(−1) 1.59326(−1) 1.87362(−1) 1.01539(−1) 1.38766(−1) 1.28653(−1)

Q −6.64528(−1) −8.10468(−1) −9.49678(−1) −5.21568(−1) −5.53644(−1) −5.38634(−1)

Pxz 7.93607(−3) 9.70441(−3) 1.37377(−2) 3.77342(−3) 4.30030(−3) 4.34793(−3)

5 U 1.36438(−1) 1.68492(−1) 1.99733(−1) 1.05707(−1) 1.29676(−1) 1.22122(−1)

Q −7.02789(−1) −8.66587(−1) −1.02615 −5.45616(−1) −5.77547(−1) −5.67070(−1)

Pxz 0.0 0.0 0.0 0.0 0.0 0.0

6 U 2.77167(−1) 3.74316(−1) 4.97558(−1) 1.91315(−1) 2.15938(−1) 2.07122(−1)

Q −9.16449(−1) −1.23579 −1.61442 −6.59275(−1) −7.34034(−1) −7.17052(−1)

Pxz −1.19968(−2) −1.62866(−2) −2.39937(−2) −6.10638(−3) −3.41900(−3) −3.59362(−3)

Table 9
Thermal-creep flow: velocity and heat flow profiles based on the LBE.

η Case 1 Case 2 Case 3

u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη)

0.0 9.7457(−2) −4.9562(−1) 7.7233(−2) −4.0853(−1) 3.1658(−2) −1.3815(−1)

0.1 1.3162(−1) −6.0885(−1) 1.4448(−1) −6.4779(−1) 3.6691(−2) −1.6105(−1)

0.2 1.4631(−1) −6.5389(−1) 1.6979(−1) −7.2735(−1) 3.9387(−2) −1.7310(−1)

0.3 1.5444(−1) −6.7729(−1) 1.8334(−1) −7.6791(−1) 4.1134(−2) −1.8075(−1)

0.4 1.5828(−1) −6.8698(−1) 1.9054(−1) −7.8928(−1) 4.2193(−2) −1.8525(−1)

0.5 1.5863(−1) −6.8559(−1) 1.9359(−1) −7.9876(−1) 4.2668(−2) −1.8708(−1)

0.6 1.5568(−1) −6.7331(−1) 1.9335(−1) −7.9889(−1) 4.2588(−2) −1.8637(−1)

0.7 1.4914(−1) −6.4832(−1) 1.8987(−1) −7.8924(−1) 4.1934(−2) −1.8302(−1)

0.8 1.3807(−1) −6.0574(−1) 1.8233(−1) −7.6564(−1) 4.0619(−2) −1.7659(−1)

0.9 1.2008(−1) −5.3296(−1) 1.6817(−1) −7.1502(−1) 3.8407(−2) −1.6594(−1)

1.0 8.1818(−2) −3.5897(−1) 1.3289(−1) −5.5350(−1) 3.4038(−2) −1.4496(−1)
quantities should be considered in these expressions. It should
be noted that Eqs. (6.3) are valid for both the cases of Maxwell
and Cercignani–Lampis boundary conditions. In addition, while
Eqs. (6.3b,c) can be used to eliminate, for example, the U and Q
calculations for the Couette-flow problem, we note that we have
used Eqs. (6.3) simply as one of the checks of our numerical work.

Even though several hours of computer time were required to
establish the high-quality results we are reporting in Tables 2–10,
a solution good enough for graphical presentation can be obtained
with very modest computational expense. To give an idea of the
CPU time for what we might consider “practical results,” we found,
for example, that the results reported in Tables 2–10 for the six
considered LBE cases could be obtained with essentially three fig-
ures of accuracy in less than 8 minutes on an Intel Core 2 Duo
machine running at 2.6 GHz.

It can be noted that we have included in Tables 2, 5, and 8 the
results we found for the five kinetic models listed in Section 5,
as well as for the linearized Boltzmann equation (for rigid-sphere
scattering). Of the five models, the CES looks the best; however,
this model is somewhat more complicated than the other four. On
the other hand, the MRS model looks very good, especially since it
can be used with very little more effort than that required for the
BGK model (which looks rather poor in this study).

We consider that the numerical results based on the LBE and
the C-L boundary conditions are the most important contribution
of this work, and so we would have liked to have given some
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Table 10
Thermal-creep flow: velocity and heat flow profiles based on the LBE.

η Case 4 Case 5 Case 6

u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη) u(−a + 2aη) q(−a + 2aη)

0.0 2.8882(−2) −2.5507(−1) 7.2301(−2) −3.3979(−1) 1.0980(−1) −5.1855(−1)

0.1 9.6653(−2) −4.5086(−1) 9.8097(−2) −4.5240(−1) 1.9730(−1) −7.3083(−1)

0.2 1.2682(−1) −5.3440(−1) 1.1180(−1) −5.0974(−1) 2.2402(−1) −7.8758(−1)

0.3 1.4439(−1) −5.8265(−1) 1.2124(−1) −5.4912(−1) 2.3675(−1) −8.1087(−1)

0.4 1.5406(−1) −6.0941(−1) 1.2787(−1) −5.7766(−1) 2.4269(−1) −8.1845(−1)

0.5 1.5768(−1) −6.1989(−1) 1.3226(−1) −5.9847(−1) 2.4391(−1) −8.1515(−1)

0.6 1.5587(−1) −6.1566(−1) 1.3464(−1) −6.1315(−1) 2.4022(−1) −8.0005(−1)

0.7 1.4840(−1) −5.9568(−1) 1.3502(−1) −6.2253(−1) 2.2934(−1) −7.6653(−1)

0.8 1.3398(−1) −5.5546(−1) 1.3309(−1) −6.2684(−1) 2.0548(−1) −6.9704(−1)

0.9 1.0891(−1) −4.8246(−1) 1.2797(−1) −6.2548(−1) 1.5388(−1) −5.4189(−1)

1.0 5.1736(−2) −3.0474(−1) 1.1443(−1) −6.1337(−1) 0.0 0.0
comparisons with other works, but (since, to our knowledge, there
exist no similar results) this has not been possible. However, as
mentioned in the Introduction, there are some numerical results
available in the literature for two of the kinetic models also consid-
ered in this work: the BGK model and the S model. We have used
the S-model results of Ref. [14] which were reported with seven
digits of accuracy to establish confidence that the procedures used
in this work are able to yield results with the number of digits
shown in our tables (five for the profiles and six for the flow rates).
In regard to this point, it should be noted that, as reported, for ex-
ample, in Ref. [14], the kinetic models can be solved in terms of
a projection technique that has the potential to yield results even
more accurate than the more general procedure we use here for
the LBE (and the kinetic models). The main reason for this is that
the projection technique used, for example, in Ref. [14] takes care
of the dependence of the c variable in the kinetic equation exactly
and in a very efficient way. Since the projection technique that can
be used for simple kinetic models is more compact (than what
is used in this work for the LBE and the kinetic models), it has
the advantage of allowing (before computer-memory limitations of
easily available machines are reached) the use of discrete-ordinates
approximations of higher order than those allowed by the general
(basis-function) procedure.

Continuing with our comparisons with kinetic models, we note
that we found general agreement (but, in some cases, less than
the reported digits) with the results of Refs. [15,19], and [20].
Specifically, we have observed that some results of Ref. [15] (for
example, the values of G T reported in Table 2 of Ref. [15] for the
case δ = 10.0, αt = 0.25, and αn = 1.0 and for the case δ = 100.0,
αt = 0.25, and αn = 0.25) deviate by more than the stated toler-
ance (0.1%) from what we consider to be the correct results (re-
spectively 0.09834 and 0.009445) and that the first three rows of
results for the Poiseuille flow rate reported in Table 5 of Ref. [19]
for δ = 5.0 and for δ = 9.0 differ from again what we consider
to be the correct results by amounts that may reach seven units in
the last (fifth) figure. Here we should mention that the δ parameter
in Refs. [15] and [19] is equivalent to 2a in our work. In addition,
we found that the second column (of results) of Table 1 of Ref. [20]
is correct to only two of the reported six digits and that the results
based on αn = 0.01 in that work [20] are (except for those in Ta-
ble 16) not as accurate as reported. Moreover, to confirm the shear
stresses reported in Table 16 of Ref. [20] for Couette flow, we had
to multiply our results by

√
π/2, the factor 2 being due to a dif-

ference in definition, as can be seen by comparing Eq. (2.25) of
our work and Eq. (14) of Ref. [20]. To complete our comments on
works based on kinetic models and C-L boundary conditions, we
note that Cercignani, Lampis, and Lorenzani, whose work [19] is
based on the BGK model, have included in their Table 2 Siewert’s
results [14], without noting that those results were based on the S
model, not the BGK model.
Finally, we would like to comment on two different ways of
comparing results, for rigid-sphere scattering, from the linearized
Boltzmann equation and the five kinetic models listed in our ta-
bles. In this work, we have considered that the problems are de-
fined in terms of the physical width of the channel (in cm, for
example), the diameter of the rigid spheres (also in cm), the equi-
librium number density (in cm−3), and the pressure and temper-
ature gradients (in cm−1). We have further considered that these
defining parameters are the same for the LBE and all five kinetic
models. On the other hand, in a previous paper [5] we took a dif-
ferent approach when comparing the kinetic models and the LBE.
In that work [5] we considered the basic parameters to be the
same when defined in terms of dimensionless quantities which
were based on one of many possible mean-free paths that could
be different for some of the models and the LBE. While the mer-
its of each of these two ways of comparing the kinetic models and
the LBE can be seen, it is important to keep in mind in which way
the comparisons have been done.
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