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The ‘‘pre-processing’’ procedure and the ‘‘break-point’’ analysis developed in a previous

work based on the ADO (analytical discrete ordinates) method are used, along with a

nascent delta function to describe the polar-angle dependence of an incident beam, to

solve the classical albedo problem for radiative transfer in a plane-parallel, multi-layer

medium subject to Fresnel boundary and interface conditions. As a result of the use of a

nascent delta function, rather than the Dirac distribution, to model the polar-angle

dependence of the incident beam, the computational work is significantly simplified

(since a particular solution is not required) in comparison to an approach where

both the polar-angle and the azimuthal-angle dependence of the incident beam are

formulated in terms of Dirac delta distributions. The numerical results from this

approach are (when a sufficiently small ‘‘narrowness’’ parameter is used to define the

nascent delta) found to be in complete agreement with already reported (high-quality)

results for a set of challenging multi-layer problems.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The classical albedo problem for radiative transfer in a
plane-parallel medium is basic to many fields of study [1–5].
In a recent paper [6], we reported a general solution for
the case of an arbitrary number of dissimilar media (with
Fresnel boundary and interface conditions) illuminated by an
incident beam modeled by Dirac delta distributions in both
the polar and azimuthal angles. The solution developed in
Ref. [6] required, because of the way the intensity was
decomposed, a particular solution that was expressed (in a
not so simple way) in terms of our ADO (analytical discrete
ordinates) method [7,8]. While the particular solution used in
Ref. [6] was not simple, it was general in that a possible
singularity (that can occur when Chandrasekhar’s particular
solution [1] is used) was avoided. Here, in order to simplify
the work reported in Ref. [6], we make use of a nascent delta
ll rights reserved.

ia).
function [9] instead of the Dirac distribution, to describe the
polar-angle dependence of the incident beam.

As our numerical methods allow the ‘‘narrowness’’
parameter � in the definition (to be given later in this
work) of the nascent delta function to be an input
parameter, we can simulate the effect of the Dirac delta
distribution by using smaller and smaller values of �.

Before continuing, we note that the way [6,10] in
which we define the quadrature scheme in the ADO
method (initially to take into account discontinuities in
the derivative of the radiation intensity with respect to
the cosine of the polar angle as radiation passes between
media with different indices of refraction) allows us easily
to take into account the discontinuity introduced by the
discontinuous nascent delta function we use in this work.

2. Formulation of the problem

As in our previous work [6], we consider that the
multi-layer medium is composed of K distinct layers

www.sciencedirect.com/science/journal/jqsrt
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which are labeled with subscript k, for k ¼ 1;2; . . . ;K , and
we take the radiation field in layer k to be described by
the monochromatic or grey equation of transfer [1]

m @

@t
Ikðt;m;fÞ þ Ikðt;m;fÞ

¼
$k

4p

Z 1

�1

Z 2p

0
pkðX

0
�XÞIkðt;m0;f

0
Þdf0 dm0, (1)

for t 2 ðak�1; akÞ, m 2 ½�1;1� and f 2 ½0;2p�. In our nota-
tion, a0 defines the location of the first surface, ak for
k ¼ 1;2; . . . ;K � 1 the locations of the interfaces between
the layers, and aK the location of the last surface. In
addition, t denotes the optical variable defined for each
layer as in Ref. [10], $k 2 ½0;1� is the single-scattering
albedo for layer k and pkðX

0
�XÞ is the phase function for

layer k, which we assume depends only on the scattering
angle defined by

cosY ¼ X0 �X, (2)

where X0 and X are unit vectors that define the directions
of propagation of the radiation before and after a
scattering event. We consider in this work phase
functions that can be represented by truncated Legendre-
polynomial expansions of the form

pkðX
0
�XÞ ¼

XLk

l¼0

bk;lPlðcosYÞ, (3)

where fbk;lg are the expansion coefficients for the kth
layer. For phase functions expressed as in Eq. (3), we can
use the addition theorem for the Legendre polynomials to
write

pkðX
0
�XÞ ¼

XLk

m¼0

ð2� d0;mÞ
XLk

l¼m

bk;lP
m
l ðm

0ÞPm
l ðmÞ cos½mðf0 � fÞ�,

(4)

where di;j denotes the Kronecker delta and Pm
l ðmÞ denotes

a normalized Legendre function of the first kind. To
complete the specification of Eq. (1), we note that the
polar and azimuthal angles, y ¼ arccosm and f, define
the direction X, whereas y0 ¼ arccosm0 and f0 define the
direction X0.

With regard to the boundary (surface) conditions, we
assume there is incident on the surface located at t ¼ a0,
from an external medium characterized by an index of
refraction n0, a distribution of radiation described by Dirac
distributions in m and f, i.e.

c0ðm;fÞ ¼ dðm� m0Þdðf�f0Þ, (5)

for m;m0 2 ð0;1� and f;f0 2 ½0;2p�. Here y0 ¼ arccosm0

and f0 are the polar and azimuthal angles that define the
direction of the incoming beam. In addition, we assume
that there is no radiation incident on the surface located
at t ¼ aK from an external medium characterized by index
of refraction nKþ1. And so, following previous works
[11–13], we can use Snell’s law and the Fresnel formulas
for the reflection and transmission coefficients [14,15], to
write the surface conditions as

I1ða0;m;fÞ � Xðn1;0;mÞI1ða0;�m;fÞ
¼ Yðn1;0;mÞd½f ðn1;0;mÞ � m0�dðf� f0Þ (6a)
and

IK ðaK ;�m;fÞ � XðnK;Kþ1;mÞIK ðaK ;m;fÞ ¼ 0, (6b)

for m 2 ð0;1� and f 2 ½0;2p�. Here, X and Y are the Fresnel
reflection and transmission coefficients expressed as in
Ref. [6],

na;b ¼ na=nb, (7)

with na and nb denoting the indices of refraction for layers
a and b, respectively, and, in general,

f ðn;mÞ ¼ ½1� n2ð1� m2Þ�1=2. (8)

As mentioned in Ref. [6], should n1;0o1 we must apply the
restriction

m04ð1� n2
1;0Þ

1=2, (9)

for the driving term in Eq. (6a) not to be zero.
At each of the interfaces we have conditions similar to

Eqs. (6) except that now there are no known terms, i.e.

Ikðak;�m;fÞ � Xðnk;kþ1;mÞIkðak;m;fÞ
¼ Yðnk;kþ1;mÞIkþ1½ak;�f ðnk;kþ1;mÞ;f� (10a)

and

Ikþ1ðak;m;fÞ � Xðnkþ1;k;mÞIkþ1ðak;�m;fÞ
¼ Yðnkþ1;k;mÞIk½ak; f ðnkþ1;k;mÞ;f�, (10b)

for m 2 ð0;1�, f 2 ½0;2p� and k ¼ 1;2; . . . ;K � 1.
At this point, we can use the pre-processing procedure

introduced in Ref. [10] and extended for azimuthally
dependent problems in Ref. [6] to express all of the
boundary/interface conditions as

Ikðak�1;m;fÞ � Z�k ðmÞIkðak�1;�m;fÞ
¼ Fkdðm� mkÞdðf� f0Þ þW�

k ðm;fÞ (11a)

and

Ikðak;�m;fÞ � Zþk ðmÞIkðak;m;fÞ ¼Wþ

k ðm;fÞ, (11b)

for m 2 ð0;1�, f 2 ½0;2p� and k ¼ 1;2; . . . ;K . Here

mk ¼ f ðn0;k;m0Þ, (12)

the functions Z�k ðmÞ and W�
k ðm;fÞ are defined by recur-

rence relations which involve a change of argument at
each evaluation step, and the constants Fk are also defined
by a recurrence relation. Details are given in Ref. [6].
3. Fourier decomposition

Our problem, as defined in Section 2, can be setup
more conveniently by using a (finite) Fourier representa-
tion of the intensity. And so, using Lmax to denote the
largest scattering order in the multi-layer medium, i.e.
Lmax ¼maxfL1; L2; . . . ; LKg, we can write

Ikðt;m;fÞ ¼ Ið0Þk ðt;m;fÞ þ
1

2p
XLmax

m¼0

ð2� d0;mÞ cos½mðf�f0Þ�

� fIk;mðt;mÞ � Sþk exp½�ðt� ak�1Þ=m�dðm� mkÞg (13a)
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and

Ikðt;�m;fÞ ¼ Ið0Þk ðt;�m;fÞ þ
1

2p
XLmax

m¼0

ð2� d0;mÞ cos½mðf� f0Þ�

� fIk;mðt;�mÞ � S�k exp½�ðak � tÞ=m�dðm� mkÞg, (13b)

for t 2 ðak�1; akÞ, m 2 ð0;1� and f 2 ½0;2p�. We note that the
special result for the case of no scattering, i.e. $k ¼ 0,
k ¼ 1;2; . . . ;K , is a component of Eqs. (13) and is given
by [6]

Ið0Þk ðt;m;fÞ ¼ Sþk exp½�ðt� ak�1Þ=mk�dðm� mkÞdðf� f0Þ

(14a)

and

Ið0Þk ðt;�m;fÞ ¼ S�k exp½�ðak � tÞ=mk�dðm� mkÞdðf�f0Þ.

(14b)

Here and in Eqs. (13),

Sþk ¼ FkUkðmkÞ (15a)

and

S�k ¼ FkUkðmkÞZ
þ

k ðmkÞ expð�Dk=mkÞ, (15b)

where Dk ¼ ak � ak�1 and

UkðmÞ ¼ ½1� Zþk ðmÞZ
�
k ðmÞ expð�2Dk=mÞ��1. (16)

Now, making use of Eq. (4), we find that Eqs. (13) will be
a solution of Eq. (1) provided Ik;mðt;mÞ satisfies the
reduced equation

m @

@t
Ik;mðt;mÞ þ Ik;mðt;mÞ

¼
$k

2

XLk

l¼m

bk;lP
m
l ðmÞ

Z 1

�1
Pm

l ðm
0ÞIk;mðt;m0Þdm0, (17)

for t 2 ðak�1; akÞ and m 2 ½�1;1�. In regard to the boundary
and interface conditions subject to which we must solve
Eq. (17), we find that Eqs. (11) can be decomposed so as to
yield

Ik;mðak�1;mÞ � Z�k ðmÞIk;mðak�1;�mÞ ¼ Fkdðm� mkÞ þW�
k;mðmÞ

(18a)

and

Ik;mðak;�mÞ � Zþk ðmÞIk;mðak;mÞ ¼Wþ

k;mðmÞ, (18b)

for m 2 ð0;1�. Here, the functions

W�
k;mðmÞ ¼ pð1þ d0;mÞ

Z 2p

0
W�

k ðm;fÞ cos½mðf� f0Þ�df

(19)

are explicitly given by Eqs. (3.12)–(3.16) of Ref. [6], with
only a minor modification in Eq. (3.16) of Ref. [6]: the
source term Cm

k ðt;mÞ should be disregarded, as it has been
avoided in the current formulation.

At this point, we replace the Dirac distribution
dðm� mkÞ on the right-hand side of Eq. (18a) by the
nascent delta function

d�ðm� mkÞ ¼
ðmmax � mminÞ

�1; mmin � m � mmax;

0; otherwise:

(
(20)
Here

mmin ¼ maxf0;mk � �=2g (21a)

and

mmax ¼ minfmk þ �=2;1g, (21b)

where � is our ‘‘narrowness’’ parameter. We thus consider
that the boundary and interface conditions subject to
which we must solve Eq. (17) are

Ik;mðak�1;mÞ � Z�k ðmÞIk;mðak�1;�mÞ ¼ Fkd�ðm� mkÞ þW�
k;mðmÞ
(22a)

and

Ik;mðak;�mÞ � Zþk ðmÞIk;mðak;mÞ ¼Wþ

k;mðmÞ, (22b)

for m 2 ð0;1�.
In the end, we are left with KðLmax þ 1Þ azimuthally

independent problems defined by Eqs. (17) and (22) for
k ¼ 1;2; . . . ;K and m ¼ 0;1; . . . ; Lmax. For a given value
of the Fourier index, m, we note that the resulting K

problems for Ik;mðt;mÞ, k ¼ 1;2; . . . ;K , are coupled by way
of the terms W�

k;mðmÞ in Eqs. (22). For this reason, the
approach we use to solve these problems is the same
iterative procedure defined and used in Ref. [6].

4. An ADO solution for the Fourier component problems

In order to solve the set of Fourier component
problems just defined so as to be able to complete the
solution given by Eqs. (13), we use the ADO version [16] of
the discrete-ordinates method. Since the ADO method has
been discussed extensively in previous works [7,16], our
presentation in this work is brief.

Before starting on the ADO solution, we wish to add a
few words on our way of obtaining a discrete-ordinates
version of Eq. (17). First, we split the integration interval
½�1;1� in that equation into two half-range intervals and
apply the transformation m!�m to the negative interval,
so that the integral in Eq. (17) can be expressed as a sum
of two integrals over the positive half-range interval [0,1].
Next, we approximate the integral over [0,1] by a
composite quadrature of order Nk with nodes and weights
Zi and wi, i ¼ 1;2; . . . ;Nk. As mentioned in Section 1, such
a quadrature scheme is obtained in this work by adding
the points of discontinuity mmin and mmax of the nascent
delta function defined by Eq. (20) to the set of break
points obtained from the break-point analysis reported in
Ref. [10]. Using a standard Gauss-Legendre quadrature
of order M mapped linearly onto each of the subintervals
of [0,1] defined by the enlarged set of break points, we
obtain a composite quadrature of order Nk ¼ skM, where
sk denotes the number of subintervals into which [0,1] is
subdivided. Note that we end up using, as in Refs. [6,10],
a different quadrature for each layer (the number and
location of the break points are layer-dependent), and so,
to be rigorous in our notation, we should have affixed an
index k to the quadrature nodes and weights. However,
for simplicity, we prefer not to do so.

We begin our description of the ADO method with
the case of a non-conservative layer ð$ka1Þ. Following
previous works [6,7,16], we write our ADO solution to the
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Table 1
Basic data for the layers.

Layer # D $ L n

1 1.0 0.95 40 1.65

2 1.2 0.94 60 2.00

3 1.3 0.93 30 1.70

4 0.6 0.96 70 1.60

5 1.9 0.90 20 1.80

6 1.4 0.92 50 1.85

7 0.5 0.97 80 1.55

8 0.3 0.98 90 1.50

9 1.6 0.91 10 1.75

10 5.2 1.00 100 1.30
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discrete-ordinates version of Eq. (17) as

Ik;mðt;�ZiÞ ¼
XNk

j¼1

fAm
k;jf

m
k ðnk;j;�ZiÞ exp½�ðt� ak�1Þ=nk;j�

þ Bm
k;jf

m
k ðnk;j;�ZiÞ exp½�ðak � tÞ=nk;j�g, (23)

for t 2 ½ak�1; ak�. In this expression, the separation con-
stants fnk;jg and the elementary solutions ffm

k ðnk;j;�ZiÞg

are determined by solving an eigensystem of order Nk, as
discussed in Ref. [7], and the coefficients fAm

k;jg and fBm
k;jg

are to be determined from a discrete-ordinates version of
the Fresnel boundary and interface conditions expressed
by Eqs. (22). Again, in order to avoid complicated notation,
we have suppressed the index m that should, in principle,
be affixed to the separation constants fnk;jg. In addition, as
we usually employ, to increase the computational effi-
ciency of our solution, quadrature orders that decrease as
the Fourier index of the component problem is increased,
we should keep in mind that the number of quadrature
points per subinterval M (and so the quadrature order Nk)
may depend on m.

To find the coefficients fAm
k;jg and fBm

k;jg that are required
for completing our ADO solution listed as Eq. (23), we
substitute Eq. (23) into discrete-ordinates versions of
Eqs. (22) evaluated at m ¼ Zi, i ¼ 1;2; . . . ;Nk. We thus
obtain, for layer k, a system of 2Nk linear equations to be
solved for fAm

k;jg and fBm
k;jg. However, since for a given

Fourier index m the systems of linear equations that are
obtained for k ¼ 1;2; . . . ;K are coupled by the (at this
point) unknown right-hand side terms W�

k;mðZiÞ, our way
of solving these systems is, as in Ref. [6], iterative. Since
the procedure used for this purpose is exactly the same
procedure that has been used and explained in detail in
Ref. [6], we do not elaborate more on this point here.

Finally, we would like to comment briefly on the
modifications required by our ADO solution for the case of
a conservative layer, $k ¼ 1. As discussed in previous
works [7,10], the difficulty with the conservative case is
that one of the separation constants becomes unbounded
when $k ¼ 1 and m ¼ 0. To overcome this difficulty, we
follow Refs. [7,10] and simply replace the solutions
associated with the unbounded separation constant, say
nk;1, by the exact solutions 1 and t� 3m=hk;1, where

hk;1 ¼ 3� bk;1. (24)

We thus rewrite Eq. (23) for the case $k ¼ 1 and m ¼ 0 as

Ikðt;�ZiÞ ¼ I	kðt;�ZiÞ þ
XNk

j¼2

fAk;jfkðnk;j;�ZiÞ exp½�ðt� ak�1Þ=nk;j�

þ Bk;jfkðnk;j;�ZiÞ exp½�ðak � tÞ=nk;j�g, (25)

where

I	kðt;mÞ ¼ Ak;1 þ Bk;1ðt� 3m=hk;1Þ. (26)

Note that, to simplify our notation, we have omitted the
index m in some quantities of Eq. (25), with the under-
standing that the absence of index m implies that these
quantities are being considered for m ¼ 0.

From this point on, we proceed in exactly the same
way as for the non-conservative case. We substitute
Eq. (25) into discrete-ordinates versions of Eqs. (22)
evaluated at m ¼ Zi, for i ¼ 1;2; . . . ;Nk, to obtain a linear
system of 2Nk equations that is solved iteratively for the
2Nk coefficients Ak;j and Bk;j, j ¼ 1;2; . . . ;Nk.

5. Numerical results

As a test of our numerical implementation, we have
considered a collection of five multi-layer problems which
have been accurately solved in Ref. [6]. In Table 1, we list
the basic data for the layers that are used to define these
problems in Table 2. For all of the problems, it is assumed
that the multi-layers are surrounded by vacuum, so that
n0 ¼ nKþ1 ¼ 1. In addition, the cosine of the polar angle of
incidence is specified as m0 ¼

1
2, and the azimuthal angle

of incidence f0 can be arbitrarily chosen. Scattering is
described by the binomial law [17] with different degrees
of anisotropy in the layers, as specified by parameter L in
Table 1.

In Tables 3 and 4, we report, for four different values of
the ‘‘narrowness’’ parameter � in Eqs. (21), our converged
numerical results for the reflectance

A ¼ J�0 =Jþ0 (27)

and the transmittance

B ¼ JþK =Jþ0 . (28)

As in Ref. [6], we use

Jþ0 


Z 1

0

Z 2p

0
c0ðm;fÞdfmdm ¼ m0 (29)

to denote the incoming flux at t ¼ a0 and

J�0 


Z 1

0

Z 2p

0
Xðn0;1;mÞc0ðm;fÞdfmdm

þ

Z 1

0

Z 2p

0
½1� Xðn1;0;mÞ�I1ða0;�m;fÞdfmdm (30a)

and

JþK 


Z 1

0

Z 2p

0
½1� XðnK;Kþ1;mÞ�IK ðaK ;m;fÞdfmdm (30b)

to denote the fluxes exiting, respectively, the surfaces
t ¼ a0 and t ¼ aK . Using Eqs. (5), (13), and (14) and
approximating the m-integration in the last integral of
Eq. (30a) and in the integral of Eq. (30b) with our
quadrature schemes defined, respectively, for the first
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Table 2
The problems.

Problem Layers

I 1–3

II 6–10

III 4–10

IV 1–9

V 1–10

Table 3
The reflectance A.

Problem � ¼ 10�1 � ¼ 10�2 � ¼ 10�4 � ¼ 10�6

I 2.003203(�1) 2.005067(�1) 2.005097(�1) 2.005097(�1)

II 2.177122(�1) 2.179171(�1) 2.179189(�1) 2.179189(�1)

III 1.486410(�1) 1.486853(�1) 1.486857(�1) 1.486857(�1)

IV 1.442097(�1) 1.442142(�1) 1.442142(�1) 1.442142(�1)

V 1.443562(�1) 1.443597(�1) 1.443597(�1) 1.443597(�1)

Table 4
The transmittance B.

Problem � ¼ 10�1 � ¼ 10�2 � ¼ 10�4 � ¼ 10�6

I 3.245426(�1) 3.235017(�1) 3.234892(�1) 3.234892(�1)

II 2.453355(�1) 2.447075(�1) 2.447012(�1) 2.447012(�1)

III 1.483737(�1) 1.480923(�1) 1.480895(�1) 1.480895(�1)

IV 8.917569(�2) 8.902618(�2) 8.902468(�2) 8.902468(�2)

V 8.999551(�2) 8.985556(�2) 8.985415(�2) 8.985415(�2)
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and last layers, we find

J�0 ¼ m0Xðn1;0;m0Þ þ
XN1

i¼1

wiZi½1� Xðn1;0;ZiÞ�I1ða0;�ZiÞ

(31a)

and

JþK ¼
XNK

i¼1

wiZi½1� XðnK;Kþ1;ZiÞ�IK ðaK ;ZiÞ. (31b)

Here, I1ða0;�ZiÞ and IK ðaK ;ZiÞ are given by either Eq. (23)
for m ¼ 0 or Eq. (25), whichever is applicable.

We note that the converged numerical results reported
for A in Table 3 and for B in Table 4 were established by
varying M, the number of quadrature points per sub-
interval, between 50 and 240, for each of the considered
values of �. On comparing these results with the
numerical results given in Table 4 of Ref. [6], we can see
that the results obtained in this work with � ¼ 10�2 have
at least four figures of accuracy and that the results
obtained with the choices � ¼ 10�4 and 10�6 are in
complete agreement with those reported with seven
digits of accuracy in Ref. [6]. We have also verified that
our converged numerical results for the scattered compo-
nents of the intensities exiting the surfaces t ¼ a0 and
t ¼ aK are, when the ‘‘narrowness’’ parameter � is taken to
be equal to 10�5, in complete agreement with the 5-digit
accurate numerical results reported in Tables 5–10 of
Ref. [6]. The same kind of agreement was observed for
intensities computed at interior points.
Computations were carried out on a machine equipped
with an AMD Athlon 64 X2 4800+ dual core processor
running at 2.4 GHz and 2 GB of RAM. While some hours of
CPU time were required to generate our most accurate
results, numerical results good enough for practical use
can be generated in much less time. For example, we have
found that we could use our developed code with the
choices � ¼ 10�5 and M ¼ 10 (for all of the Fourier
component problems) to obtain, in 175 s of CPU time on
the Athlon machine, numerical results with at least three
significant figures of accuracy for the reflectance, the
transmittance, and the exiting intensities at the bound-
aries for the most challenging of our test problems
(problem V). This should be compared with the 110 s of
CPU time used by the code of Ref. [6] to compute similar
results for problem V on the same machine. The observed
increase in CPU time can be explained by the use of an
additional subinterval in this work to define the layer-
dependent composite quadrature scheme for the ADO
method. As mentioned in the Introduction, the additional
subinterval is needed in order to represent well the
discontinuous nascent delta function that replaces the
Dirac delta distribution in this work.

Finally, we note that we have been able to reproduce
the numerical results for the reflectances and transmit-
tances reported for a set of two-layer problems in Tables 1
and 2 of Ref. [6], using � ¼ 10�5 in our formulation. With
this same value of �, we have also been able to reproduce
the accurate fluxes reported for a set of atmospheric
radiative-transfer problems in Table 22 of Ref. [18].

6. Concluding remarks

We have developed in this work an alternative and (we
believe) much simpler way of solving the classical albedo
problem for radiative transfer in a plane-parallel, multi-layer
medium subject to Fresnel boundary and interface condi-
tions. Our approach is based on approximating the Dirac
delta distribution that describes the polar-angle dependence
of the incident beam by a nascent delta function defined in
terms of a ‘‘narrowness’’ parameter �. In particular, it has
been shown that numerical results of an accuracy compar-
able to that of the exact formulation based on the Dirac delta
distribution can be obtained when sufficiently small values of
� are used. We expect the proposed approach to be useful in a
planned extension of our work [6,10], i.e. radiative transfer
with polarization in multi-layers subject to Fresnel boundary
and interface conditions.
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