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a b s t r a c t

A polynomial expansion procedure and the ADO (analytical discrete-ordinates) method are used to
compute the viscous-slip coefficient, the thermal-slip coefficient, and the temperature-jump coefficient
from the linearized Boltzmann equation (LBE) for rigid-sphere interactions and the Cercignani–Lampis
(CL) boundary condition. These same quantities are also computed from five kinetic models, with the CL
condition, and compared to the LBE result. Equivalent results for the LBE and the kinetic models, all based
on the usual Maxwell boundary condition, are also reported.
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1. Introduction

The importance of the use of temperature-jump and velocity-
slip coefficients for improving the quality of calculations based on
continuum equations has been pointed out by many authors (see,
for example, Refs. [1–7]). Concerning the single-gas case which
is treated in this work, we can cite several papers [8–17] that
provide numerical results derived from solutions of the linearized
Boltzmann equation (LBE) subject to Maxwell’s (specular-diffuse)
boundary condition for the mentioned coefficients, but we are
aware of only one work [18] that uses the Cercignani–Lampis (CL)
boundary condition [19] in this context.While otherworks [20–22]
that make use of the CL boundary condition for the purpose
of computing the temperature-jump and/or the velocity-slip
coefficients are available, they are all based on model equations
rather than the more rigorous LBE.
In Ref. [18], Siewert used a form of the LBE relevant to

scattering where the gas particles are considered to be rigid
spheres in order to compute the viscous-slip coefficient, the
thermal-slip coefficient, and the temperature-jump coefficient. In
that work [18], both the CL and Maxwell’s boundary conditions
were used, and a collection of numerical results obtained with
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the ADO (analytical discrete-ordinates) method [23] was reported.
While several well studied numerical approximations were used
in that previous paper [18], it was noted there that the use of only
nine terms in a spherical-harmonics expansion of the rigid-sphere
scattering kernel was a possible source of (thought to be) modest
loss of accuracy. And so in thisworkwe use a newly developed [24]
numerical technique that can be used with confidence in high
order for computing the expansion coefficients of the rigid-sphere
kernel, along with the ADOmethod, to report improved numerical
results for the three basic coefficients: viscous slip, thermal slip and
temperature jump. And, as we have done in a recently completed
work [25] on flow problems in a plane channel, we also include a
comparison with numerical results for five kinetic models.

2. Basic formulation

We follow Ref. [18] and base our approach on the LBE for rigid-
sphere scattering,

S(c)+ cµ
∂

∂z
h(z, c)+ ε0ν(c)h(z, c)

= ε0

∫
e−c
′2
P (c ′ : c)h(z, c ′) d3c ′, (2.1)

where h(z, c), the function to be determined, represents either
a perturbation from an absolute Maxwellian distribution (in the
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cases of the temperature-jump and viscous-slip problems) or a
perturbation from a local Maxwellian distribution (in the case
of the thermal-creep problem). In general, the perturbation may
depend on z, a spatial variable that measures the distance from the
boundary into the gas, and the dimensionless velocity variable

c = λ1/2v, λ = m/(2kT0), (2.2)

where v is the velocity, m is the mass of a particle, k is the
Boltzmann constant, and T0 is a reference temperature. Continuing
to define the quantities that appear in Eq. (2.1), we have the
collision frequency

ν(c) =
2c2 + 1
c

∫ c

0
e−x

2
dx+ e−c

2
, (2.3)

where c is the magnitude of c , the rigid-sphere scattering
kernel [26]

P (c ′ : c) =
1
π

(
2

|c ′ − c|
exp

{
|c ′ × c|2

|c ′ − c|2

}
− |c ′ − c|

)
, (2.4)

and

ε0 = nπ1/2d2, (2.5)

where n is the particle density at equilibrium and d is the diameter
of the particles. We note that the inhomogeneous term S(c) in
Eq. (2.1) is relevant only to the thermal-creep problem [18] and
that spherical coordinates {c, θ, φ}, with µ = cos θ , are used to
describe the dimensionless velocity vector c , so that
h(z, c)⇔ h(z, c, µ, φ).
As in Ref. [18], we consider that the interaction of the gas with

the bounding surface (located at z = 0) is described by the CL
boundary condition

h(0, c, µ, φ) =
∫
∞

0

∫ 1

0

∫ 2π

0
h(0, c ′,−µ′, φ′)

×R(c ′,−µ′, φ′ : c, µ, φ)c ′2 dφ′ dµ′ dc ′, (2.6)

for c ∈ [0,∞), µ ∈ (0, 1], and φ ∈ [0, 2π ], where the CL kernel
can be written as [18,25]

R(c ′,−µ′, φ′ : c, µ, φ) =
2c ′µ′

α̂αnπ
S(c ′,−µ′ : c, µ)

×T (c ′,−µ′, φ′ : c, µ, φ). (2.7)

Here, α̂ = αt(2− αt),

S(c ′,−µ′ : c, µ) = exp{−[(c ′µ′)2 + (1− αn)(cµ)2]/αn}

×I0[2(1− αn)1/2c ′µ′cµ/αn], (2.8a)
and
T (c ′,−µ′, φ′ : c, µ, φ) = E(c ′, µ′ : c, µ)
× exp{−2c ′r(µ′)cr(µ)[|1− αt | − (1− αt) cos(φ′ − φ)]/α̂},

(2.8b)

with

E(c ′, µ′ : c, µ) = exp{−[|1− αt |cr(µ)− c ′r(µ′)]2/α̂}. (2.9)

In these expressions, αt ∈ [0, 2] represents the accommodation
coefficient of tangential momentum and αn ∈ [0, 1] that of the
kinetic energy due to the normal component of the velocity. In
addition, In(x) is used to denote the nth-order modified Bessel
function of the first kind and r(x) = (1− x2)1/2.

3. The temperature-jump problem

As mentioned in Section 2, h(z, c) is taken to represent a
perturbation from an absolute Maxwellian distribution in the case
of the temperature-jump problem, and so the velocity distribution
function is
f (z, v) = f0(v)[1+ h(z, c)], (3.1)
where v is the magnitude of v and

f0(v) = n(λ/π)3/2e−λv
2
. (3.2)

Introducing the dimensionless spatial variable
τ = zε0, (3.3)
where ε0 is defined by Eq. (2.5), and noting that the perturbation
h(z, c, µ, φ) does not depend on φ for this problem, we can use
h(τ/ε0, c) = ψ0(τ , c, µ) (3.4)
in Eq. (2.1) for S(c) = 0 and in Eq. (2.6) and integrate both of these
equations over φ, to show that the temperature-jump problem
with the CL boundary condition can be reduced to solving

cµ
∂

∂τ
ψ0(τ , c, µ)+ ν(c)ψ0(τ , c, µ)

=

∫
∞

0

∫ 1

−1
e−c
′2
P0(c ′, µ′ : c, µ)ψ0(τ , c ′, µ′)c ′

2 dµ′ dc ′ (3.5)

for τ ∈ (0,∞), c ∈ [0,∞), and µ ∈ [−1, 1], subject to

ψ0(0, c, µ) =
∫
∞

0

∫ 1

0
ψ0(0, c ′,−µ′)R0(c ′,−µ′ : c, µ)c ′

2 dµ′ dc ′

(3.6)
for c ∈ [0,∞) and µ ∈ (0, 1]. We note that in Eq. (3.5) the kernel
P0(c ′, µ′ : c, µ) can be written as

P0(c ′, µ′ : c, µ) = (1/2)
∞∑
n=0

(2n+ 1)Pn(µ′)Pn(µ)P (n)(c ′, c),(3.7)

where Pn(x) denotes a Legendre polynomial and {P (n)(c ′, c)} are
expansion coefficients [24]. Now, with regard to Eq. (3.6) we
have [18]

R0(c ′,−µ′ : c, µ) =
4c ′µ′

α̂αn
S(c ′,−µ′ : c, µ)U0(c ′,−µ′ : c, µ),

(3.8)
where S(c ′,−µ′ : c, µ) is given by Eq. (2.8a), and, in general,

Un(c ′,−µ′ : c, µ) = exp{−[c ′
2r2(µ′)+ (1− α̂)c2r2(µ)]/α̂}

×In[2(1− α̂)1/2c ′r(µ′)cr(µ)/α̂]. (3.9)
Equation (3.8) is valid for all of the allowed values of α̂ and αn,
except the following special cases [18]:

lim
α̂→0
R0(c ′,−µ′ : c, µ) =

2µ′

αnr(µ′)
S(c ′,−µ′ : c, µ)

×δ[c ′r(µ′)− cr(µ)], (3.10a)

lim
αn→0

R0(c ′,−µ′ : c, µ) =
2
α̂
U0(c ′,−µ′ : c, µ)δ(c ′µ′ − cµ),

(3.10b)
and

lim
α̂→0

lim
αn→0

R0(c ′,−µ′ : c, µ) =
1
c2
δ(c ′ − c)δ(µ′ − µ). (3.10c)

A solution of a discrete-ordinates version of Eq. (3.5) can be
written as [16]
ψ0(τ , c,±µi) = ±A1cµi + A2(c2 − 5/2)
+ B1 + B2[(c2 − 5/2)τ ∓ µiA(c)]

+ P(c)
J∑
j=3

[
AjΦ(νj,±µi)e−τ/νj + BjΦ(νj,∓µi)eτ/νj

]
, (3.11)

for i = 1, 2, . . . ,N , where N is the order of the half-range
quadrature with nodes {µi} and weights {wi} used to approximate
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integrals over [0, 1]. On the right side of Eq. (3.11), the first
four terms are exact solutions (evaluated at the quadrature
points) of Eq. (3.5), one of which is expressed in terms of the
Chapman–Enskog function A(c) (see definition and calculation
methods in Refs. [27,28]). The last term is the ADO solution,
which is expressed in terms of the separation constants {νj}, the
eigenvectors {Φ(νj,±µi)}, and the row vector

P(c) =
[
P0(2e−c − 1) P1(2e−c − 1) · · · PK (2e−c − 1)

]
, (3.12)

whose K + 1 components are the basis functions used to
approximate the c-dependence of the solution. As discussed in
detail in Ref. [16], the separation constants and the eigenvectors
can be found from the solution of an eigensystem of order J =
N(K + 1). It should be noted that the separation constants for
j = 1 and j = 2 approach unbounded values as the order of the
approximation is increased and, for this reason, the corresponding
solutions have been excluded from the summation and were
replaced by the exact solutions. Once the coefficients Aj and Bj, j =
1, 2, . . . , J , are determined, the solution expressed by Eq. (3.11)
becomes completely known.
For the temperature-jump problem, the temperature perturba-

tion [16,18]

T (τ ) =
4

3π1/2

∫
∞

0

∫ 1

−1
e−c

2
ψ0(τ , c, µ)(c2 − 3/2)c2 dµ dc (3.13)

must satisfy the Welander condition [29]

lim
τ→∞

T ′(τ ) = κ, (3.14)

where T ′(τ ) denotes the derivative of T (τ ) and κ is considered to
be specified. By substituting Eq. (3.11) into Eq. (3.13) and applying
Eq. (3.14), we conclude that B2 = κ and Bj = 0 for j = 3, 4, . . . , J .
In addition, we find that the temperature perturbation can be
written, after the normalization κ = 1 is used, as

T (τ ) = Tasy(τ )+
J∑
j=3

AjTje−τ/νj , (3.15)

where the asymptotic component is
Tasy(τ ) = A2 + τ (3.16)
and

Tj =
4

3π1/2
[P2 − (3/2)P0]

N∑
n=1

wn[Φ(νj, µn)+ Φ(νj,−µn)],

(3.17)
with

Pn =
∫
∞

0
e−c

2
P(c)cn+2 dc. (3.18)

When Eq. (3.11) is substituted into Eq. (3.6) evaluated at the
quadrature nodes {µi} and the resulting equations are multiplied
by PT (c)e−c2c2 and integrated over c from 0 to ∞, we obtain
a system of J linear algebraic equations for the coefficients Aj,
j = 1, 2, . . . , J . Once this system is solved, we find the desired
temperature-jump coefficient ζ from

ζ ≡ [Tasy(0)/T ′asy(0)] = A2. (3.19)

4. The viscous-slip problem

In the case of the viscous-slip (or Kramers’) problem, h(z, c)
is also taken to be a perturbation from an absolute Maxwellian
distribution, and so the velocity distribution function can be
expressed as in Eq. (3.1). However, since in this case there is a flow
in the x-direction (parallel to the bounding surface), we write [25]

h(τ/ε0, c) = ψ1(τ , c, µ)(1− µ2)1/2 cosφ, (4.1)
where ψ1(τ , c, µ) is to be determined. Using Eq. (4.1) in Eq. (2.1)
with S(c) = 0 and in Eq. (2.6), multiplying the resulting equations
by cosφ and integrating both over φ, we can effectively reduce
Kramers’ problem with the CL boundary condition to solving

cµ
∂

∂τ
ψ1(τ , c, µ)+ ν(c)ψ1(τ , c, µ) =

∫
∞

0

∫ 1

−1
e−c
′2
f (µ′, µ)

×P1(c ′, µ′ : c, µ)ψ1(τ , c ′, µ′)c ′
2 dµ′ dc ′ (4.2)

for τ ∈ (0,∞), c ∈ [0,∞), and µ ∈ [−1, 1], subject to

ψ1(0, c, µ) =
∫
∞

0

∫ 1

0
ψ1(0, c ′,−µ′)R1(c ′,−µ′ : c, µ)c ′

2 dµ′ dc ′

(4.3)

for c ∈ [0,∞) and µ ∈ (0, 1]. In Eq. (4.2),

f (µ′, µ) =

(
1− µ′2

1− µ2

)1/2
(4.4)

and the kernel P1(c ′, µ′ : c, µ) can be written as

P1(c ′, µ′ : c, µ) = (1/2)
∞∑
n=1

(2n+ 1)P1n (µ
′)P1n (µ)Pn(c

′, c), (4.5)

where P1n (x) is used to denote the normalized associated Legendre
function

Pmn (x) =
[
(n−m)!
(n+m)!

]1/2
(1− x2)m/2

dm

dxm
Pn(x) (4.6)

form = 1. In Eq. (4.3), R1(c ′,−µ′ : c, µ) is given by [18]

R1(c ′,−µ′ : c, µ) =
4c ′µ′

α̂αn
sgn(1− αt)S(c ′,−µ′ : c, µ)

×U1(c ′,−µ′ : c, µ). (4.7)

Equation (4.7) is valid for all of the allowed values of α̂ and αn,
except the following special cases:

lim
α̂→0
R1(c ′,−µ′ : c, µ) =

2µ′

αnr(µ′)
sgn(1− αt)

× S(c ′,−µ′ : c, µ)δ[c ′r(µ′)− cr(µ)], (4.8a)

lim
αn→0

R1(c ′,−µ′ : c, µ) =
2
α̂
sgn(1− αt)

×U1(c ′,−µ′ : c, µ)δ(c ′µ′ − cµ), (4.8b)
and

lim
α̂→0

lim
αn→0

R1(c ′,−µ′ : c, µ) =
1
c2
sgn(1− αt)δ(c ′ − c)δ(µ′ − µ).

(4.8c)

As discussed in detail in Ref. [17], a solution of a discrete-
ordinates version of Eq. (4.2) is

ψ1(τ , c,±µi) = A1c + B1[cτ ∓ µiB(c)]

+ P(c)
J∑
j=2

[
AjΦ(νj,±µi)e−τ/νj + BjΦ(νj,∓µi)eτ/νj

]
, (4.9)

for i = 1, 2, . . . ,N . As before, N is the order of the half-range
quadrature used to approximate integrals defined over [0, 1]. On
the right side of Eq. (4.9), the first two terms are exact solutions
(evaluated at the quadrature points) of Eq. (4.2), one of which
includes the Chapman–Enskog function B(c) (see definition and
calculation methods in Refs. [27,28]), and the last term is the
ADO solution. The coefficients Aj and Bj, j = 1, 2, . . . ,N , are to
be determined. At this point, it is important to note that, even
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though we are using the same notation as in Section 3 to denote
the separation constants {νj} and the eigenvectors {Φ(νj,±µi)} in
Eq. (4.9), these quantities are found in this section by solving a
different eigensystem than the one that is relevant to Section 3.
See Refs. [17,25] for details. In this case, only one of the separation
constants approaches an unbounded value as the order of the
approximation is increased and, for this reason, the corresponding
solution (for j = 1) has been replaced by the exact solutions in
Eq. (4.9).
For Kramers’ problem, the bulk velocity [17,18]

u(τ ) =
1
π1/2

∫
∞

0

∫ 1

−1
e−c

2
ψ1(τ , c, µ)c3(1− µ2) dµ dc, (4.10)

must satisfy

lim
τ→∞

u′(τ ) = κP , (4.11)

where u′(τ ) denotes the derivative of u(τ ) and κP is considered to
be specified. By substituting Eq. (4.9) into Eq. (4.10) and applying
Eq. (4.11), we conclude that B1 = 2κP and Bj = 0 for j =
2, 3, . . . , J . In addition, we find that the bulk velocity can be
written, after the normalization κP = 1 is used, as

u(τ ) = uasy(τ )+
J∑
j=2

AjNje−τ/νj , (4.12)

where the asymptotic component is
uasy(τ ) = (A1/2)+ τ (4.13)
and

Nj =
1
π1/2

P1
N∑
n=1

wn(1− µ2n)[Φ(νj, µn)+ Φ(νj,−µn)]. (4.14)

When Eq. (4.9) is substituted into Eq. (4.3) evaluated at the
quadrature nodes {µi} and the resulting equations are multiplied
by PT (c)e−c2c2 and integrated over c from 0 to ∞, we obtain a
system of J linear algebraic equations for the coefficients Aj, j =
1, 2, . . . , J . Once this system is solved, we find the desired viscous-
slip coefficient ζP from

ζP ≡ [uasy(0)/u′asy(0)] = A1/2. (4.15)

5. The thermal-creep problem

As mentioned in Section 2, h(z, c) is taken to represent a
perturbation from a localMaxwellian distribution in the case of the
thermal-creep problem, and so the velocity distribution function is
now given as [17,18]

f (x, z, v) = f0(v)[1+ (c2 − 5/2)κT x+ h(z, c)], (5.1)
where κT is the constant gradient of the temperature along the
x-direction (parallel to the bounding surface). Since h(z, c) can be
expressed for this problem as in Eq. (4.1), the governing equation
for the thermal-creep problem is similar to Eq. (4.2), but with a
source term [17,18]

ST (c) = c(c2 − 5/2)κT/ε0 (5.2)
added to the left side. The CL boundary condition to be satisfied in
this case is the same as the one given by Eq. (4.3).
A solution for this problem that does not diverge as τ → ∞ is

given by [17]
ψ1(τ , c,±µi) = −(κT/ε0)A(c)+ A1c

+P(c)
J∑
j=2

AjΦ(νj,±µi)e−τ/νj , (5.3)

where the first term is a particular solution, the last term is the
ADO solution used in Section 4, and the middle term is an exact
solution of the homogeneous equation, which, as before, replaces
the term that corresponds to an unbounded separation constant in
the summation. By substituting Eq. (5.3) into a discrete-ordinates
version of Eq. (4.3) and applying the same projection technique
used in Section 4 on the resulting equations, we obtain a linear
system of order J for the coefficients Aj, j = 1, 2, . . . , J . Once this
system is solved, we find the thermal-slip coefficient ζT from

ζT ≡ uasy(0) = A1/2. (5.4)

We note that, in order to generate numerical results for the
thermal-slip coefficient, we have considered the normalization
κT = ε0 in this work.

6. Numerical results

Before reporting our numerical results for the slip and jump
coefficients, we would like to mention that we were able to
simplify some of the elements of the matrices of coefficients and
the right-hand sides of the linear systems that have to be solved
for the three problems. The fact that the double integrals of the
CL kernels that are listed next could be evaluated analytically was
very helpful for that purpose. For the temperature-jump problem,
we have used∫
∞

0

∫ 1

0
R0(c ′,−µ′ : c, µ) dµ′c ′

2 dc ′ = 1, (6.1a)∫
∞

0

∫ 1

0
R0(c ′,−µ′ : c, µ)µ′ dµ′c ′

3 dc ′

=

{
cµ, αn = 0,
(παn)

1/2e−ξ [(ξ + 1/2)I0(ξ)+ ξ I1(ξ)] , αn 6= 0,
(6.1b)∫

∞

0

∫ 1

0
R0(c ′,−µ′ : c, µ) dµ′c ′

2
(c ′2 − 5/2) dc ′

= (c2 − 5/2)+ αnf (c, µ)+ α̂g(c, µ), (6.1c)
and∫
∞

0

∫ 1

0
R0(c ′,−µ′ : c, µ)µ′ dµ′c ′

3
(c ′2 − 5/2) dc ′

=

{
cµ[(c2 − 5/2)+ α̂g(c, µ)], αn = 0,
(παn)

1/2e−ξ [p0(c, µ)I0(ξ)+ p1(c, µ)I1(ξ)] , αn 6= 0,
(6.1d)

where we define

ξ ⇒ ξ(c, µ) = (1− αn)c2µ2/(2αn), (6.2)

f (c, µ) = 1− c2µ2, (6.3a)

g(c, µ) = 1− c2(1− µ2), (6.3b)

p0(c, µ) = (ξ + 1/2){(c2 − 5/2)+ αn[f (c, µ)+ 1/2] + α̂g(c, µ)}

+αnξ/2, (6.4a)

and

p1(c, µ) = ξ{(c2 − 5/2)+ αn[f (c, µ)+ 1] + α̂g(c, µ)}. (6.4b)

For the slip problems, along with the result∫
∞

0

∫ 1

0
f (µ′, µ)R1(c ′,−µ′ : c, µ) dµ′c ′

3 dc ′ = (1− αt)c, (6.5a)

which is given (in a different notation) by Eq. (6.1) of Ref. [25], we
have used∫
∞

0

∫ 1

0
f (µ′, µ)R1(c ′,−µ′ : c, µ)µ′ dµ′c ′

4 dc ′

=

{
(1− αt)c2µ, αn = 0,
(παn)

1/2(1− αt)ce−ξ [(ξ + 1/2)I0(ξ)+ ξ I1(ξ)] , αn 6= 0,

(6.5b)
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Table 1
The viscous-slip coefficient ζP for the Cercignani–Lampis boundary condition.

αt αn BGK S GJ MRS CES LBE

0.25 0.0 6.44457 6.45236 9.69217 2.84519 2.86938 2.87030
0.25 0.25 6.41210 6.41796 9.63716 2.83156 2.85713 2.85783
0.25 0.5 6.38380 6.38817 9.58981 2.81961 2.84723 2.84788
0.25 0.75 6.35783 6.36102 9.54698 2.80857 2.83865 2.83930
0.25 1.0 6.33355 6.33579 9.50748 2.79819 2.83104 2.83167

0.5 0.0 2.86119 2.86657 4.30879 1.26236 1.26388 1.26451
0.5 0.25 2.84035 2.84469 4.27426 1.25355 1.25609 1.25659
0.5 0.5 2.82188 2.82539 4.24388 1.24572 1.24966 1.25013
0.5 0.75 2.80477 2.80757 4.21595 1.23843 1.24401 1.24448
0.5 1.0 2.78865 2.79084 4.18985 1.23154 1.23893 1.23941

0.75 0.0 1.64258 1.64614 2.47498 7.24491(−1) 7.20388(−1) 7.20885(−1)
0.75 0.25 1.63254 1.63568 2.45863 7.20218(−1) 7.16670(−1) 7.17108(−1)
0.75 0.5 1.62350 1.62629 2.44396 7.16367(−1) 7.13543(−1) 7.13964(−1)
0.75 0.75 1.61505 1.61751 2.43027 7.12755(−1) 7.10761(−1) 7.11180(−1)
0.75 1.0 1.60701 1.60919 2.41730 7.09316(−1) 7.08231(−1) 7.08655(−1)

1.0 0.5 1.01619 1.01837 1.53106 4.48208(−1) 4.42921(−1) 4.43338(−1)

1.25 0.0 6.27438(−1) 6.28616(−1) 9.44797(−1) 2.76806(−1) 2.72169(−1) 2.72487(−1)
1.25 0.25 6.36792(−1) 6.38206(−1) 9.59554(−1) 2.80842(−1) 2.75568(−1) 2.75938(−1)
1.25 0.5 6.45455(−1) 6.47113(−1) 9.73309(−1) 2.84571(−1) 2.78526(−1) 2.78925(−1)
1.25 0.75 6.53722(−1) 6.55635(−1) 9.86508(−1) 2.88122(−1) 2.81223(−1) 2.81633(−1)
1.25 1.0 6.61701(−1) 6.63879(−1) 9.99315(−1) 2.91543(−1) 2.83729(−1) 2.84138(−1)

1.5 0.0 3.58078(−1) 3.58578(−1) 5.38646(−1) 1.58039(−1) 1.54873(−1) 1.55059(−1)
1.5 0.25 3.76152(−1) 3.76974(−1) 5.66734(−1) 1.65890(−1) 1.61402(−1) 1.61678(−1)
1.5 0.5 3.93123(−1) 3.94330(−1) 5.93375(−1) 1.73229(−1) 1.67175(−1) 1.67509(−1)
1.5 0.75 4.09472(−1) 4.11127(−1) 6.19288(−1) 1.80272(−1) 1.72501(−1) 1.72861(−1)
1.5 1.0 4.25373(−1) 4.27538(−1) 6.44735(−1) 1.87094(−1) 1.77502(−1) 1.77855(−1)

1.75 0.0 1.57395(−1) 1.57513(−1) 2.36446(−1) 6.95074(−2) 6.80329(−2) 6.80894(−2)
1.75 0.25 1.83607(−1) 1.84004(−1) 2.76591(−1) 8.09664(−2) 7.74846(−2) 7.76359(−2)
1.75 0.5 2.08549(−1) 2.09376(−1) 3.15293(−1) 9.18018(−2) 8.59743(−2) 8.61923(−2)
1.75 0.75 2.32799(−1) 2.34202(−1) 3.53421(−1) 1.02273(−1) 9.38957(−2) 9.41343(−2)
1.75 1.0 2.56568(−1) 2.58694(−1) 3.91296(−1) 1.12476(−1) 1.01410(−1) 1.01613(−1)

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.0 0.25 3.38159(−2) 3.39479(−2) 5.10981(−2) 1.48791(−2) 1.22413(−2) 1.22739(−2)
2.0 0.5 6.64069(−2) 6.69256(−2) 1.01102(−1) 2.90985(−2) 2.34025(−2) 2.34593(−2)
2.0 0.75 9.83830(−2) 9.95418(−2) 1.50944(−1) 4.29356(−2) 3.39306(−2) 3.39569(−2)
2.0 1.0 1.29964(−1) 1.32020(−1) 2.00983(−1) 5.64914(−2) 4.40148(−2) 4.39317(−2)
and∫
∞

0

∫ 1

0
f (µ′, µ)R1(c ′,−µ′ : c, µ) dµ′c ′

3
(c ′2 − 5/2) dc ′

= (1− αt)c
{
(c2 − 5/2)+ αnf (c, µ)+ α̂[1+ g(c, µ)]

}
. (6.5c)

Except for the use of high-order expansions for the rigid-sphere
scattering kernel, as mentioned in the Introduction, and the use
of the results expressed by Eqs. (6.1)–(6.5), the implementation of
our solutions follows Ref. [18], and so we believe we do not need
to discuss the numerical aspects of our solutions in detail here.
In Tables 1 and 2, we report our converged numerical results

for the viscous-slip and thermal-slip coefficients for several values
of the CL accommodation coefficients αt and αn. In addition to
the LBE results, we list in these tables numerical results for the
five kinetic models considered in this work: the BGK [30], S [31],
GJ [32], MRS [33], and CES [34] models, which were implemented
as discussed in detail in Ref. [33]. We note that the results listed in
these tables for αt = 1.0 and αn = 0.5 are also valid for any other
value of αn ∈ [0, 1], when αt = 1.0. In Table 3, we list similar
results for the temperature-jump coefficient. Since the CL kernel
R0(c ′,−µ′ : c, µ) that is expressed by Eq. (3.8) can easily be seen
to be symmetrical about αt = 1.0, it is sufficient to consider values
of αt ∈ [0, 1] in a tabulation of the temperature-jump coefficient,
as done in this work.
We note that our results for the models were obtained simply

by using the special forms of the Chapman–Enskog functions A(c)
and B(c) appropriate to each model [33] in our general (LBE)
formulation and by noting that, in the case of the models, the
infinite-order expansions of Eqs. (3.7) and (4.5) reduce to finite-
order expansions, with upper limit L = 1 or 2 in the summations,
depending on the model [33]. On the other hand, in the case of
the LBE, the infinite-order kernels of Eqs. (3.7) and (4.5) were
truncated arbitrarily at L and the value of L was varied between
10 and 150 to check the convergence of the numerical results. The
coefficients {P (n)(c ′, c)} in Eqs. (3.7) and (4.5) are given explicitly
for the models in Ref. [33] and can be computed for the LBE with
rigid-sphere scattering as discussed in Appendix A of Ref. [24].
The accuracy of the numerical results that can be obtained

from a computational implementation of our solutions depends
on the specific choices of four approximation parameters: the
order K of the basis function expansion used to approximate the
c-dependence of the solution, the order N of the half-range
Gaussian quadrature used to approximate integrals defined over
[0, 1] in the ADO method, the orderM of the Gaussian quadrature
used to evaluate integrals over [0,∞], and, in the cases of the LBE
and the CES model, the number Ks of splines used to compute [27]
the Chapman–Enskog functions A(c) and B(c). The numerical
results of Tables 1–3 are thought to be accurate to within ±1 in
the last reported figure, andwere obtained by observing numerical
convergence as K was varied between 10 and 35, N was varied
between 40 and 300, M was varied between 100 and 400, and
Ks − 2 was varied between 320 and 1280. While a substantial
computational effort (typically hours of CPU time per case on a
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Table 2
The thermal-slip coefficient ζT for the Cercignani–Lampis boundary condition.

αt αn BGK S GJ MRS CES LBE

0.25 0.0 2.85062(−1) 4.39613(−1) 6.80068(−1) 1.84369(−1) 1.87923(−1) 1.83227(−1)
0.25 0.25 3.10347(−1) 4.76987(−1) 7.35122(−1) 2.01333(−1) 2.01484(−1) 1.97426(−1)
0.25 0.5 3.35083(−1) 5.13417(−1) 7.88520(−1) 2.17970(−1) 2.14338(−1) 2.10966(−1)
0.25 0.75 3.59336(−1) 5.48967(−1) 8.40318(−1) 2.34345(−1) 2.26572(−1) 2.23939(−1)
0.25 1.0 3.83161(−1) 5.83717(−1) 8.90649(−1) 2.50496(−1) 2.38260(−1) 2.36426(−1)

0.5 0.0 3.18891(−1) 4.93891(−1) 7.66267(−1) 2.05154(−1) 2.02219(−1) 1.96448(−1)
0.5 0.25 3.35189(−1) 5.17326(−1) 7.99729(−1) 2.16359(−1) 2.10547(−1) 2.05393(−1)
0.5 0.5 3.51345(−1) 5.40585(−1) 8.32955(−1) 2.27443(−1) 2.18615(−1) 2.14104(−1)
0.5 0.75 3.67333(−1) 5.63580(−1) 8.65749(−1) 2.38420(−1) 2.26411(−1) 2.22562(−1)
0.5 1.0 3.83161(−1) 5.86302(−1) 8.98082(−1) 2.49302(−1) 2.33954(−1) 2.30788(−1)

0.75 0.0 3.51566(−1) 5.42280(−1) 8.37299(−1) 2.26937(−1) 2.17180(−1) 2.12088(−1)
0.75 0.25 3.59453(−1) 5.53449(−1) 8.52986(−1) 2.32435(−1) 2.21103(−1) 2.16351(−1)
0.75 0.5 3.67369(−1) 5.64713(−1) 8.68869(−1) 2.37925(−1) 2.24977(−1) 2.20580(−1)
0.75 0.75 3.75275(−1) 5.75981(−1) 8.84783(−1) 2.43398(−1) 2.28772(−1) 2.24738(−1)
0.75 1.0 3.83161(−1) 5.87231(−1) 9.00680(−1) 2.48852(−1) 2.32487(−1) 2.28821(−1)

1.0 0.5 3.83161(−1) 5.87362(−1) 9.01046(−1) 2.48787(−1) 2.32283(−1) 2.28546(−1)

1.25 0.0 4.13743(−1) 6.30546(−1) 9.61422(−1) 2.70138(−1) 2.46623(−1) 2.44289(−1)
1.25 0.25 4.06336(−1) 6.20244(−1) 9.47235(−1) 2.64889(−1) 2.43057(−1) 2.40377(−1)
1.25 0.5 3.98727(−1) 6.09557(−1) 9.32378(−1) 2.59549(−1) 2.39413(−1) 2.36361(−1)
1.25 0.75 3.90993(−1) 5.98624(−1) 9.17076(−1) 2.54156(−1) 2.35748(−1) 2.32318(−1)
1.25 1.0 3.83161(−1) 5.87494(−1) 9.01410(−1) 2.48722(−1) 2.32080(−1) 2.28271(−1)

1.5 0.0 4.43374(−1) 6.72335(−1) 1.01969 2.90822(−1) 2.58859(−1) 2.57683(−1)
1.5 0.25 4.28997(−1) 6.52619(−1) 9.92942(−1) 2.80499(−1) 2.52101(−1) 2.50193(−1)
1.5 0.5 4.14071(−1) 6.31890(−1) 9.64467(−1) 2.69915(−1) 2.45074(−1) 2.42374(−1)
1.5 0.75 3.98771(−1) 6.10449(−1) 9.34735(−1) 2.59158(−1) 2.37916(−1) 2.34409(−1)
1.5 1.0 3.83161(−1) 5.88406(−1) 9.03918(−1) 2.48263(−1) 2.30673(−1) 2.26361(−1)

1.75 0.0 4.72109(−1) 7.12450(−1) 1.07499 3.11054(−1) 2.67445(−1) 2.67086(−1)
1.75 0.25 4.51165(−1) 6.84410(−1) 1.03784 2.95649(−1) 2.57964(−1) 2.56375(−1)
1.75 0.5 4.29198(−1) 6.54530(−1) 9.97634(−1) 2.79752(−1) 2.47933(−1) 2.44998(−1)
1.75 0.75 4.06495(−1) 6.23276(−1) 9.55071(−1) 2.63513(−1) 2.37584(−1) 2.33268(−1)
1.75 1.0 3.83161(−1) 5.90821(−1) 9.10397(−1) 2.46988(−1) 2.26996(−1) 2.21298(−1)

2.0 0.0 5.00000(−1) 7.50000(−1) 1.12500 3.31456(−1) 2.71128(−1) 2.71128(−1)
2.0 0.25 4.72856(−1) 7.15015(−1) 1.08022 3.10638(−1) 2.59505(−1) 2.57606(−1)
2.0 0.5 4.44115(−1) 6.77221(−1) 1.03094 2.89072(−1) 2.46986(−1) 2.42973(−1)
2.0 0.75 4.14166(−1) 6.37235(−1) 9.78028(−1) 2.66954(−1) 2.33906(−1) 2.27690(−1)
2.0 1.0 3.83161(−1) 5.95284(−1) 9.21783(−1) 2.44365(−1) 2.20382(−1) 2.11931(−1)
Table 3
The temperature-jump coefficient ζ for the Cercignani–Lampis boundary condition.

αt αn BGK S GJ MRS CES LBE

0.0 0.25 1.65478(1) 2.48217(1) 3.75568(1) 1.08307(1) 1.13002(1) 1.12585(1)
0.0 0.5 7.63078 1.14462(1) 1.74875(1) 4.92173 5.25355 5.20913
0.0 0.75 4.64213 6.96320 1.07616(1) 2.94068 3.23223 3.18680
0.0 1.0 3.14720 4.72080 7.40012 1.94808 2.22257 2.17680

0.25 0.0 1.00184(1) 1.50276(1) 2.31934(1) 6.37080 6.96782 6.90033
0.25 0.25 5.78950 8.68425 1.31047(1) 3.80300 3.89342 3.89548
0.25 0.5 3.84176 5.76263 8.64609 2.54583 2.55575 2.56267
0.25 0.75 2.72408 4.08612 6.13702 1.80181 1.80822 1.81158
0.25 1.0 2.00553 3.00830 4.54361 1.31364 1.33370 1.33270

0.5 0.0 5.76952 8.65428 1.36213(1) 3.55999 4.08447 4.01199
0.5 0.25 3.88593 5.82889 8.92213 2.49479 2.64263 2.62986
0.5 0.5 2.78041 4.17061 6.29960 1.82230 1.85234 1.85420
0.5 0.75 2.05839 3.08759 4.63631 1.36218 1.35515 1.35994
0.5 1.0 1.55658 2.33487 3.50324 1.03131 1.01630 1.02047

0.75 0.0 4.57103 6.85655 1.09177(1) 2.76885 3.27280 3.19758
0.75 0.25 3.22226 4.83339 7.47197 2.03476 2.21131 2.19146
0.75 0.5 2.36605 3.54907 5.39723 1.53272 1.58383 1.58151
0.75 0.75 1.77973 2.66959 4.02259 1.17067 1.17140 1.17468
0.75 1.0 1.35977 2.03966 3.06071 9.00829(−1) 8.82367(−1) 8.86916(−1)

1.0 0.0 4.27007 6.40510 1.02382(1) 2.57043 3.06924 2.99316
1.0 0.25 3.04475 4.56712 7.08466 1.91145 2.09643 2.07450
1.0 0.5 2.25090 3.37635 5.14774 1.45156 1.50985 1.50614
1.0 0.75 1.70032 2.55048 3.84919 1.11526 1.11968 1.12231
1.0 1.0 1.30272 1.95407 2.93392 8.62189(−1) 8.44123(−1) 8.48578(−1)
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Table 4
The viscous-slip coefficient ζP for the Maxwell boundary condition.

α BGK S GJ MRS CES LBE

0.1 1.710313(1) 1.711289(1) 2.568772(1) 7.555154 7.653509 7.654919
0.2 8.224902 8.233445 1.236595(1) 3.631871 3.668384 3.669668
0.3 5.255112 5.262546 7.907298 2.319749 2.336314 2.337472
0.4 3.762619 3.769046 5.665008 1.660482 1.667589 1.668626
0.5 2.861190 2.866704 4.309695 1.262406 1.264266 1.265184
0.6 2.255410 2.260100 3.398205 9.949673(−1) 9.936912(−1) 9.944960(−1)
0.7 1.818667 1.822617 2.740594 8.022106(−1) 7.990129(−1) 7.997103(−1)
0.8 1.487654 1.490942 2.241873 6.561584(−1) 6.518023(−1) 6.523989(−1)
0.9 1.227198 1.229898 1.849257 5.412667(−1) 5.362646(−1) 5.367673(−1)
1.0 1.016191 1.018372 1.531065 4.482081(−1) 4.429214(−1) 4.433376(−1)
Table 5
The thermal-slip coefficient ζT for the Maxwell boundary condition.

α BGK S GJ MRS CES LBE

0.1 2.641783(−1) 3.990953(−1) 6.039153(−1) 1.741220(−1) 1.815785(−1) 1.806217(−1)
0.2 2.781510(−1) 4.224826(−1) 6.433307(−1) 1.824896(−1) 1.882732(−1) 1.865245(−1)
0.3 2.919238(−1) 4.451916(−1) 6.808852(−1) 1.908334(−1) 1.946586(−1) 1.922669(−1)
0.4 3.055019(−1) 4.672507(−1) 7.167056(−1) 1.991559(−1) 2.007561(−1) 1.978564(−1)
0.5 3.188906(−1) 4.886867(−1) 7.509074(−1) 2.074599(−1) 2.065853(−1) 2.032999(−1)
0.6 3.320949(−1) 5.095248(−1) 7.835963(−1) 2.157476(−1) 2.121642(−1) 2.086041(−1)
0.7 3.451195(−1) 5.297892(−1) 8.148692(−1) 2.240217(−1) 2.175091(−1) 2.137752(−1)
0.8 3.579692(−1) 5.495027(−1) 8.448150(−1) 2.322847(−1) 2.226350(−1) 2.188189(−1)
0.9 3.706483(−1) 5.686868(−1) 8.735154(−1) 2.405388(−1) 2.275555(−1) 2.237407(−1)
1.0 3.831612(−1) 5.873623(−1) 9.010457(−1) 2.487868(−1) 2.322833(−1) 2.285458(−1)
Table 6
The temperature-jump coefficient ζ for the Maxwell boundary condition.

α BGK S GJ MRS CES LBE

0.1 2.145012(1) 3.217519(1) 4.827543(1) 1.421449(1) 1.449039(1) 1.450952(1)
0.2 1.034747(1) 1.552120(1) 2.329286(1) 6.854927 6.950372 6.967199
0.3 6.630514 9.945770 1.492827(1) 4.391407 4.429768 4.444478
0.4 4.760333 7.140499 1.071906(1) 3.152106 3.164151 3.176926
0.5 3.629125 5.443688 8.172655 2.402649 2.400633 2.411643
0.6 2.867615 4.301423 6.458189 1.898241 1.888245 1.897653
0.7 2.317534 3.476301 5.219548 1.533963 1.519428 1.527387
0.8 1.899741 2.849612 4.278658 1.257352 1.240397 1.247053
0.9 1.570264 2.355396 3.536575 1.039258 1.021273 1.026763
1.0 1.302716 1.954073 2.933920 8.621892(−1) 8.441228(−1) 8.485784(−1)
personal computer) is required to generate numerical results as
accurate as those of Tables 1–3, we have observed that the CPU
time needed to obtain results accurate enough for practical use is
much less. For example, we have been able to generate numerical
results good to at least three significant figures for all of the LBE
cases listed in Tables 1–3 in less than six minutes of CPU time on
an Intel Core 2 Duomachine running at 2.6 GHz. Additional results
for the Maxwell boundary condition, which is characterized by a
single accommodation coefficient α, are given in Tables 4–6 and
are also thought to be accurate to within ±1 in the last reported
figure. As expected, the Maxwell results for the case of purely
diffuse reflection (α = 1.0) are in complete agreement with the
CL results for the cases αt = 1.0 of the slip coefficients and for the
case αt = 1.0 and αn = 1.0 of the temperature-jump coefficient.
It can be seen from the results reported in Tables 1–6 that

the CES model gives the best results when compared to the LBE.
However, this model is somewhat more challenging to implement
than the others, since it requires a numerical evaluation of the
Chapman–Enskog functions A(c) and B(c). Among the simpler
models,MRS is the only that gives resultswhich are consistentwith
the LBE results. Nevertheless, the other models (BGK, S, and GJ)
can look much better when the desired quantities are expressed
in terms of conveniently defined, alternativemean-free path units.
To show this, we report in Tables 7–12 numerical results expressed
in terms of viscosity units for the viscous-slip coefficient and
in terms of thermal-conductivity units for the thermal-slip and
temperature-jump coefficients.We note that the results expressed
in terms of viscosity units in Tables 7 and 10 can be obtained simply
by dividing the corresponding results of Tables 1 and 4 by εp, the
numerical values of which are given for the LBE and each of the
models in Ref. [33]. Similarly, the results expressed in terms of
thermal-conductivity units in Tables 8, 9, 11 and12 canbe obtained
by dividing the corresponding results of Tables 2, 3, 5 and 6 by εt
(see also Ref. [33] for numerical values of this parameter for the
LBE and the models). In the cases of the slip coefficients for both
the CL and theMaxwell boundary conditions and the temperature-
jump coefficient for the Maxwell boundary condition (Tables 7, 8
and 10–12), we can see that the CES model still performs better
than the othermodels (with the exception of one entry in Table 11)
and the MRS model is the second best. However, in the case of
the temperature-jump coefficient for the CL boundary condition
(Table 9) this situation changes.While the CESmodel still performs
better than the others for 17 of the 24 cases studied, the BGK and
S models are the best for the remaining 7 cases, which include the
four cases for which αt = 0.0. When the CES model is excluded
from the comparison, the MRS model is the best for 13 cases and
the BGK and S models are the best for 11 cases.
An additional reason to report our numerical results in different

mean-free path units is the fact that all of the previous works with
whichwewish to compare our resultsmake use of viscosity and/or
thermal-conductivity units. Thus, repeating our results in the same
units as in those works facilitates such comparisons. As discussed
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Table 7
The viscous-slip coefficient ζP/εp for the Cercignani–Lampis boundary condition.

αt αn BGK S GJ MRS CES LBE

0.25 0.0 6.44457 6.45236 6.46145 6.43792 6.39020 6.39226
0.25 0.25 6.41210 6.41796 6.42477 6.40709 6.36293 6.36448
0.25 0.5 6.38380 6.38817 6.39321 6.38004 6.34087 6.34233
0.25 0.75 6.35783 6.36102 6.36465 6.35507 6.32178 6.32321
0.25 1.0 6.33355 6.33579 6.33832 6.33159 6.30481 6.30622

0.5 0.0 2.86119 2.86657 2.87253 2.85639 2.81470 2.81610
0.5 0.25 2.84035 2.84469 2.84950 2.83647 2.79735 2.79846
0.5 0.5 2.82188 2.82539 2.82925 2.81874 2.78303 2.78408
0.5 0.75 2.80477 2.80757 2.81063 2.80225 2.77046 2.77151
0.5 1.0 2.78865 2.79084 2.79323 2.78665 2.75915 2.76021

0.75 0.0 1.64258 1.64614 1.64999 1.63934 1.60433 1.60543
0.75 0.25 1.63254 1.63568 1.63909 1.62967 1.59605 1.59702
0.75 0.5 1.62350 1.62629 1.62930 1.62095 1.58908 1.59002
0.75 0.75 1.61505 1.61751 1.62018 1.61278 1.58289 1.58382
0.75 1.0 1.60701 1.60919 1.61154 1.60500 1.57725 1.57820

1.0 0.5 1.01619 1.01837 1.02071 1.01418 9.86401(−1) 9.87328(−1)

1.25 0.0 6.27438(−1) 6.28616(−1) 6.29865(−1) 6.26341(−1) 6.06129(−1) 6.06837(−1)
1.25 0.25 6.36792(−1) 6.38206(−1) 6.39703(−1) 6.35473(−1) 6.13699(−1) 6.14524(−1)
1.25 0.5 6.45455(−1) 6.47113(−1) 6.48872(−1) 6.43911(−1) 6.20287(−1) 6.21174(−1)
1.25 0.75 6.53722(−1) 6.55635(−1) 6.57672(−1) 6.51946(−1) 6.26294(−1) 6.27207(−1)
1.25 1.0 6.61701(−1) 6.63879(−1) 6.66210(−1) 6.59687(−1) 6.31875(−1) 6.32784(−1)

1.5 0.0 3.58078(−1) 3.58578(−1) 3.59097(−1) 3.57602(−1) 3.44908(−1) 3.45321(−1)
1.5 0.25 3.76152(−1) 3.76974(−1) 3.77823(−1) 3.75365(−1) 3.59447(−1) 3.60063(−1)
1.5 0.5 3.93123(−1) 3.94330(−1) 3.95584(−1) 3.91973(−1) 3.72304(−1) 3.73049(−1)
1.5 0.75 4.09472(−1) 4.11127(−1) 4.12859(−1) 4.07908(−1) 3.84165(−1) 3.84967(−1)
1.5 1.0 4.25373(−1) 4.27538(−1) 4.29823(−1) 4.23346(−1) 3.95303(−1) 3.96088(−1)

1.75 0.0 1.57395(−1) 1.57513(−1) 1.57631(−1) 1.57277(−1) 1.51512(−1) 1.51637(−1)
1.75 0.25 1.83607(−1) 1.84004(−1) 1.84394(−1) 1.83206(−1) 1.72561(−1) 1.72898(−1)
1.75 0.5 2.08549(−1) 2.09376(−1) 2.10196(−1) 2.07724(−1) 1.91468(−1) 1.91953(−1)
1.75 0.75 2.32799(−1) 2.34202(−1) 2.35614(−1) 2.31418(−1) 2.09109(−1) 2.09640(−1)
1.75 1.0 2.56568(−1) 2.58694(−1) 2.60864(−1) 2.54504(−1) 2.25844(−1) 2.26297(−1)

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.0 0.25 3.38159(−2) 3.39479(−2) 3.40654(−2) 3.36676(−2) 2.72619(−2) 2.73344(−2)
2.0 0.5 6.64069(−2) 6.69256(−2) 6.74013(−2) 6.58424(−2) 5.21183(−2) 5.22446(−2)
2.0 0.75 9.83830(−2) 9.95418(−2) 1.00630(−1) 9.71521(−2) 7.55646(−2) 7.56232(−2)
2.0 1.0 1.29964(−1) 1.32020(−1) 1.33989(−1) 1.27825(−1) 9.80224(−2) 9.78373(−2)
next, comparisons were done only with numerical results from
works where the CL boundary condition is used in the calculation
of the slip and/or jump coefficients (i.e., no work based solely on
theMaxwell boundary condition was considered for this purpose).
With regard to the numerical results with five figures of

accuracy that are given in Ref. [18] for the LBE subject to the CL
boundary condition, we have found that the slip coefficients listed
in Tables II and III of that work [18] display a maximum deviation
of one unit in the last (fifth) figure, while the jump coefficient listed
in Table IV displays a maximum deviation of two units in the last
figure, which occurs for some of the special cases (αt = 0.0 or
αn = 0.0) considered in that work. The six-figure results reported
for the LBE with the Maxwell boundary condition in Table I of
Ref. [18] have a maximum deviation of one unit in the last (sixth)
figure.
While Ref. [18] is, to the best of our knowledge, the only

published work that provides numerical results based on the LBE
and the CL boundary condition for the slip and jump coefficients,
there are some additional works based on model equations and
the CL boundary condition. Concerning the seven-figure results for
the slip coefficients that were obtained from the BGK and S model
equations with the CL boundary condition in Ref. [20], we have
found that they agree perfectly with our results, when rounded
to six significant figures. The slip-coefficient results with seven
figures of accuracy that are reported in that work [20] for the
BGK, S, and CES models with the Maxwell boundary condition
are in perfect agreement with the results of our work. Numerical
results for the slip and jump coefficients using the S model and
the CL boundary condition were also reported in Ref. [21], but the
tabulations provide only four (sometimes three) significant figures.
We have confirmed that these results are correct with a maximum
deviation of four units in the fourth figure. Finally, with regard to
the numerical results for the temperature-jump coefficient that
were obtained from the BGK and S model equations and the CL
boundary condition and are reported with six figures of accuracy
in Tables 2–4 of Ref. [22], we have found that they agree very well
with the results of our method (maximum difference of one unit in
the sixth significant figure).

7. Concluding remarks

Accurate numerical results are reported in this work for
the viscous-slip, thermal-slip, and temperature-jump coefficients
calculatedwith the linearized Boltzmann equation for rigid-sphere
interactions (and five kineticmodel equations) subject to either the
Cercignani–Lampis or the Maxwell boundary condition. The CES
model was found to be the one that yields the numerical results
that are closest to the LBE results, except in the limit αt → 0 of
the temperature-jump coefficient for the CL boundary condition,
where the BGK and S models give better results (when expressed
in convenient mean-free path units). Among the simple models
considered in this work (BGK, S, GJ, and MRS), the MRS model
yields numerical results that agree better with the LBE results
than the other three (except in the above-mentioned limit of the
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Table 8
The thermal-slip coefficient ζT /εt for the Cercignani–Lampis boundary condition.

αt αn BGK S GJ MRS CES LBE

0.25 0.0 2.85062(−1) 2.93076(−1) 3.02252(−1) 2.78120(−1) 2.76508(−1) 2.69598(−1)
0.25 0.25 3.10347(−1) 3.17991(−1) 3.26721(−1) 3.03710(−1) 2.96461(−1) 2.90491(−1)
0.25 0.5 3.35083(−1) 3.42278(−1) 3.50453(−1) 3.28806(−1) 3.15375(−1) 3.10413(−1)
0.25 0.75 3.59336(−1) 3.65978(−1) 3.73475(−1) 3.53508(−1) 3.33375(−1) 3.29501(−1)
0.25 1.0 3.83161(−1) 3.89144(−1) 3.95844(−1) 3.77872(−1) 3.50574(−1) 3.47874(−1)

0.5 0.0 3.18891(−1) 3.29261(−1) 3.40563(−1) 3.09474(−1) 2.97543(−1) 2.89052(−1)
0.5 0.25 3.35189(−1) 3.44884(−1) 3.55435(−1) 3.26376(−1) 3.09797(−1) 3.02213(−1)
0.5 0.5 3.51345(−1) 3.60390(−1) 3.70202(−1) 3.43097(−1) 3.21667(−1) 3.15030(−1)
0.5 0.75 3.67333(−1) 3.75720(−1) 3.84777(−1) 3.59656(−1) 3.33138(−1) 3.27475(−1)
0.5 1.0 3.83161(−1) 3.90868(−1) 3.99147(−1) 3.76071(−1) 3.44238(−1) 3.39578(−1)

0.75 0.0 3.51566(−1) 3.61520(−1) 3.72133(−1) 3.42333(−1) 3.19556(−1) 3.12065(−1)
0.75 0.25 3.59453(−1) 3.68966(−1) 3.79105(−1) 3.50627(−1) 3.25329(−1) 3.18337(−1)
0.75 0.5 3.67369(−1) 3.76475(−1) 3.86164(−1) 3.58909(−1) 3.31028(−1) 3.24559(−1)
0.75 0.75 3.75275(−1) 3.83988(−1) 3.93237(−1) 3.67164(−1) 3.36613(−1) 3.30677(−1)
0.75 1.0 3.83161(−1) 3.91487(−1) 4.00302(−1) 3.75391(−1) 3.42079(−1) 3.36685(−1)

1.0 0.5 3.83161(−1) 3.91575(−1) 4.00465(−1) 3.75293(−1) 3.41779(−1) 3.36280(−1)

1.25 0.0 4.13743(−1) 4.20364(−1) 4.27299(−1) 4.07501(−1) 3.62878(−1) 3.59444(−1)
1.25 0.25 4.06336(−1) 4.13496(−1) 4.20993(−1) 3.99583(−1) 3.57632(−1) 3.53688(−1)
1.25 0.5 3.98727(−1) 4.06371(−1) 4.14390(−1) 3.91529(−1) 3.52270(−1) 3.47779(−1)
1.25 0.75 3.90993(−1) 3.99083(−1) 4.07589(−1) 3.83393(−1) 3.46877(−1) 3.41830(−1)
1.25 1.0 3.83161(−1) 3.91662(−1) 4.00627(−1) 3.75195(−1) 3.41480(−1) 3.35876(−1)

1.5 0.0 4.43374(−1) 4.48223(−1) 4.53197(−1) 4.38703(−1) 3.80882(−1) 3.79152(−1)
1.5 0.25 4.28997(−1) 4.35079(−1) 4.41307(−1) 4.23132(−1) 3.70938(−1) 3.68132(−1)
1.5 0.5 4.14071(−1) 4.21260(−1) 4.28652(−1) 4.07165(−1) 3.60599(−1) 3.56626(−1)
1.5 0.75 3.98771(−1) 4.06966(−1) 4.15438(−1) 3.90939(−1) 3.50067(−1) 3.44906(−1)
1.5 1.0 3.83161(−1) 3.92271(−1) 4.01741(−1) 3.74504(−1) 3.39410(−1) 3.33064(−1)

1.75 0.0 4.72109(−1) 4.74966(−1) 4.77772(−1) 4.69223(−1) 3.93515(−1) 3.92987(−1)
1.75 0.25 4.51165(−1) 4.56273(−1) 4.61261(−1) 4.45984(−1) 3.79565(−1) 3.77227(−1)
1.75 0.5 4.29198(−1) 4.36353(−1) 4.43393(−1) 4.22005(−1) 3.64805(−1) 3.60488(−1)
1.75 0.75 4.06495(−1) 4.15518(−1) 4.24476(−1) 3.97508(−1) 3.49579(−1) 3.43228(−1)
1.75 1.0 3.83161(−1) 3.93881(−1) 4.04621(−1) 3.72580(−1) 3.34000(−1) 3.25616(−1)

2.0 0.0 5.00000(−1) 5.00000(−1) 5.00000(−1) 5.00000(−1) 3.98935(−1) 3.98935(−1)
2.0 0.25 4.72856(−1) 4.76677(−1) 4.80099(−1) 4.68596(−1) 3.81832(−1) 3.79039(−1)
2.0 0.5 4.44115(−1) 4.51481(−1) 4.58196(−1) 4.36063(−1) 3.63413(−1) 3.57508(−1)
2.0 0.75 4.14166(−1) 4.24824(−1) 4.34679(−1) 4.02698(−1) 3.44167(−1) 3.35020(−1)
2.0 1.0 3.83161(−1) 3.96856(−1) 4.09681(−1) 3.68623(−1) 3.24267(−1) 3.11833(−1)
Table 9
The temperature-jump coefficient ζ/εt for the Cercignani–Lampis boundary condition.

αt αn BGK S GJ MRS CES LBE

0.0 0.25 1.65478(1) 1.65478(1) 1.66919(1) 1.63380(1) 1.66270(1) 1.65657(1)
0.0 0.5 7.63078 7.63078 7.77223 7.42441 7.73001 7.66466
0.0 0.75 4.64213 4.64213 4.78291 4.43600 4.75586 4.68902
0.0 1.0 3.14720 3.14720 3.28894 2.93866 3.27027 3.20293

0.25 0.0 1.00184(1) 1.00184(1) 1.03082(1) 9.61032 1.02524(1) 1.01531(1)
0.25 0.25 5.78950 5.78950 5.82432 5.73681 5.72873 5.73177
0.25 0.5 3.84176 3.84176 3.84271 3.84037 3.76051 3.77069
0.25 0.75 2.72408 2.72408 2.72757 2.71803 2.66059 2.66554
0.25 1.0 2.00553 2.00553 2.01938 1.98161 1.96239 1.96092

0.5 0.0 5.76952 5.76952 6.05389 5.37023 6.00985 5.90319
0.5 0.25 3.88593 3.88593 3.96539 3.76337 3.88834 3.86955
0.5 0.5 2.78041 2.78041 2.79982 2.74893 2.72552 2.72824
0.5 0.75 2.05839 2.05839 2.06058 2.05483 1.99396 2.00099
0.5 1.0 1.55658 1.55658 1.55700 1.55573 1.49537 1.50151

0.75 0.0 4.57103 4.57103 4.85229 4.17680 4.81556 4.70488
0.75 0.25 3.22226 3.22226 3.32088 3.06942 3.25370 3.22449
0.75 0.5 2.36605 2.36605 2.39877 2.31210 2.33043 2.32701
0.75 0.75 1.77973 1.77973 1.78782 1.76594 1.72359 1.72841
0.75 1.0 1.35977 1.35977 1.36032 1.35890 1.29831 1.30500

1.0 0.0 4.27007 4.27007 4.55031 3.87749 4.51605 4.40410
1.0 0.25 3.04475 3.04475 3.14874 2.88341 3.08467 3.05239
1.0 0.5 2.25090 2.25090 2.28788 2.18967 2.22158 2.21612
1.0 0.75 1.70032 1.70032 1.71075 1.68237 1.64749 1.65135
1.0 1.0 1.30272 1.30272 1.30396 1.30061 1.24203 1.24859
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Table 10
The viscous-slip coefficient ζP/εp for the Maxwell boundary condition.

α BGK S GJ MRS CES LBE

0.1 1.710313(1) 1.711289(1) 1.712515(1) 1.709536(1) 1.704462(1) 1.704776(1)
0.2 8.224902 8.233445 8.243969 8.217986 8.169615 8.172474
0.3 5.255112 5.262546 5.271532 5.248993 5.203049 5.205629
0.4 3.762619 3.769046 3.776672 3.757241 3.713778 3.716085
0.5 2.861190 2.866704 2.873130 2.856500 2.815562 2.817607
0.6 2.255410 2.260100 2.265470 2.251354 2.212984 2.214776
0.7 1.818667 1.822617 1.827063 1.815195 1.779429 1.780982
0.8 1.487654 1.490942 1.494582 1.484717 1.451586 1.452914
0.9 1.227198 1.229898 1.232838 1.224747 1.194279 1.195399
1.0 1.016191 1.018372 1.020710 1.014179 9.864009(−1) 9.873277(−1)
Table 11
The thermal-slip coefficient ζT /εt for the Maxwell boundary condition.

α BGK S GJ MRS CES LBE

0.1 2.641783(−1) 2.660636(−1) 2.684068(−1) 2.626621(−1) 2.671726(−1) 2.657648(−1)
0.2 2.781510(−1) 2.816551(−1) 2.859247(−1) 2.752845(−1) 2.770231(−1) 2.744500(−1)
0.3 2.919238(−1) 2.967944(−1) 3.026157(−1) 2.878711(−1) 2.864184(−1) 2.828993(−1)
0.4 3.055019(−1) 3.115005(−1) 3.185358(−1) 3.004256(−1) 2.953902(−1) 2.911236(−1)
0.5 3.188906(−1) 3.257911(−1) 3.337366(−1) 3.129520(−1) 3.039673(−1) 2.991332(−1)
0.6 3.320949(−1) 3.396832(−1) 3.482650(−1) 3.254541(−1) 3.121761(−1) 3.069378(−1)
0.7 3.451195(−1) 3.531928(−1) 3.621641(−1) 3.379355(−1) 3.200405(−1) 3.145464(−1)
0.8 3.579692(−1) 3.663351(−1) 3.754733(−1) 3.504001(−1) 3.275826(−1) 3.219676(−1)
0.9 3.706483(−1) 3.791246(−1) 3.882291(−1) 3.628515(−1) 3.348226(−1) 3.292095(−1)
1.0 3.831612(−1) 3.915748(−1) 4.004647(−1) 3.752934(−1) 3.417790(−1) 3.362797(−1)
Table 12
The temperature-jump coefficient ζ/εt for the Maxwell boundary condition.

α BGK S GJ MRS CES LBE

0.1 2.145012(1) 2.145012(1) 2.145575(1) 2.144248(1) 2.132099(1) 2.134915(1)
0.2 1.034747(1) 1.034747(1) 1.035238(1) 1.034062(1) 1.022670(1) 1.025146(1)
0.3 6.630514 6.630514 6.634788 6.624413 6.517910 6.539555
0.4 4.760333 4.760333 4.764025 4.754934 4.655696 4.674493
0.5 3.629125 3.629125 3.632291 3.624383 3.532264 3.548464
0.6 2.867615 2.867615 2.870306 2.863486 2.778342 2.792185
0.7 2.317534 2.317534 2.319799 2.313975 2.235669 2.247380
0.8 1.899741 1.899741 1.901626 1.896708 1.825107 1.834900
0.9 1.570264 1.570264 1.571811 1.567715 1.502689 1.510768
1.0 1.302716 1.302716 1.303964 1.300608 1.242033 1.248589
temperature-jump coefficient) and is the only simple model that
yields consistent results regardless of the choice of mean-free
path.
Note added in revision:While revising our manuscript, we were

informed of the recent death of Carlo Cercignani. It is with sadness
that we take this opportunity to remember Carlo who almost
single-handedly defined the field of rarefied gas dynamics. He will
be greatly missed.

Acknowledgments

The authors are grateful to Luis C. OgandoDacal andOnofre F. de
Lima Neto from IEAv for computational resources that were used
to generate part of the numerical results reported in this work.

References

[1] C. Cercignani, Mathematical Methods in Kinetic Theory, Plenum Press, New
York, 1969.

[2] M.M.R. Williams, Mathematical Methods in Particle Transport Theory,
Butterworth, London, 1971.

[3] J.H. Ferziger, H.G. Kaper, Mathematical Theory of Transport Processes in Gases,
North-Holland, Amsterdam, 1972.

[4] Y. Sone, Kinetic Theory and Fluid Dynamics, Birkhäuser, Boston, 2002.
[5] Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications,
Birkhäuser, Boston, 2007.

[6] I.N. Ivchenko, S.K. Loyalka, R.V. Tompson Jr., Analytical Methods for Problems
of Molecular Transport, Springer, Dordrecht, 2007.
[7] F. Sharipov, Data on the velocity slip and temperature jump coefficients,
in: L.J. Ernst, G.Q. Zhang, P. Rodgers, O. de Saint Leger (Eds.), Proc. 5th Int. Conf.
on Thermal and Mechanical Simulation and Experiments in Microelectronics
and Microsystems (EuroSimE 2004), Brussels, 10–12 May 2004, Shaker
Publishing, Maastricht, 2004, pp. 243–249.

[8] S.K. Loyalka, Momentum and temperature-slip coefficients with arbitrary
accommodation at the surface, J. Chem. Phys. 48 (1968) 5432–5436.

[9] S.K. Loyalka, Approximatemethod in the kinetic theory, Phys. Fluids 14 (1971)
2291–2294.

[10] Y. Sone, T. Ohwada, K. Aoki, Temperature jump and Knudsen layer in a rarefied
gas over a planewall: Numerical analysis of the linearized Boltzmann equation
for hard-sphere molecules, Phys. Fluids A 1 (1989) 363–370.

[11] S.K. Loyalka, Temperature jump and thermal creep slip: Rigid sphere gas, Phys.
Fluids A 1 (1989) 403–408.

[12] S.K. Loyalka, Temperature jump: Rigid-sphere gas with arbitrary gas/surface
interaction, Nucl. Sci. Eng. 108 (1991) 69–73.

[13] T. Ohwada, Y. Sone, Analysis of thermal stress slip flow and negative
thermophoresis using the Boltzmann equation for hard-spheremolecules, Eur.
J. Mech. B Fluids 11 (1992) 389–414.

[14] M. Wakabayashi, T. Ohwada, F. Golse, Numerical analysis of the shear and
thermal creep flows of a rarefied gas over the plane wall of a Maxwell-type
boundary on the basis of the linearized Boltzmann equation for hard-sphere
molecules, Eur. J. Mech. B Fluids 15 (1996) 175–201.

[15] S.K. Loyalka, K.A. Hickey, The Kramers problem: Velocity slip and defect for
a hard sphere gas with arbitrary accommodation, Z. Angew. Math. Phys. 41
(1990) 245–253.

[16] C.E. Siewert, The linearized Boltzmann equation: A concise and accurate
solution of the temperature-jump problem, J. Quant. Spectros. Radiat. Transfer
77 (2003) 417–432.

[17] C.E. Siewert, The linearized Boltzmann equation: Concise and accurate
solutions to basic flow problems, Z. Angew. Math. Phys. 54 (2003) 273–303.

[18] C.E. Siewert, Viscous-slip, thermal-slip, and temperature-jump coefficients
as defined by the linearized Boltzmann equation and the Cercignani–Lampis
boundary condition, Phys. Fluids 15 (2003) 1696–1701.



R.D.M. Garcia, C.E. Siewert / European Journal of Mechanics B/Fluids 29 (2010) 181–191 191
[19] C. Cercignani, M. Lampis, Kinetic model for gas–surface interaction, Transp.
Theory Stat. Phys. 1 (1971) 101–114.

[20] C.E. Siewert, F. Sharipov, Model equations in rarefied gas dynamics: Viscous-
slip and thermal-slip coefficients, Phys. Fluids 14 (2002) 4123–4129.

[21] F. Sharipov, Application of the Cercignani–Lampis scattering kernel to
calculations of rarefied gas flows. II. Slip and jump coefficients, Eur. J. Mech.
B Fluids 22 (2003) 133–143.

[22] R.F. Knackfuss, L.B. Barichello, On the temperature-jump problem in rarefied
gas dynamics: The effect of the Cercignani–Lampis boundary condition, SIAM
J. Appl. Math. 66 (2006) 2149–2186.

[23] L.B. Barichello, C.E. Siewert, A discrete-ordinates solution for a non-greymodel
with complete frequency redistribution, J. Quant. Spectros. Radiat. Transfer 62
(1999) 665–675.

[24] R.D.M. Garcia, C.E. Siewert, Some solutions (linear in the spatial variable) and
generalized Chapman–Enskog functions basic to the linearized Boltzmann
equation for a binarymixture of rigid spheres, Z. Angew.Math. Phys. 58 (2007)
262–288.

[25] R.D.M. Garcia, C.E. Siewert, The linearized Boltzmann equation with Cercig-
nani–Lampis boundary conditions: Basic flow problems in a plane channel,
Eur. J. Mech. B Fluids 28 (2009) 387–396.
[26] C.L. Pekeris, Solution of the Boltzmann–Hilbert integral equation, Proc. Natl.
Acad. Sci. 41 (1955) 661–669.

[27] C.E. Siewert, On computing the Chapman–Enskog functions for viscosity and
heat transfer and the Burnett functions, J. Quant. Spectros. Radiat. Transfer 74
(2002) 789–796.

[28] L.B. Barichello, P. Rodrigues, C.E. Siewert, On computing the Chapman–Enskog
and Burnett functions, J. Quant. Spectros. Radiat. Transfer 86 (2004) 109–114.

[29] P. Welander, On the temperature jump in a rarefied gas, Arkiv Fysik 7 (1954)
507–553.

[30] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases.
I. Small amplitude processes in charged and neutral one-component systems,
Phys. Rev. 94 (1954) 511–525.

[31] E.M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid
Dyn. 3 (5) (1968) 95–96.

[32] E.P. Gross, E.A. Jackson, Kineticmodels and the linearized Boltzmann equation,
Phys. Fluids 2 (1959) 432–441.

[33] R.D.M. Garcia, C.E. Siewert, The linearized Boltzmann equation: Sound-wave
propagation in a rarefied gas, Z. Angew. Math. Phys. 57 (2006) 94–122.

[34] L.B. Barichello, C.E. Siewert, Some comments on modeling the linearized
Boltzmann equation, J. Quant. Spectros. Radiat. Transfer 77 (2003) 43–59.


	Viscous-slip, thermal-slip, and temperature-jump coefficients based on the linearized Boltzmann equation (and five kinetic models) with the Cercignani--Lampis boundary condition
	Introduction
	Basic formulation
	The temperature-jump problem
	The viscous-slip problem
	The thermal-creep problem
	Numerical results
	Concluding remarks
	Acknowledgments
	References


