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a b s t r a c t

In order to provide some basic evaluations of elementary nodal techniques, as used in the general area of
particle transport theory, critical and albedo problems for cylinders, spheres, and slabs are solved approx-
imately in terms of averaged quantities and compared to exact results.

! 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent work, Williams (2007) used a nodal-like approxima-
tion to study the problem of radiative transfer in infinite and semi-
infinite cylinders subject to the mathematically challenging Fresnel
boundary condition(s) on the curved (infinite length case) surface
and both the curved and plane surfaces for the semi-infinite case.
Fundamental background material for the nodal-like approxima-
tion used by Williams (2007) can be found in the works of Prinja
and Pomraning (1984), Larsen (1984) and Larsen et al. (1986). In
this brief communication we make use of the nodal-like approach
to establish approximate solutions to two classical problems (the
critical problem and the albedo problem) for an infinite cylinder.
Since essentially exact results for these two problems are available
(Thomas et al., 1983; Siewert and Thomas, 1985), we are able to
evaluate exactly the merits of the nodal-like approximation used
by Williams for these two elementary problems. These same two
problems are investigated also for the case of spheres and slabs
(Siewert and Thomas, 1985; Siewert and Grandjean, 1979;
Grandjean and Siewert, 1979).

2. The cylindrical case

We consider the transport equation and the surface boundary
condition, for the case of an infinitely long cylinder (with no vari-
ations in the axial direction and rotational symmetry about the

axis of the cylinder) of radius R written (Bell and Glasstone,
1979) as
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for r 2 (0,R), l 2 ["1,1], / 2 (0,2p), and

WðR;l;/Þ ¼ F; l 2 ½"1;1' and / 2 ½p=2;3p=2': ð2Þ

For the critical problem we have c > 1 and F = 0, and we seek, for
a given value of c, the critical radius R. For the albedo problem we
have c < 1 and F = 1, and we seek the albedo, which after we take
into account some symmetries in / and l, can be expressed as
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In order to work with a simpler version of the given problem we
choose to eliminate the differential operators from Eq. (1), and so
we integrate Eq. (1) and introduce the ‘‘average’’
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where after we note the symmetry in /, we write
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At this point we approximate, as have Williams (2007) and
others (Prinja and Pomraning, 1984; Larsen, 1984; Larsen et al.,
1986), the exiting (over half the symmetric / range) radiation:

WðR;l;/Þ ¼ WavgðlÞ; l 2 ½"1;1'; / 2 ½0;p=2': ð7Þ

Using Eq. (7) in Eq. (6) and then the resulting equation in Eq. (5), we
find, after making use of the symmetry in l
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For the critical problem, we set F = 0 and integrate Eq. (8) to find
the critical condition that relates c and R, viz.
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Z 1

0

dl
pRþ 2ð1" l2Þ1=2

: ð9Þ

In a similar way, we can put F = 1 in Eq. (8) and use Eqs. (3) and
(7) to find the albedo:
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Some numerical results that can be used to compare exact (Tho-
mas et al., 1983; Siewert and Thomas, 1985) and approximate
results, Eqs. (9) and (10), are given in Tables 1 and 2. While we have
explicitly evaluated the integrals in Eqs. (9), (11) and (12), we do not
list the resulting expressions here, in order to keep our presentation
concise.

3. The spherical case

For the case of a homogeneous sphere of radius R, we consider
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and

WðR;"lÞ ¼ F; l 2 ð0;1'; ð14Þ

where again, for the critical problem we have F = 0, and for the
albedo problem, we put F = 1 and compute the albedo

A( ¼ 2
Z 1

0
WðR;lÞldl: ð15Þ

Continuing, we integrate Eq. (13) and introduce
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to find the critical condition
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For the albedo we find

Table 1
Approximate ðbRÞ and exact (R) values for the critical radius of an
infinite cylinder.

c bR R j1" bR=Rj) 100

1.01 4.996(1) 1.313(1) 280
1.02 2.496(1) 9.043 176
1.05 9.961 5.411 84
1.1 4.962 3.577 39
1.2 2.464 2.287 8
1.3 1.632 1.725 5
1.4 1.217 1.397 13
1.5 9.686("1) 1.178 18
1.6 8.032("1) 1.021 21
1.8 5.972("1) 8.074("1) 26
2.0 4.741("1) 6.686("1) 29

Table 2
Approximate ðbA(Þ and exact (A⁄) values of the albedo for an infinite cylinder.

R c bA( A⁄
j1" bA(=A(j) 100

1 0.7 6.294("1) 5.865("1) 7
1 0.8 7.168("1) 6.929("1) 3
1 0.9 8.342("1) 8.264("1) 1
1 0.99 9.804("1) 9.803("1) 0.01
10 0.7 1.457("1) 2.753("1) 47
10 0.8 2.025("1) 3.665("1) 45
10 0.9 3.351("1) 5.128("1) 35
10 0.99 8.334("1) 8.614("1) 3

Table 3
Approximate ðbRÞ and exact (R) values for the critical
radius for a sphere.

c bR R j1" bR=Rj) 100

1.05 1.5(1) 7.277 106
1.07 1.071(1) 6.007 78
1.09 8.333 5.187 61
1.1 7.5 4.873 54
1.3 2.5 2.425 3
1.5 1.5 1.690 11
1.7 1.071 1.313 18
1.9 8.333("1) 1.078 23

Table 4
Approximate ðbA(Þ and exact (A⁄) values for the albedo of a sphere.

R c bA( A⁄
j1" bA(=A(j) 100

1 0.7 7.143("1) 6.866("1) 4
1 0.8 7.895("1) 7.750("1) 2
1 0.9 8.824("1) 8.780("1) 0.5
1 0.99 9.868("1) 9.868("1) 0.0

10 0.7 2.000("1) 2.948("1) 32
10 0.8 2.727("1) 3.916("1) 30
10 0.9 4.286("1) 5.463("1) 22
10 0.99 8.824("1) 8.938("1) 1.3

Table 5
Approximate ðâÞ and exact (a) values for the critical half-thickness for a slab.

c â a j1" â=aj) 100

1.1 2.422 2.113 15
1.3 7.637("1) 9.377("1) 19
1.5 4.371("1) 6.051("1) 28
1.7 2.996("1) 4.425("1) 32
1.9 2.248("1) 3.459("1) 35
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A( ¼ 3
3þ 4Rð1" cÞ

: ð18Þ

Some numerical results that can be used to compare exact
(Siewert and Thomas, 1985; Siewert and Grandjean, 1979) and
approximate results, Eqs. (17) and (18), are given in Tables 3 and 4.

4. The slab case

For the case of a homogeneous slab of half-thickness a, we
consider
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For the critical problemwe have F = 0 and seek, for a given value
of c the critical half-thickness a. For the albedo problem, we put
F = 1 and compute the albedo
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and the transmission factor
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Following the procedure of Sections 2 and 3, we integrate Eq.
(19) and introduce ‘‘the average’’
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Considering Eq. (23) for l > 0 and l < 0 separately, we write
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Now, using the approximations

Wða;lÞ ¼ WavgðlÞ ð25aÞ

and

Wð"a;"lÞ ¼ Wavgð"lÞ; ð25bÞ

we can then solve Eqs. (24) to find

Kðc; aÞ
Z 1
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Wavgðl0Þdl0 ¼ FKð1; aÞ; ð26Þ

where

Kðc; aÞ ¼ 1" 2ca ln½1þ 1=ð2aÞ': ð27Þ

When F = 0 we find the critical condition for the slab:

1 ¼ 2ca ln½1þ 1=ð2aÞ': ð28Þ

For F = 1 we find the albedo can be expressed as

A( ¼ 2ca
K2ð1; aÞ
Kðc; aÞ

ð29Þ

and the transmission factor as

B( ¼ 1" A( " 4að1" cÞKð1; aÞ
Kðc; aÞ

: ð30Þ

Some numerical results that can be used to compare exact (Grand-
jean and Siewert, 1979) and approximate results, Eqs. (28)–(30), are
given in Tables 5 and 6.

5. Concluding remarks

In thiswork,wehaveused the ideaof integrationoverdifferential
operators and the introduction of average quantities (nodal-like
approximations) to solve six basic problems in particle transport
theory. We note that the purpose of this work is not to endorse the
approach we use to provide numerical results for the considered
problems, but ratherwe selected these simpleproblemsas test cases
since they can be solved essentially exactly, and so we were able to
compare in a good way the simplifying nodal-like approximations
used. As can be seen from the six tables of results reported in this
work, the (single-node) nodal-like approximations we used led
sometimes to reasonable results, but often the results are not all
good. While results for problems that cannot be solved well by rig-
orousmethods can be obtained using the approximations discussed
here, it is clear that this approach should be usedwith a great deal of
care.
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