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The dispersion function relevant to one-speed transport theory with isotropic scattering is analyzed for
the case of complex values of c, and an explicit expression is given for the discrete eigenvalue m0.
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1. Introduction

One of us (CES) was recently asked (Prinja, 2013) about extend-
ing to the case of complex values of c a previous result (Siewert,
1999) that gives an analytical expression for the discrete eigenvalue
m0 relevant to steady-state, one-speed neutron transport equation
(for isotropic scattering). While c is normally used to denote the
mean number of secondary particles per collision and as such is
contained in the interval ½0;1Þ, it can be considered an ordinary
complex variable for transformed versions of the time-dependent
transport equation (Case, 1960; Bowden and Williams, 1964;
Kuščer and Zweifel, 1965). Here we give a brief discussion of the
dispersion function KðzÞ for the case of complex c. We also report
a generalization of the mentioned analytical expression (Siewert,
1999) for m0 appropriate to the case of complex values of c.

2. Preliminary analysis

We start with the dispersion function written as

KðzÞ ¼ 1þ cz
2

Z 1

�1

dl
l� z

; ð1Þ

where

c ¼ aþ ib ð2Þ
for real a and b. We note that the zeros of KðzÞ must occur in �
pairs. Furthermore, a zero of KðzÞ for a negative value of b is just
the complex conjugate of a zero for the same positive value of b.
For this reason, we can consider only positive values of b in our
analysis.

Clearly KðzÞ as a function of the complex variable z has a branch
cut along the real axis from �1 to 1. We can use the Plemelj formu-
las (Muskhelishvili, 1953) to compute the limiting values of KðzÞ as
the branch cut is approached from above and below to find

K�ðxÞ ¼ R�ðxÞ þ iI�ðxÞ; x 2 ð�1;1Þ; ð3Þ

where

R�ðxÞ ¼ 1þ a
2

JðxÞ � bxp
2

ð4Þ

and

I�ðxÞ ¼ b
2

JðxÞ � axp
2

; ð5Þ

with

JðxÞ ¼ x ln
1� x
1þ x

� �
: ð6Þ

In order to compute the number of zeros of KðzÞ, we use the
argument principle (Ahlfors, 1953) and therefore evaluate the
change in the argument of KþðxÞ for x going from �1 to 1 and of
K�ðxÞ for x going from 1 to �1. However, since K�ð�xÞ ¼ KþðxÞ,
it is sufficient to study just KþðxÞ as x varies from �1 to 1.
Continuing, we let H�ðxÞ denote the arguments of K�ðxÞ and write
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Table 1
The discrete eigenvalue m0 for selected values of c ¼ aþ ib.

a b Rfm0g Ifm0g

0.5 0.1 1.03101573694256 3.97452079194778(�2)
0.9 0.1 1.50104911758437 5.47242004863977(�1)
1.0 0.1 1.33951917593349 1.23658702230985
1.0 1.0 4.61488844429075(�1) 2.18244298742223(�1)
1.0 3.0 2.01131500532114(�1) 3.85807890710501(�2)
3.0 0.1 1.01992873143149(�2) 2.51300678037113(�1)
3.0 1.0 8.69421709883194(�2) 2.15778216073148(�1)
3.0 3.0 1.22266126305228(�1) 1.03545315562501(�1)
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H�ðxÞ ¼ arctan½I�ðxÞ=R�ðxÞ�: ð7Þ

It is important to note that care must be taken in the use of the
arctan function in Eq. (7) so that the resulting argument functions
are continuous.

To summarize our findings regarding the zeros of KðzÞ, we let

c ¼ p
2

a2 þ b2

b

 !
; ð8aÞ

- ¼ expð�ap=bÞ; ð8bÞ

and

n ¼ 1�-
1þ-

� �
; ð8cÞ

and conclude that

cn > 1) two zeros 3 ½�1;1� ð9aÞ

and

cn 6 1) no zeros: ð9bÞ

We note that in the event that cn ¼ 1 in Eq. (9b), we have
KþðnÞ ¼ K�ð�nÞ ¼ 0, n 2 ð0;1Þ, for any non-zero ratio of a=b. In
addition, we find that the dispersion function KðzÞ has no zeros
for a 6 0 and that the endpoints �1 cannot be zeros of KðzÞ.

3. An analytical expression for m0

We now assume that the condition given by Eq. (9a) is satisfied
and look for an analytical expression for m0, keeping in mind that
�m0 is the companion eigenvalue. We write

log½KþðxÞ=K�ðxÞ� ¼ ln jKþðxÞ=K�ðxÞj þ iHðxÞ; ð10Þ

where

HðxÞ ¼ HþðxÞ �H�ðxÞ: ð11Þ

Clearly, HðxÞ 2 ½0;2p� for x 2 ð0;1Þ since H�ð0Þ ¼ 0 and
H�ð1Þ ¼ �pþ arctanðb=aÞ.

Once a Wiener–Hopf factorization of KðzÞ is established along
the lines of previous works (Case, 1960; Siewert, 1980), we obtain

ðm2
0 � z2ÞKð1ÞXðzÞXð�zÞ ¼ KðzÞ; ð12Þ

where

XðzÞ ¼ 1
1� z

exp
1

2pi

Z 1

0
½ln jKþðxÞ=K�ðxÞj þ iHðxÞ� dx

x� z

� �
ð13Þ

is the X-function used by Muskhelishvili (1953) and Case (1960).
We can now solve Eq. (12) to get

m0 ¼ z2 þ KðzÞ
ð1� cÞXðzÞXð�zÞ

� �1=2

: ð14Þ

We note that Eq. (14) is an identity in the complex z plane and so,
since the right-hand side of Eq. (14) depends only on c and z, that
equation gives an explicit expression for m0 for any value of z. A
particularly simple expression for m0 can be found by taking the
limit of z!1 in Eq. (14). We find

m0 ¼
3� 2c

3ð1� cÞ þ
i
p

Z 1

0
x½ln jKþðxÞ=K�ðxÞj þ iHðxÞ�dx

� �1=2

: ð15Þ
We have evaluated Eqs. (14) and (15) to obtain easily confirmed
correct results, a sample of which is listed in the accompanying
table. In order to generate the accurate results reported in Table 1,
we have used Eqs. (14) and (15) with a low-order (say 80 quadra-
ture points) Gaussian scheme to generate (Fortran) results good to
five or six figures that provide sufficiently accurate results to start
a numerical iteration computation. Two different iteration
schemes have been successfully implemented: in addition to the
usual Newton scheme based on KðzÞ, we have replaced z in Eq.
(14) with m0 thereby defining an equation with only m0 to be
deduced by iteration. Both schemes achieved convergence to
15-digit accuracy after two or three iterations. Finally, a simple
check of our numerical results was performed by evaluating the
integral of Eq. (1) analytically, taking z ¼ m0 and expressing c in
terms of m0 in the resulting equation. Then, we confirmed that
the values of c in Table 1 can be recovered from the corresponding
values of m0 in that table.

4. Concluding remarks

Finally, a comment about Eq. (9b) when the equality holds. In
contrast to the finding of Bowden and Williams (1964), we find
that there are no zeros of KðzÞ embedded in the continuum
½�1;1�. While KþðxÞ has a zero at x ¼ n and K�ðxÞ has a zero at
x ¼ �n, the two limiting values K�ðxÞ do not have zeros at the same
value of x, and so KðzÞ does not exist on the cut ½�1;1�; clearly then,
KðzÞ cannot have a zero there on the cut. This situation can be con-
trasted with work reported by Siewert (1977) and Arthur et al.
(1977) where the boundary values of the dispersion function do
have zeros at a common point on the relevant branch cut, and so
in that case (Siewert, 1977; Arthur et al., 1977) the dispersion
function does have a zero embedded in the continuum.
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