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Abstract — The long-standing problem of implementing the PN method effectively for spherical geometry
is revisited in this work. It is shown that a least-squares approach to the method resolves to a great extent
the numerical instability reported for the first time by Aronson in 1984. In the proposed version of the
method, a small loss of accuracy is still observed for intermediate orders of the approximation, but in high
order (typically N ! 199), full accuracy is recovered, and the method can be used with confidence even for
extremely high orders of the approximation. Numerical results of benchmark quality are tabulated for the
quantities of interest for two basic transport problems in spherical geometry: the albedo problem for a
sphere and the critical-sphere problem, both including cases that show the effects of scattering anisotropy
described by the binomial law.

Keywords — Neutron transport, spherical geometry, spherical harmonics method.

I. INTRODUCTION

The PN method for solving transport problems in
spherical geometry has attracted much attention along
the years because of its simplicity and ability of
treating, in an analytical way, the angular redistribu-
tion operator for spherically symmetric systems. In a
paper published in 1947, Marshak1 worked out the P1

and P3 approximations to the extrapolation distance
(into an inner black sphere) for a purely scattering
outer shell with external radius extending to infinity
and reported numerical results obtained from the P1,
P3, and P5 approximations. Some years later, Davison
included, as a chapter of his important book,2 a deri-
vation of the PN method in spherical geometry for any
order of the approximation. Davison’s work focused
on the theoretical aspects of the method. The numer-
ical aspects of the method remained relatively unex-
plored until the mid-1980s, when Aronson3,4 showed

that the PN method with either Marshak1 or
Federighi5 boundary conditions becomes numerically
unstable for sufficiently large values of N when used
to study neutron transport in spheres. Furthermore,
Aronson observed that the onset of instability depends
on the value of the radius of the sphere, occurring
earlier (i.e., for lower values of N) the smaller the
radius. In one of those papers3 source-driven pro-
blems are considered, while in the other4 the focus
is on critical problems.

Shortly thereafter, two of the authors (CES and JRT)
confirmed Aronson’s observations for Marshak boundary
conditions and found that singular-value decomposition
(SVD) could be used to obtain improved numerical
results from the PN method with Marshak boundary con-
ditions for spheres. However, it was concluded that even
using SVD did not help in obtaining reference-quality
results for cases defined by small radii or cases where
large values of N were required. At that time (1985), this
difficulty was attributed to the fact that small singular
values kept appearing as N was increased in the*E-mail: rdmgarcia@uol.com.br
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calculations performed for such cases. However, in light
of the present work, we now know that such a limitation
could have been overcome by a judicious choice of the
threshold below which a column of the matrix to be
decomposed is discarded in SVD.

In this work, we show how a least-squares approach to
the PN method for spheres can be used to resolve, to a
great extent, the instability problem reported by Aronson.
In our implementation of the method, a small loss of
accuracy is still observed for intermediate orders of the
approximation, but in high order full accuracy is recov-
ered, and the method can be used with confidence even for
extremely high orders of the approximation. For example,
in order to test the numerical limits of our solutions, we
have gone as far as N ¼ 30999 in FORTRAN double
precision (DP) (approximately 16 decimal digits) when
solving the problem studied in Sec. III and N ¼ 26999
when solving the problem studied in Sec. IV.

With regard to solution methods, we note that in the
past there have been two approaches used to solve, in a
spatially continuous way, neutron transport or radiative
transfer problems in spheres: (1) converting the integro-
differential equation to an integral equation and making
expansions in the spatial variable6,7 and (2) recasting the
original problem to a pseudo problem8 that could be
solved with classical methods, for example, the FN

method9–12 or the PN method.13,14 However, both of
the mentioned approaches are severely limited in that
highly anisotropic scattering laws and/or reflective
boundary conditions cannot be (or at least have not
been shown to be) solvable by these methods. For
example, the process of converting the integro-differen-
tial equation for a sphere to an integral form leads not to
a single equation but to a set (of the order of the
scattering law) of integral equations—a hopeless situa-
tion for many-term scattering laws. The conversion of
the original problem to a pseudo problem seems a rare
miracle that has not been developed for anything but the
simplest of problems. And so the current work is, to our
knowledge, the first one that gives a procedure capable
of yielding spatially and angularly continuous solutions
for a very broad class of neutron transport and radiative
transfer problems in spherical media and can accommo-
date, without any additional effort, anisotropic scattering
of arbitrary order.

II. THE PN METHOD IN SPHERICAL GEOMETRY

We consider the one-speed neutron transport equa-
tion for spherically symmetric systems, written as

μ
@

@r
ψðr; μÞ þ 1& μ2

r
@

@μ
ψðr; μÞ þ ψðr; μÞ

¼ c
2

XL

l¼0

ð2l þ 1ÞflPlðμÞ
ð1

&1
Plðμ0Þψðr; μ0Þdμ0 ; ð1Þ

where ψðr; μÞ is the angular flux, r is the radial dis-
tance measured in mean free paths from the origin, and
μ ¼ Ω ' er, with Ω and er denoting unit vectors,
respectively, in the direction of neutron motion and in
the radial direction. In addition, c is the mean number
of secondary neutrons per collision and flf g, with f0 ¼
1, are the coefficients of a truncated expansion of the
scattering law in terms of the Legendre polynomials
Plðμ0Þf g, with μ0 denoting the cosine between the

directions of neutron motion before and after a scatter-
ing event.

Introducing the PN approximation

ψðr; μÞ ¼ 1
2

XN

n¼0

ð2nþ 1ÞϕnðrÞPnðμÞ ð2Þ

with N odd into Eq. (1) and using some properties of the
Legendre polynomials, we obtain the following set of
ordinary differential equations for the Legendre moments
ϕnðrÞf g:

ðnþ 1Þ d
dr

þ nþ 2
r

" #
ϕnþ1ðrÞ

þ n
d
dr

& n& 1
r

" #
ϕn&1ðrÞ þ hnϕnðrÞ ¼ 0 ð3Þ

for n = 0, 1, …, N. Here,

hn ¼
ð2nþ 1Þð1& cfnÞ; n ¼ 0; 1; . . . ;L;
2nþ 1; n ¼ Lþ 1; Lþ 2; . . . ;N :

$

ð4Þ

We note that for isotropic scattering (L ¼ 0) Eq. (3)
reduces to the set of differential equations studied by
Davison2 and by Case and Zweifel.15 Since our way of
finding the solutions of Eq. (3) differs somewhat from
that of Davison2 and the notations are slightly different,
we include some details of our derivation in the
Appendix.

As shown in the Appendix, the general solution of
Eq. (3) can be written as
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ϕnðrÞ ¼
XJ

j¼1

eAjknðr=!jÞ þ ð&1ÞneBjinðr=!jÞ
h i

gnð!jÞ ;

ð5Þ

for n = 0, 1, ..., N. Here, inðzÞ and knðzÞ are, respectively,
the modified spherical Bessel functions of the first and
third kinds,16 gnð!Þ is the polynomial introduced by
Chandrasekhar,17 !j

% &
are the PN eigenvalues (see the

Appendix for details), and feAjg and feBjg are unknown
coefficients to be determined.

Finally, an explicit expression for thePN approximation
to the angular flux is obtained by substituting Eq. (5) into
Eq. (2). We get

ψðr; μÞ ¼ 1
2

XN

n¼0

ð2nþ 1ÞPnðμÞ
XJ

j¼1

"
eAjknðr=!jÞ

þð&1ÞneBjinðr=!jÞ
#
gnð!jÞ :

ð6Þ

III. A SPHERE SUBJECT TO EXTERNAL NEUTRON
INCIDENCE

In this section, we consider the problem of a sphere
of radius R and c ( 1 subject to a known distribution of
incoming neutrons on its surface.

III.A. Formulation

The problem is formulated by Eq. (1) for r 2 ð0;RÞ
and μ 2 ½&1; 1* and the conditions

ψðR;&μÞ ¼ f ðμÞ; ð7aÞ

for μ ∈ (0,1], and

lim
r!0

ψðr; μÞ < 1; ð7bÞ

for μ ∈ [ – 1,1]. The last condition is just a mathematical
statement of the fact that the solution of this problem is
not expected to diverge at the center of the sphere.

The quantity of most interest for this problem is the
albedo (or reflection factor)

A+ ¼
ð1

0
μψðR;&μÞdμ

" #&1ð1

0
μψðR; μÞdμ : ð8Þ

To satisfy the condition specified by Eq. (7b), we see
that we have to take eAj ¼ 0 in Eq. (6) since the functions
knðzÞ diverge at the origin.16 Thus, the PN solution for
this problem reduces to

ψðr; μÞ ¼ 1
2

XN

n¼0

ð&1Þnð2nþ 1ÞPnðμÞ

,
XJ

j¼1

Bj"nðr=!j : R=!jÞgnð!jÞ ;
ð9Þ

where to avoid possible overflows in the computational
implementation of the solution and to improve the numer-
ical robustness of the method, we have chosen to work
with the iota-ratios,

"nðx : yÞ ¼ inðxÞ=i0ðyÞ; x ( y and y > 0 ; ð10Þ

for n = 0, 1, …, N, rather than with the inðxÞf g functions
themselves, and we have rescaled the feBjg coefficients
that appear in Eq. (6) so that

Bj ¼ eBji0ðR=!jÞ ; ð11Þ

for j = 1, 2, … , J. Clearly, since i0(0) = 1 and in(x) < i0(x)
with in(0) = 0 for n ≥ 1 (Ref. 16), we have 0 ( "nðr=!j :
R=!jÞ ( 1 for n ¼ 0; 1; . . . ;N.

As mentioned in the Appendix, a slight modification in
the foregoing procedure is required for handling the conser-
vative case c ¼ 1. We note that the first few Chandrasekhar
polynomials become the following for c ¼ 1:

g0ð!Þ ¼ 1 ; ð12aÞ

g1ð!Þ ¼ 0 ; ð12bÞ

and

g2ð!Þ ¼ & 1
2
: ð12cÞ

Considering the recurrence relation given by Eq. (A.7) in
the Appendix for n ¼ 2; 3; . . . ;N, along with the initial
values given by Eqs. (12b) and (12c), we can see that
gNþ1ð!Þ is a polynomial of degree N & 1 in ! when c ¼ 1.
Therefore, in this case, gNþ1ð!Þ has only J & 1 positive
zeros that we denote as !j, j ¼ 2; 3; . . . ; J . The missing
solution that corresponds to !1 is replaced by an exact
solution of Eq. (1) that is bounded as r ! 0. Such a
solution can be easily seen to be a constant, and so Eq.
(9) becomes the following for c ¼ 1:
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ψðr; μÞ ¼ 1
2
B1 þ

1
2

XN

n¼0

ð&1Þnð2nþ 1ÞPnðμÞ

,
XJ

j¼2

Bj"nðr=!j : R=!jÞgnð!jÞ : ð13Þ

Now, the incidence condition specified by Eq. (7a)
yields, if c < 1,

XN

n¼0

ð2nþ 1ÞPnðμÞ
XJ

j¼1

Bj"nðR=!j : R=!jÞgnð!jÞ ¼ 2f ðμÞ

ð14aÞ

and, if c ¼ 1,

B1 þ
XN

n¼0

ð2nþ 1ÞPnðμÞ
XJ

j¼2

Bj"nðR=!j : R=!jÞgnð!jÞ ¼ 2f ðμÞ ;

ð14bÞ

for μ ∈ (0,1]. We note that the result expressed by Eq.
(14b) can also be obtained by letting !1 ! 1 in Eq.
(14a).

Clearly, Eqs. (14a) and (14b) can only be satisfied in an
approximate way by the PN method. In this work, we study
three simple ways of generating approximate PN boundary
conditions from Eqs. (14a) and (14b): the shifted-Legendre
(SL) projection scheme introduced for plane-geometry pro-
blems byGarcia and Siewert18 and the well-knownMarshak1

and Mark19 projection schemes.

III.B. Solution Using the SL Projection Scheme

For the SL projection scheme, we multiply Eqs. (14a)
and (14b) by Pαð2μ& 1Þ; for α ¼ 0; 1; . . . ;N ; and inte-
grate the resulting equations over μ from 0 to 1 to obtain,
if c < 1,

XJ

j¼1

Bj

XN

n¼α

ð2nþ 1ÞCα;n"nðR=!j : R=!jÞgnð!jÞ ¼ 2Fα

ð15aÞ

and, if c ¼ 1,

B1δα;0 þ
XJ

j¼2

Bj

XN

n¼α

ð2nþ 1ÞCα;n"nðR=!j : R=!jÞgnð!jÞ ¼ 2Fα ;

ð15bÞ

for α = 0,1, … , N. Here, δα;0 is the Kronecker delta, and
we have used the definitions

Cα;n ¼
ð1

0
Pαð2μ& 1ÞPnðμÞdμ ð16Þ

and

Fα ¼
ð1

0
Pαð2μ& 1Þf ðμÞdμ : ð17Þ

We recall that the SL projection scheme generates
twice as many equations than unknowns,18 and so the
resulting overdetermined systems of linear algebraic equa-
tions that are expressed by Eqs. (15a) and (15b) have to be
solved in a least-squares sense for the Bj

% &
coefficients.

Finally, once we have determined the Bj
% &

constants
by solving either Eq. (15a) or Eq. (15b), depending on the
case, we can immediately find the PN approximation to
the angular flux from either Eq. (9) or Eq. (13). In
addition, a PN approximation to the albedo A+ defined
by Eq. (8) can be computed from

AN ¼ 1&
ð1

0
μf ðμÞdμ

" #&1XJ

j¼js

Bj"1ðR=!j : R=!jÞg1ð!jÞ ;

ð18Þ

where js ¼ 1 for c < 1 and js ¼ 2 for c ¼ 1. For c ¼ 1, we
know from the physics of the problem that A+ ¼ 1; and
noting that g1ð!Þ ; 0, we can see that Eq. (18) yields
AN ¼ 1 for all N .

III.C. Solution Using the Marshak Projection Scheme

For the Marshak projection scheme,1 we multiply
Eqs. (14a) and (14b) by P2α&1ðμÞ; for α ¼ 1; 2; . . . ; J ;
and integrate the resulting equations over μ from 0 to 1 to
obtain, if c < 1,

XJ

j¼1

Bj

XN

n¼0

ð2nþ 1ÞSα;n"nðR=!j : R=!jÞgnð!jÞ ¼ 2Gα

ð19aÞ

and, if c ¼ 1,

B1Sα;0 þ
XJ

j¼2

Bj

XN

n¼0

ð2nþ 1ÞSα;n"nðR=!j : R=!jÞgnð!jÞ ¼ 2Gα ;

ð19bÞ
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for α = 1,2, … , J. Here, we have defined

Sα;n ¼
ð1

0
P2α&1ðμÞPnðμÞdμ ð20Þ

and

Gα ¼
ð1

0
P2α&1ðμÞf ðμÞdμ : ð21Þ

Equations (19) are systems of J linear algebraic equa-
tions to be solved for the J unknowns Bj

% &
. Once these

coefficients are available, we can find the PN approximation
to the angular flux from either Eq. (9) if c < 1 or Eq. (13) if
c ¼ 1. In addition, as for the SL scheme, a PN approxima-
tion to the albedo A+ can be computed from Eq. (18).

III.D. Solution Using the Mark Projection Scheme

The projection scheme for obtaining the Mark bound-
ary conditions19 can be formulated by multiplying Eqs.
(14a) and (14b) by the Dirac delta distribution δðμ& μαÞ,
where μα, α ¼ 1; 2; . . . ; J , are the positive zeros of the
Legendre polynomial PNþ1ðμÞ, and integrating the result-
ing equations over μ from 0 to 1. We get, if c < 1,

XJ

j¼1

Bj

XN

n¼0

ð2nþ 1ÞPnðμαÞ"nðR=!j : R=!jÞgnð!jÞ ¼ 2f ðμαÞ

ð22aÞ

and, if c ¼ 1,

B1 þ
XJ

j¼2

Bj

XN

n¼0

ð2nþ 1ÞPnðμαÞ"nðR=!j : R=!jÞgnð!jÞ ¼ 2f ðμαÞ ;

ð22bÞ

for α ¼ 1; 2; . . . ; J. Equations (22) are systems of J linear
algebraic equations to be solved for the J unknowns Bj

% &
.

III.E. Computational Methods

We now discuss briefly the computational methods
used in our FORTRAN implementation of the solutions
developed in Secs. III.B, III.C, and III.D.

With the help of a three-term recurrence relation invol-
ving only the even Chandrasekhar polynomials and the clo-
sure relation gNþ1ð!Þ ¼ 0, it has been shown20 that the PN

eigenvalues !j
% &

are given by the square roots of the eigen-
values of a special tridiagonal matrix of order J. In this work,

subroutines FIGI and IMTQL1 from EISPACK (Ref. 21)
were used for computing the squares of the PN eigenvalues.

The Chandrasekhar polynomials gnð!jÞ
% &

were
computed as discussed in Ref. 22 except that the start-
ing ratio for backward recurrence when !j > 1 was
taken to be gNþ1ð!jÞ=gNð!jÞ ¼ 0. It should be men-
tioned that the need for solving a linear system when
!j > 1 does not show up in this work since the problem
we are solving here is azimuthally symmetric, and as
mentioned in Ref. 22 backward recurrence is sufficient
in such a case.

In order to compute the iota-ratios defined by Eq.
(10), we have used backward recurrence, which is known
to be the stable way of computing the modified spherical
Bessel functions of the first kind.3 To describe our pro-
cedure, we define

ρnðxÞ ¼ "nþ1ðx : yÞ="nðx : yÞ ¼ inþ1ðxÞ=inðxÞ; ð23Þ

for n = 0,1, …, divide the three-term recurrence relation
involving in&1ðxÞ, inðxÞ, and inþ1ðxÞ by inðxÞ, and rear-
range the resulting equation to obtain

ρn&1ðxÞ ¼ ð2nþ 1Þ=x& ρnðxÞ½ *&1 : ð24Þ

We begin the calculation by using Eq. (24) for
n ¼ N þM ;N þM & 1; . . . ;N þ 1, where M > 1 is
arbitrary (we used M ¼ 20 in our program), with
starting value ρNþMðxÞ arbitrarily set to zero, and
store the value obtained for ρNðxÞ. Next, we increase
the value of M , repeat the calculation, and compare
the value obtained for ρNðxÞ with that of the previous
step. We keep increasing M and repeating the calcula-
tion until we get convergence in the value of ρNðxÞ to
working precision (for example, 16 decimal digits
when using DP). Once convergence is achieved, we
use Eq. (24) for n ¼ N ;N & 1; . . . ; 1 to compute the
remaining rho-ratios. The desired iota-ratios are then
given by

"0ðx : yÞ ¼
ðy=xÞe&ðy&xÞ 1&e&2x

1&e&2y

' (
; x > 0 ;

2ye&y

1& e&2y ; x ¼ 0 ;

8
><

>:
ð25aÞ

and

"nþ1ðx : yÞ ¼ ρnðxÞ"nðx : yÞ; ð25bÞ

for n = 0,1, …, N – 1.

PN METHOD FOR SPHERES · GARCIA et al. 107

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 186 · MAY 2017



The constants Cα;n
% &

and Sα;n
% &

defined by Eqs. (16)
and (20), respectively, were generated accurately and
efficiently with recurrence schemes reported in previous
works.18,20 In this regard, we note that Eq. (25b) of Ref.
20 should be used only for even values of l, i.e.,
l ¼ 0; 2; 4; . . . ;N & 3.

Finally, the linear systems defined by Eqs. (15),
(19), and (22) were solved using three different techni-
ques: Gaussian elimination, QR decomposition, and
SVD. In the case of the SL projection scheme, the
linear system is overdetermined (N , J ), and so, to
apply Gaussian elimination, we used a least-squares
formulation with equal weights that yields a set of J
normal equations for the J unknowns.18 On the other
hand, the linear systems obtained from the Marshak and
Mark projection schemes are square (J , J ), and so
Gaussian elimination was applied directly on those
systems. Solutions by Gaussian elimination were
obtained with subroutines DGECO and DGESL from
LINPACK (Ref. 23). Concerning the other more power-
ful (and more expensive) solution techniques, we note
that the least-squares solutions based on the QR decom-
position were obtained with subroutine DQRST from
LINPACK, while the least-squares solutions based on
SVD were obtained with subroutine MINFIT from
EISPACK (Ref. 24); another SVD implementation (sub-
routine DSVDC from LINPACK) was tried with similar
results.

III.F. Numerical Results and Discussion

We begin this section by reporting in Tables I, II,
and III our numerical results for several orders of the PN

approximation to the albedo, as defined by Eq. (18), for
the most difficult case considered in Table I of the work
by Aronson3 [c ¼ 0:9, R ¼ 0:5, L ¼ 0, and f ðμÞ ¼ μ],
and we use that case to compare the performance of the
studied projection schemes and linear-equation solvers.
The reference results reported in Tables I, II, and III
were obtained with the use of SVD in quadruple preci-
sion (QP) (approximately 32 decimal digits of precision)
and confirmed with QR decomposition, also in QP.
These results are thought to be accurate to within - 1
in the seventh significant figure, except the results for
29 ( N ( 199 in Table III, which may have larger
deviations in the seventh figure.

In Table I, which shows the results obtained for the
SL projection scheme, we can see that all three ways of
solving the linear system—Gaussian elimination on the
normal equations (GENE), QR decomposition, and SVD
—give at least five significant figures of accuracy in DP,

with the last two ways being slightly more accurate. It
should be mentioned that the criterion used to report the
number of figures of the double-precision results in all
the tables of this work was agreement with the reference
results to within - 2 in the last figure, unless otherwise
noted. Also, in this section, the thresholds that have to be
given as inputs to the QR and SVD solvers were taken to
be equal to the square root of the number of rows times
10&14 for double-precision calculations (times 10&30 for
quadruple-precision calculations).

In Tables II and III, which show the results obtained
for the Marshak and Mark projection schemes, respec-
tively, we can see that the Gaussian elimination results in
double precision (GE-DP) become inaccurate for N ¼ 15.
The use of QP does not help much, as the results become
inaccurate for N ¼ 29. A moderate, but still insufficient,
improvement in the accuracy (i.e., from one or no sig-
nificant figure to three significant figures) was observed
when full pivoting routines (LAPACK subroutines
DGETC2 and DGESC2) were used. On the other hand,
QR-DP and SVD-DP perform better, yielding at least six
significant figures in the Marshak scheme and five fig-
ures in the Mark scheme.

A general trend that is apparent in Tables I, II, and III is
that the GENE-DP, QR-DP, and SVD-DP results become less
accurate for intermediate values of N and eventually recover
full accuracy asN is increased pastN ¼ 199. In trying to find
an explanation for this numerical behavior, we have observed
that the columns that are disregarded in the QR calculations

TABLE I

The Albedo AN for a Sphere with c ¼ 0:9, R ¼ 0:5, L ¼ 0,
and f ðμÞ ¼ μ: Results from the SL Projection Scheme

N
GENE-
DP QR-DP SVD-DP Reference

1 0.9513281 0.9513281 0.9513281 0.9513281
3 0.9288570 0.9288570 0.9288570 0.9288570
5 0.9288822 0.9288822 0.9288822 0.9288822
7 0.9289371 0.9289371 0.9289371 0.9289371
9 0.92894 0.9289582 0.9289582 0.9289582
11 0.92895 0.9289669 0.9289670 0.9289670
13 0.92896 0.92897 0.92897 0.9289712
15 0.92896 0.92897 0.92897 0.9289733
17 0.92896 0.92897 0.92897 0.9289745
19 0.92896 0.928973 0.92897 0.9289752
29 0.92897 0.92897 0.92897 0.9289757
39 0.92897 0.928974 0.928974 0.9289760
99 0.928975 0.928976 0.928976 0.9289765

199 0.928976 0.9289764 0.928976 0.9289766
399 0.9289765 0.9289766 0.9289766 0.9289767
799 0.9289767 0.9289767 0.9289767 0.9289767
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correspond, preferentially, to the modes related to the PN

eigenvalues !j in the interval ð0; 1Þ that are closest to the
end-point one. Noting that for !j 2 ð0; 1Þ the argument R=!j

of the modified spherical Bessel functions of the first kind is
closest to zero when !j ! 1, we have concluded that the
nearly linear dependence of some columns is nothing more

TABLE II

The Albedo AN for a Sphere with c ¼ 0:9, R ¼ 0:5, L ¼ 0, and
f ðμÞ ¼ μ: Results from the Marshak Projection Scheme

N GE-DP GE-QP QR-DP SVD-DP Reference

1 0.9357939 0.9357939 0.9357939 0.9357939 0.9357939
3 0.9294310 0.9294310 0.9294310 0.9294310 0.9294310
5 0.9290687 0.9290687 0.9290687 0.9290687 0.9290687
7 0.9290061 0.9290061 0.9290061 0.9290061 0.9290061
9 0.9289888 0.9289888 0.9289888 0.9289888 0.9289888
11 0.9289826 0.9289826 0.9289826 0.9289826 0.9289826
13 0.9289 0.9289799 0.928980 0.928980 0.9289799
15 0.92 0.9289786 0.9289787 0.9289787 0.9289786
17 0.9 0.9289779 0.928980 0.928978 0.9289779
19 0.91 0.9289775 0.928978 0.9289777 0.9289775
29 0.9 0.9 0.928976 0.928976 0.9289769
39 0.9 0.9 0.928976 0.928976 0.9289767
99 — 0.928 0.928976 0.928976 0.9289767

199 0.92 0.9 0.9289765 0.9289765 0.9289767
399 0.9 1.0 0.928976 0.9289767 0.9289767
799 1.0 0.927 0.9289767 0.9289768 0.9289768

TABLE III

The Albedo AN for a Sphere with c ¼ 0:9, R ¼ 0:5, L ¼ 0, and
f ðμÞ ¼ μ: Results from the Mark Projection Scheme

N GE-DP GE-QP QR-DP SVD-DP Reference

1 0.9441557 0.9441557 0.9441557 0.9441557 0.9441557

3 0.9298588 0.9298588 0.9298588 0.9298588 0.9298588

5 0.9291638 0.9291638 0.9291638 0.9291638 0.9291638

7 0.9290391 0.9290391 0.9290391 0.9290391 0.9290391

9 0.9290032 0.9290032 0.9290032 0.9290032 0.9290032

11 0.9289899 0.9289899 0.9289899 0.9289899 0.9289899

13 0.9289 0.9289840 0.92899 0.92899 0.9289840

15 0.927 0.9289811 0.92899 0.92897 0.9289811

17 0.93 0.9289795 0.928978 0.92898 0.9289795

19 0.94 0.9289786 0.928978 0.928978 0.9289786

29 0.9 0.9290 0.92897 0.92897 0.9289774

39 0.92 0.930 0.92898 0.92898 0.9289775

99 0.94 0.9290 0.92898 0.92898 0.9289768

199 0.92 0.93 0.928978 0.928978 0.9289770

399 0.94 0.930 0.928977 0.9289766 0.9289768

799 — 1.0 0.9289767 0.9289769 0.9289768
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than a manifestation of a loss of information because all of
the modified spherical Bessel functions of the first kind
(except the first) go to zero when the argument goes to
zero. A similar, but less specific, observation in this direc-
tion has been given by Sahni and Sharma.25 We believe the
reason why themethod becomes less accurate for intermedi-
ate values of N is that the troublesome modes, which are
considered in the GENE-DP calculation and eliminated
from the QR and SVD calculations, are relatively more
important in that range of N and become less important as
N is increased. Finally, considering also other cases that we
tried, we have concluded that theMarshak scheme and SVD
are the best choices in terms of accuracy for albedo calcula-
tions, when using DP.

In Table IV, we show the effect of varying the value
of c in Aronson’s most difficult case. We can see that
the deviations of the SVD-DP results with respect to
those of SVD-QP are slightly larger for low values of c,
but we get at least five significant figures of accuracy.
The SVD-QP results reported in Table IV are thought to
be accurate to within - 1 in the seventh significant

figure, except the results for 29 ( N ( 199, which
may have larger deviations in the last figure.

In Table V, we give an answer to the natural question
to be asked at this point: What happens if the radius of the
sphere is reduced in Aronson’s most difficult case? We can
see in Table V that the SVD-DP implementation of the
Marshak scheme yields at least five significant figures of
accuracy for values of R as small as 5:0, 10&4. To be
sure of the good behavior of SVD-DP for cases defined by
very small radii, we have reduced R even further (down to
5:0, 10&9), with good results.

In Table VI, we tabulate our converged results for the
albedo, obtained for different scattering orders (different
values of L) in a synthetic kernel26 that is known as the
binomial law and is defined by

pðμ0Þ ¼
Lþ 1
2L

ð1þ μ0Þ
L

¼
XL

l¼0

ð2l þ 1ÞflPlðμ0Þ ; ð26Þ

TABLE IV

The Albedo AN for Spheres with R ¼ 0:5, L ¼ 0, f ðμÞ ¼ μ, and Various Values of c: Results from the Marshak Projection Scheme

N

c ¼ 0:1 c ¼ 0:3 c ¼ 0:7

SVD-DP SVD-QP SVD-DP SVD-QP SVD-DP SVD-QP

1 0.5536237 0.5536237 0.6319142 0.6319142 0.8206124 0.8206124

3 0.5221872 0.5221872 0.6039630 0.6039630 0.8044680 0.8044680

5 0.5198695 0.5198695 0.6020075 0.6020075 0.8034743 0.8034743

7 0.5194562 0.5194562 0.6016627 0.6016627 0.8033019 0.8033019

9 0.5193428 0.5193428 0.6015681 0.6015681 0.8032544 0.8032544

11 0.519303 0.5193022 0.601534 0.6015342 0.8032376 0.8032374

13 0.51929 0.5192849 0.601522 0.6015198 0.803231 0.8032301

15 0.519278 0.5192766 0.601514 0.6015128 0.803227 0.8032266

17 0.519270 0.5192722 0.601508 0.6015091 0.803224 0.8032247

19 0.519268 0.5192697 0.601506 0.6015070 0.803222 0.8032236

29 0.51926 0.5192657 0.60150 0.6015036 0.80322 0.8032219

39 0.51926 0.5192646 0.60150 0.6015027 0.803219 0.8032214

99 0.519262 0.5192642 0.601501 0.6015024 0.803220 0.8032213

199 0.519264 0.5192645 0.601502 0.6015026 0.803221 0.8032214

399 0.5192645 0.5192647 0.6015026 0.6015028 0.8032214 0.8032215

799 0.5192648 0.5192649 0.6015029 0.6015029 0.8032215 0.8032216
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where the Legendre coefficients flf g can be computed
exactly by recurrence with f0 ¼ 1 and27

fl ¼
Lþ 1& l
Lþ 1þ l

) *
fl&1; ð27Þ

for l = 1,2, … , L. Note that for l > L all fl ¼ 0. The
binomial law describes scattering that becomes more and
more pronounced in the forward direction as L is increased.
Indeed, it is easy to see that Eq. (26) reduces to pðμ0Þ ¼
δðμ0 & 1Þ in the limit of L ! 1. The results reported in
Table VI are thought to be accurate in all figures shown and
were obtained with N between 9999 and 12999 (depending
on the case) in the SVD-DP implementation of the Marshak
projection scheme.

To close this section, we report in Table VII our
converged results, from the SVD-DP implementation
of the Mark projection scheme, for the scalar flux and
current for different scattering orders in the binomial
law. The Mark projection scheme was found to con-
verge faster than the Marshak projection scheme for
these quantities. The results in Table VII are thought
to be accurate to within - 1 in the last significant
figure and were obtained with N between 5999 and
8999.

IV. THE CRITICAL-SPHERE PROBLEM

We consider in this section the problem of finding the
critical radius of a sphere. We assume isotropic fission

TABLE V

The Albedo AN for Spheres of Very Small Radii with c ¼ 0:1, L ¼ 0,
and f ðμÞ ¼ μ: Results from the Marshak Projection Scheme

R ¼ 0:05 R ¼ 0:005 R ¼ 0:0005

N SVD-DP SVD-QP SVD-DP SVD-QP SVD-DP SVD-QP

1 0.9417730 0.9417730 0.9940180 0.9940180 0.9994002 0.9994002
3 0.9351881 0.9351881 0.9933044 0.9933044 0.9993282 0.9993282
5 0.9349381 0.9349381 0.9932798 0.9932799 0.9993257 0.9993258
7 0.9348992 0.9348992 0.9932761 0.9932760 0.999325 0.9993254
9 0.934890 0.9348889 0.993274 0.9932750 0.999324 0.9993253
11 0.934884 0.9348853 0.993273 0.9932747 0.999324 0.9993253
13 0.93488 0.9348837 0.993273 0.9932745 0.999324 0.9993252
15 0.93488 0.9348831 0.993272 0.9932743 0.999324 0.9993252
17 0.93488 0.9348826 0.993272 0.9932742 0.999324 0.9993252
19 0.93487 0.9348822 0.993272 0.9932741 0.999324 0.9993252
29 0.93488 0.9348816 0.99327 0.9932742 0.999325 0.9993252
39 0.93488 0.9348813 0.99327 0.9932741 0.999325 0.9993252
99 0.934879 0.9348813 0.993273 0.9932742 0.999325 0.9993252
199 0.934881 0.9348815 0.993273 0.9932742 0.999325 0.9993252
399 0.934881 0.9348817 0.993274 0.9932742 0.999325 0.9993252
799 0.934881 0.9348818 0.993274 0.9932743 0.9993251 0.9993252

TABLE VI

The Albedo AN of a Sphere with c ¼ 0:9 and f ðμÞ ¼ μ for Various Values of R
and L: Converged Results from the Marshak Projection Scheme and SVD-DP

L R ¼ 0:5 R ¼ 1:0 R ¼ 2:0 R ¼ 5:0 R ¼ 10:0

0 0.928976774 0.865988724 0.763665725 0.601315927 0.525253388
19 0.928166035 0.862329721 0.746796144 0.501712998 0.300160401
49 0.928028748 0.861796323 0.744777309 0.490944641 0.269136825
99 0.927975803 0.861588216 0.743977756 0.486654546 0.256728392

199 0.927947713 0.861477183 0.743547352 0.484312916 0.249903725
299 0.927938088 0.861439040 0.743398831 0.483497603 0.247507970
399 0.927933225 0.861419745 0.743323570 0.483082848 0.246283733
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and anisotropic scattering, and so, we take the parameter
c in Eq. (1) to be known and given by

c ¼
νσf þ σs

σ
> 1 ; ð28Þ

where σf , σs, σ are, respectively, the fission, scattering,
and total cross sections and ν is the mean number of
neutrons emitted per fission event. We note that to take

into account scattering anisotropy in the presence of iso-
tropic fission, the Legendre coefficients flf g of the scat-
tering law must be multiplied by cs=c, where cs ¼ σs=σ,
for l ! 1, prior to being used in Eq. (1).

IV.A. Formulation

The problem is formulated by Eq. (1) subject to

TABLE VII

The Scalar Flux ϕ0ðrÞ and the Current ϕ1ðrÞ for a Sphere with c ¼ 0:9, R ¼ 0:5,
and f ðμÞ ¼ μ: Converged Results from the Mark Projection Scheme and SVD-DP

L ¼ 0 L ¼ 19 L ¼ 399

r=R ϕ0ðrÞ & ϕ1ðrÞ ϕ0ðrÞ & ϕ1ðrÞ ϕ0ðrÞ & ϕ1ðrÞ

0.0 1.7875 0.0 1.8760 0.0 1.9010 0.0
0.1 1.7831 2.9748(–3)a 1.8703 3.1210(–3) 1.8950 3.1623(–3)
0.2 1.7700 5.9234(–3) 1.8531 6.2077(–3) 1.8768 6.2884(–3)
0.3 1.7476 8.8186(–3) 1.8240 9.2248(–3) 1.8459 9.3407(–3)
0.4 1.7148 1.1630(–2) 1.7819 1.2134(–2) 1.8014 1.2279(–2)
0.5 1.6700 1.4323(–2) 1.7253 1.4894(–2) 1.7417 1.5060(–2)
0.6 1.6106 1.6856(–2) 1.6519 1.7454(–2) 1.6645 1.7630(–2)
0.7 1.5324 1.9171(–2) 1.5576 1.9753(–2) 1.5658 1.9927(–2)
0.8 1.4272 2.1192(–2) 1.4354 2.1710(–2) 1.4384 2.1868(–2)
0.9 1.2770 2.2792(–2) 1.2689 2.3198(–2) 1.2663 2.3323(–2)
1.0 9.8661(–1) 2.3674(–2) 9.7401(–1) 2.3945(–2) 9.6832(–1) 2.4022(–2)

aRead as 2:9748, 10&3.

TABLE VIII

The Critical Radius for the Case c ¼ 2:0 and L ¼ 0

SL Projection Scheme Marshak Projection Scheme

N SVD-DP SVD-QP SVD-DP SVD-QP

1 1.0956395 1.0956395 1.0956395 1.0956395
3 0.9823991 0.9823991 0.9911102 0.9911102
5 0.9868723 0.9868723 0.9908852 0.9908852
7 0.9902374 0.9902374 0.9907076 0.9907076
9 0.9906254 0.9906254 0.9906510 0.9906510
11 0.9906029 0.9906029 0.9906286 0.9906286
13 0.990603 0.9906042 0.990620 0.9906184
15 0.99060 0.9906047 0.990615 0.9906132
17 0.99060 0.9906051 0.990611 0.9906104
19 0.990605 0.9906052 0.990610 0.9906088
29 0.990605 0.9906055 0.9906063 0.9906063
39 0.990605 0.9906055 0.9906056 0.9906058
99 0.9906055 0.9906056 0.9906054 0.9906056

199 0.9906056 0.9906056 0.9906055 0.9906056
399 0.9906056 0.9906056 0.9906056 0.9906056
799 0.9906056 0.9906056 0.9906056 0.9906056
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ψðR;&μÞ ¼ 0 ; ð29aÞ

for μ ∈ (0,1], and

lim
r!0

ψðr; μÞ < 1 ; ð29bÞ

for μ ∈ [ – 1,1]. We look for the (smallest) value of the
critical radius R that is associated with a physically mean-
ingful solution of Eqs. (1) and (29) (i.e., a positive angu-
lar flux everywhere in the sphere).

Since in all the cases studied in this work we have
encountered only one pair of purely imaginary PN eigen-
values, denoted here by - !1 ¼ -iη, where η is real and
positive, we find we can modify slightly the PN solution
developed in Sec. III to write our PN solution of Eq. (1)
that satisfies Eq. (29b) in terms of real quantities only. We
find that Eq. (9) becomes

ψðr; μÞ ¼ 1
2

XN

n¼0

ð&1Þnð2nþ 1ÞPnðμÞ

, B1 jnðr=ηÞfnðηÞ þ
XJ

j¼2

Bj "nðr=!j : R=!jÞgnð!jÞ
" #

;

ð30Þ

where

jnðxÞ ¼
ffiffiffiffiffi
π
2x

r
Jnþ1=2ðxÞ ð31Þ

is the spherical Bessel function of the first kind16 that
satisfies the three-term recurrence relation

jn&1ðxÞ þ jnþ1ðxÞ ¼
2nþ 1

x
jnðxÞ; ð32Þ

for n = 1,2, … , with initial values

j0ðxÞ ¼
sin x
x

ð33aÞ

and

j1ðxÞ ¼
sin x
x2

& cos x
x

: ð33bÞ

In addition, the polynomials fnðηÞf g are related to the
Chandrasekhar polynomials by fnðηÞ ¼ ð&iÞngnðiηÞ and
satisfy

ðnþ 1Þfnþ1ðηÞ & nfn&1ðηÞ ¼ hnηfnðηÞ ; ð34Þ

for n = 0,1, … , with

f0ðηÞ ¼ 1 : ð35Þ

For this problem, we use the Marshak and SL projec-
tion schemes for generating approximate PN boundary
conditions from Eq. (29a). Moreover, as we intend to
allow the use of least-squares solutions for which the
number of equations considered is, in general, not equal
to the number of unknowns, we avoid the usual procedure
of searching the critical radius that is based on finding a
zero of a determinant.4

IV.B. Solution Using the Marshak Projection Scheme

Following the procedure discussed in Sec. III.C and
choosing the arbitrary normalization B1 ¼ 1, which we
are allowed to do, since for this problem any multiple of a
solution is also a solution, we find that R and the
unknown coefficients Bj, j ¼ 2; 3; . . . ; J , must satisfy
the equation

XJ

j¼2

Bj

XN

n¼0

ð2nþ 1ÞSα;n "nðR=!j : R=!jÞgnð!jÞ

¼ &
XN

n¼0

ð2nþ 1ÞSα;n jnðR=ηÞfnðηÞ ; ð36Þ

for α = 1,2, … , J. In the P1 approximation, we have only
one equation, namely,

1
2
j0ðR=ηÞ þ j1ðR=ηÞf1ðηÞ ¼ 0 ; ð37Þ

where η ¼ jðh0h1Þ&1=2j. Using the explicit representations
of the spherical Bessel functions and f1ðηÞ, we get from
Eq. (37)

ðRþ 2h0η2ÞsinðR=ηÞ & 2h0ηRcosðR=ηÞ ¼ 0 : ð38Þ

To solve Eq. (38) for R, we use Newton’s method with a
starting value chosen as discussed in Sec. IV.D.

For N ! 3, in order to avoid having to evaluate deri-
vatives exactly, which becomes cumbersome as N is
increased, we use the regula-falsi technique. This requires
two initial estimates of the critical radius, say Rð1Þ and Rð2Þ

(see our choices in Sec. IV.D). First, we solve, in a least-
squares sense, the linear system that is obtained from Eq.
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(36) for α ¼ 2; 3; . . . ; J, once with Rð1Þ replacing R and
again with Rð2Þ replacing R. This yields the initial esti-

mates Bð1Þ
j and Bð2Þ

j , j ¼ 2; 3; . . . ; J . Next, we apply regula
falsi to Eq. (36) for α ¼ 1 to determine an updated esti-
mate of the critical radius Rð3Þ. Then, we continue this
iterative process, solving the last J & 1 equations of Eq.
(36) in alternation with Eq. (36) for α ¼ 1, until two
consecutive estimates of the critical radius R and the
coefficients Bj, j ¼ 2; 3; . . . ; J , do not differ by more
than a prescribed tolerance.

IV.C. Solution Using the SL Projection Scheme

Using the SL projection scheme discussed in Sec. III.B
and the normalization B1 ¼ 1 introduced for the Marshak
scheme, we find that we have to solve, in a least-squares
sense, the N þ 1 equations obtained by taking α ¼
0; 1; 2; . . . ;N in

XJ

j¼2

Bj

XN

n¼α

ð2nþ 1ÞCα;n "nðR=!j : R=!jÞgnð!jÞ

¼ &
XN

n¼α

ð2nþ 1ÞCα;n jnðR=ηÞfnðηÞ ; ð39Þ

for J unknowns that are the critical radius R and the
coefficients Bj, j ¼ 2; 3; . . . ; J . To do that, we follow an
approach that is similar to the iterative procedure just
discussed for the Marshak scheme and gives results iden-
tical to those of the Marshak scheme when N ¼ 1. The
only difference between the procedures is that here we
use an equation that is obtained by adding the two forms
of Eq. (39) for α ¼ 1 and α ¼ 2 to update the estimates of
the critical radius and a least-squares solution of the last
N & 1 equations of Eq. (39) to find and update estimates
of Bj, j ¼ 2; 3; . . . ; J .

IV.D. Computational Methods

Most of the computational methods used for solving the
critical-sphere problem have already been discussed in Sec.
III.E. The only new aspects that we need to discuss here are
(1) the procedure we use for computing the PN eigenvalues
when c > 1, (2) the calculation of the spherical Bessel
functions of the first kind jnðxÞf g and the polynomials
fnðηÞf g defined by Eqs. (34) and (35), and (3) the selection
of initial estimates for the critical radius that are required by
the iterative procedures discussed in Secs. IV.B and IV.C.

With regard to the PN eigenvalues, we note that they
can still be obtained from the squares of the eigenvalues

of a tridiagonal matrix when c > 1. Unfortunately, as that
matrix cannot be reduced to a form that allows the appli-
cation of the EISPACK routines for finding the eigenva-
lues of a special tridiagonal matrix that are mentioned in
Sec. III.E, the best we could do here was to use a routine
developed for finding the eigenvalues of Hessenberg
matrices (we used EISPACK subroutine HQR).

The functions jnðxÞf g are computed by backward recur-
rence using the ratios jnþ1ðxÞ=jnðxÞ, n ¼ 0; 1; . . . ;N & 1, in
pretty much the same way as described for the iota-ratios in
Sec. III.E. The polynomials fnðηÞf g are also computed by
backward recurrence, as done for the Chandrasekhar poly-
nomials gnð!jÞ

% &
when !j is real and >1. Indeed, it can be

seen that the recurrence relation of fnðηÞf g differs only by a
sign from that of the Chandrasekhar polynomials.

The initial estimate of the critical radius for the P1

equation that is solved by Newton’s method for both the
Marshak and SL projection schemes [Eq. (38)] is taken
from the end-point method in spherical geometry, which
is very accurate for isotropic scattering.28 The end-point
result can be written as

Rð0Þ ¼ π ν0j j& x0 ; ð40Þ

where ν0 is the discrete eigenvalue for isotropic scattering
and x0 is the extrapolation distance.28 We used the
unnumbered equation on the top of p. 95 of Ref. 28 to
obtain an approximate value of x0 and the expansions for
1=jν0j2 given by Eqs. (74) and (77) of Ref. 29 to obtain
an approximate value of ν0j j. We note that the break point
to switch from one of the expansions of Ref. 29 to the
other was taken to be c ¼ 1:5.

As mentioned before, for N ! 3 our iterative proce-
dure is based on the regula-falsi technique, which
requires two initial estimates of the parameter being
sought. For that purpose, we first find a single initial
value Rð0Þ, as described next, and then multiply it by
(1- #), with # set arbitrarily to 0.02, to obtain the
required initial values Rð1Þ and Rð2Þ. Regarding our choice
of Rð0Þ, we have used the result of the P1 approximation
when N ¼ 3 and the result of the P3 approximation when
N > 3.

We note that the careful procedure of selecting good
initial values for the regula-falsi technique just described
turned out to be very important in high order. A good
selection of initial values is crucial for high-order calcu-
lations because one needs to isolate the desired funda-
mental mode from the higher harmonics, which is
something that becomes progressively more difficult as
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the order of approximation is increased. For low and
moderate values of N , a less elaborate procedure could
be used.

IV.E. Numerical Results and Discussion

First, to give an idea of the convergence behavior of
the PN method discussed in Secs. IV.A, IV.B, and IV.C, we
list in Table VIII our numerical results for the critical
radius, obtained from several orders of the approximation,
for the most difficult case considered in Table II of Ref. 4
(c ¼ 2:0 and L ¼ 0). As SVD was found to perform better
than QR decomposition, we give only the SVD results in
Table VIII. We can see that the double-precision results
deteriorate slightly between N ¼ 13 and N ¼ 39 for the
SL scheme and between N ¼ 13 and N ¼ 19 for the
Marshak scheme, but the SL scheme yields at least five
significant figures of accuracy and the Marshak scheme
six. The threshold below which a singular value was not
considered in the SVD solution was taken to be equal to
the square root of the number of rows in the linear system
to be solved times 10&8 for double-precision calculations
(times 10&24 for quadruple-precision calculations).

Next, in Tables IX and X, we report, for two
values of cs and various values of c and L, the scatter-
ing order of the binomial law, our converged critical-
radius results. It is possible to note the strong influence
of the degree of scattering anisotropy on the results,
especially when more scattering is present relative to
absorption and the radius of the sphere is large. For
most entries, the converged results were obtained with
N between 1999 and 9999 in the SVD-DP implementa-
tion of the Marshak scheme; only in the case of nine
entries, larger values of N (up to 17999) were required.
The column corresponding to L ¼ 0 was omitted from

Table X because it repeats that of Table IX. The results
in Tables IX and X are thought to be correct in all
figures shown, as we have checked them using SVD-
QP. Moreover, our L ¼ 0 results were found to be in
very good agreement with the highly accurate results
reported by Kaper et al.30 in Table V of their work. We
note that the results of Kaper et al. were generated
using the method of singular eigenfunctions to solve
the pseudo problem that is obtained for the case of
isotropic scattering. Using our SVD-QP implementa-
tion of the Marshak scheme, we have been able to
verify that all but one of the entries reported in
Table V of Ref. 30 (between 9 and 12 significant
figures reported, depending on the value of c) are off
by between one and three units in the last figure.

To close this section, we report in Table XI our
converged numerical results for the normalized scalar
flux ϕ0ðrÞ=ϕ0ð0Þ for three values of c, cs ¼ 0:9, and two
values of L. These results were obtained by varying the
value of N in our SVD-DP implementation of the
Marshak scheme until convergence in the number of
figures shown was attained. For c ¼ 1:01, N ¼ 199 was
sufficient for all entries, except the entry corresponding to
r=R ¼ 1:0 for which N ¼ 13999 was needed. For c ¼ 1:2
and L ¼ 0, N ¼ 14999 was required, while for c ¼ 1:2
and L ¼ 399; we had to use N ¼ 17999. Finally, for
c ¼ 1:4, we had to use N ¼ 26999. We conjecture that
the increasing difficulty in getting accurate results for the
scalar flux as c is increased (or, equivalently, the critical
radius of the sphere is decreased) is related to the essence
of the PN method, i.e., the separability hypothesis
between the spatial and angular variables in the angular
flux representation. Nevertheless, as discussed in Sec. V,
we believe it is possible to improve on this aspect of the
method.

TABLE IX

The Critical Radius for cs ¼ 0:3 and Different Values of c and L: Converged
Results from the Marshak Projection Scheme and SVD-DP

c L ¼ 0 L ¼ 49 L ¼ 99 L ¼ 199 L ¼ 399

1.01 17.362440470 20.396242468 20.474600725 20.514725932 20.535040874
1.02 12.027532098 14.065071820 14.116862288 14.143354976 14.156759631
1.05 7.277181794 8.424992160 8.452958389 8.467216067 8.474415070
1.1 4.872714266 5.572409108 5.588497121 5.596662607 5.600774896
1.2 3.172072513 3.564019638 3.572288300 3.576462015 3.578557753
1.3 2.424824980 2.689496214 2.694744711 2.697385444 2.698709240
1.4 1.985343432 2.179940232 2.183621390 2.185469612 2.186395139
1.6 1.476098589 1.596679783 1.598811318 1.599878702 1.600412517
2.0 0.990605572 1.051584313 1.052578201 1.053074592 1.053322526
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V. CONCLUDING REMARKS

A version of the PN method for spheres that is
numerically stable in high order is reported in this
work. Having been able to go as high as tens of thousands
in the order of the approximation with excellent results,
we believe that the use of the method is limited only by
the amount of computational resources available.

From all the linear equation solvers and projection
schemes of boundary conditions that we tried, we con-
cluded that the combination of SVD and Marshak bound-
ary conditions is the best choice for computing global
quantities like the albedo and the critical radius. In addi-
tion, we have found that the Mark boundary conditions
converge more rapidly than the Marshak boundary con-
ditions for the scalar flux and current in the case of the
albedo problem. Furthermore, we have observed that the

number of columns used by SVD when N is large is
usually a very small fraction of the total number of
columns. This leads to the immediate question: Why
does SVD allow us to get greater accuracy by taking
more equations and at the same time eliminating more
columns as we increase the order of approximation? A
possible explanation is that the improvement observed as
N is increased comes from the fact that the boundary
condition is better represented as we add more equations
(rows). And SVD lets us select the modes (columns) that
really matter, eliminating those that are linearly depen-
dent (or almost linearly dependent). A similar comment
could be made with respect to the QR decomposition.

In our continuing work on this topic, we plan to
extend the method to the case of a spherical shell. In
addition to the importance of such a problem per se, this
will allow the treatment of multilayer spheres in a more

TABLE XI

The Normalized Scalar Flux for a Critical Sphere with cs ¼ 0:9 and Different Values
of c and L: Converged Results from the Marshak Projection Scheme and SVD-DP

r=R

c ¼ 1:01 c ¼ 1:2 c ¼ 1:4

L ¼ 0 L ¼ 399 L ¼ 0 L ¼ 399 L ¼ 0 L ¼ 399

0.0 1.0 1.0 1.0 1.0 1.0 1.0
0.1 0.9848758 0.9871904 0.988320 0.991697 0.9895 0.9922
0.2 0.9403251 0.9493494 0.953763 0.967010 0.9583 0.9691
0.3 0.8687610 0.8882073 0.897749 0.926589 0.9077 0.9311
0.4 0.7740316 0.8065393 0.822561 0.871484 0.8394 0.8792
0.5 0.6611729 0.7080054 0.731215 0.803084 0.7557 0.8145
0.6 0.5360866 0.5969328 0.627282 0.723020 0.6596 0.7385
0.7 0.4051659 0.4780297 0.514635 0.633013 0.5542 0.6526
0.8 0.2748827 0.3559678 0.397049 0.534527 0.4422 0.5579
0.9 0.1512516 0.2344160 0.277151 0.427700 0.3254 0.4543
1.0 0.0328262 0.1039008 0.144626 0.299213 0.1922 0.3282

TABLE X

The Critical Radius for cs ¼ 0:9 and Different Values of c and L: Converged
Results from the Marshak Projection Scheme and SVD-DP

c L ¼ 19 L ¼ 49 L ¼ 99 L ¼ 199 L ¼ 399

1.01 37.728852673 43.185447607 45.702646319 47.146588427 47.919799122
1.02 25.276334501 28.572542033 30.035061386 30.851366601 31.280168625
1.05 14.226720972 15.677277370 16.268115163 16.581336010 16.741067221
1.1 8.759863096 9.411558791 9.655710731 9.780575937 9.843299585
1.2 5.108330711 5.350156840 5.434640186 5.477004665 5.498151744
1.3 3.632317569 3.757094935 3.799586010 3.820786070 3.831354403
1.4 2.822896882 2.898713101 2.924228888 2.936935146 2.943266471
1.6 1.955075744 1.991514546 2.003653500 2.009689959 2.012697021
2.0 1.211823579 1.225795643 1.230420180 1.232718247 1.233862940
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efficient way, by solving for a layer at a time and sweep-
ing across the layers iteratively for convergence.

Finally, we would like to comment on the finding
that the convergence rate of the PN method for pointwise
quantities of interest such as the scalar flux and the
current is relatively slow (especially at the end points of
the spatial interval for large spheres and everywhere for
small spheres) when compared to that of the global quan-
tities. In our future work we plan to investigate possible
ways of postprocessing our solution to obtain improved
results for pointwise quantities with reduced orders of the
approximation. If successful, we believe this will be a
very useful addition to the method for dealing better with
spheres of small radii.

APPENDIX

SOLUTION OF THE MOMENT EQUATIONS

In the manner of Davison,2 we try solutions for Eq.
(3) in the form

ϕnðrÞ ¼ Fnðr=!Þgnð!Þ ; ðA:1Þ

where ! is a parameter, to find

ðnþ 1Þ d
dðr=!Þ

Fnþ1ðr=!Þ þ
!

r
ðnþ 2ÞFnþ1ðr=!Þ

" #
gnþ1ð!Þ

þ n
d

dðr=!Þ
Fn&1ðr=!Þ &

!

r
ðn& 1ÞFn&1ðr=!Þ

" #
gn&1ð!Þ

þ hn!Fnðr=!Þgnð!Þ ¼ 0 ðA:2Þ

for n = 0,1, … , N. Now, since the modified spherical
Bessel functions of the first kind16

inðzÞ ¼
ffiffiffiffiffi
π
2z

r
Inþ1=2ðzÞ ðA:3Þ

and of the second kind

i&nðzÞ ¼
ffiffiffiffiffi
π
2z

r
I&n&1=2ðzÞ ; ðA:4Þ

for n ¼ 0; 1; . . . ; satisfy

d
dz

fnðzÞ þ
nþ 1
z

fnðzÞ ¼ fn&1ðzÞ ðA:5aÞ

and

d
dz

fnðzÞ &
n
z
fnðzÞ ¼ fnþ1ðzÞ ; ðA:5bÞ

we see at once that if we take either

Fnðr=!Þ ¼ ð&1Þninðr=!Þ ðA:6aÞ

or

Fnðr=!Þ ¼ ð&1Þni&nðr=!Þ ðA:6bÞ

the terms in brackets in Eq. (A.2) reduce to & Fnðr=!Þ.
We thus conclude that for Eq. (A.2) to be satisfied, we
must have

ðnþ 1Þgnþ1ð!Þ þ ngn&1ð!Þ ¼ hn!gnð!Þ : ðA:7Þ

This recurrence relation tells us that gnð!Þf g is the set of
Chandrasekhar polynomials encountered in the PN solution
of the one-speed transport equation in plane geometry. The
reason why the same family of polynomials appears both in
planar and spherical geometry has been thoroughly discussed
by Davison.2 The first few Chandrasekhar polynomials are

g0ð!Þ ¼ 1 ; ðA:8aÞ

g1ð!Þ ¼ h0! ; ðA:8bÞ

and

g2ð!Þ ¼
1
2

h0h1!2 & 1
, -

: ðA:8cÞ

In summary, we conclude that ð&1Þninðr=!Þgnð!Þ
and ð&1Þni&nðr=!Þgnð!Þ are solutions to Eq. (3).
However, our job is not complete yet since we still
need to find the permissible values of the parameter !.
For this purpose, we use the standard PN closure
ϕNþ1ðrÞ ¼ 0, which yields the zeros of gNþ1ð!Þ as the
values of ! that we seek.

Since N þ 1 is even and the Chandrasekhar polyno-
mials of even order have only even powers of the argument
(with the highest power being equal to the order) in their
explicit expressions,31 the zeros of gNþ1ð!Þ appear as posi-
tive/negative pairs that we denote as - !j,
j ¼ 1; 2; . . . ; J ¼ ðN þ 1Þ=2. Note that for c < 1 all zeros
of gNþ1ð!Þ are real, and we take !j to be positive. For c ¼ 1,
one pair of zeros (- !1) becomes unbounded, and a slight
modification in the procedure is required, as done for plane
geometry;32 the other zeros are real (- !j, with !j > 0, for
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j ¼ 2; 3; . . . ; J ). For c > 1, at least one pair of zeros must be
purely imaginary, and even complex zeros may exist;33 in
this work, we consider only the most relevant case for
fission-reactor technology, where just one pair of purely
imaginary zeros (- !1, with = !1f g > 0) exists and the
other zeros are real (- !j, with !j > 0, for j ¼ 2; 3; . . . ; J ).
The modifications needed to treat other cases are simple.

By superposition, we can write an explicit expression
for the ϕnðrÞ moment as

ϕnðrÞ ¼ ð&1Þn
XJ

j¼1

Aþ
j i&nðr=!jÞ þ Bþ

j inðr=!jÞ
h i

gnð!jÞ

þ ð&1Þn
XJ

j¼1

A&
j i&nð&r=!jÞ þ B&

j inð&r=!jÞ
h i

gnð&!jÞ ;

ðA:9Þ

where the coefficients Aþ
j , A&

j , Bþ
j , and B&

j for j ¼
1; 2; . . . ; J are to be determined.

Using the symmetry relations

gnð&!Þ ¼ ð&1Þngnð!Þ ðA:10Þ

and (see formulas 10.2.5 and 10.2.6 of Ref. 16)

inð&zÞ ¼ ð&1ÞninðzÞ ðA:11aÞ

and

i&nð&zÞ ¼ ð&1Þnþ1i&nðzÞ ; ðA:11bÞ

and defining

bAj ¼ Aþ
j & A&

j ðA:12aÞ

and

bBj ¼ Bþ
j þ B&

j ; ðA:12bÞ

we find that we can rewrite Eq. (A.9) as

ϕnðrÞ ¼ ð&1Þn
XJ

j¼1

bAji&nðr=!jÞ þ bBjinðr=!jÞ
h i

gnð!jÞ :

ðA:13Þ

We note that Eq. (A.13) is a valid general solution of Eq.
(3). However, it has the disadvantage that both of the
i&nðr=!jÞ and inðr=!jÞ functions diverge as r ! 1. We can
have a general solution written in a more convenient way by
taking

bAj ¼
π
2
eAj ðA:14aÞ

and

bBj ¼ eBj &
π
2
eAj ðA:14bÞ

in Eq. (A.13). We find

ϕnðrÞ ¼
XJ

j¼1

eAjknðr=!jÞ þ ð&1ÞneBjinðr=!jÞ
h i

gnð!jÞ ;

ðA:15Þ

where knðzÞ denotes the modified spherical Bessel func-
tion of the third kind16

knðzÞ ¼
ffiffiffiffiffi
π
2z

r
Knþ1=2ðzÞ

¼ ð&1Þnþ1 π
2
inðzÞ & i&nðzÞ½ * : ðA:16Þ
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