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Abetract-The normal-mode. expansion technique is used to obtain the radiation intensity in a conserva- 
tive finite medium with an internal source and plane-parallel emitting boundaries. The elementary 
solutions of the one-dimensional ,equation of transfer and existing completeness and orthogonality 
theorems am used to effect the desired solution with a minimum of manipulation. The unknown expansion 
coefhcients appearing in the solution are shown to satisfy simple integral equations to which highly 
accurate analytical approximations are obtained. Further, a high-order improved Gaussian quadrature 
integration procedure is used to construct numerically the required expansion coefficients and thus the 
two universal functions 69(r) and @Jr) axe calculated to “bench mark” accuracy. Since the radiation 
intensity is determined explicitly, all other quantities of interest, such as the incident radiation, the heat 

flux and the temperature distribution, are immediately available. 

I. INTRODUCTION 

THE PURPOSE of this paper is to illustrate the 
advantage to which Case’s normal-mode ex- 
pansion technique [l] may be used to solve a 
certain class of radiative heat transfer problems 
in finite plane-parallel media In particular, a 
procedure alternative to that used by Heaslet 
and Warming [2] for a problem involving 
radiative transport and wall temperature slip in 
a finite, absorbing, emitting gray medium is 
discussed, and an explicit result for the radiation 
intensity in a finite conservative medium with 
an internal source is presented. 

In one of the earlier papers to make use of the 
singular eigenfunction expansion technique for 
heat transfer applications, Ferziger and Sim- 
mons [3] considered the source-free, finite-slab 
problem for a conservative medium with emit- 
ting and reflecting boundaries In addition to 
making use of the merits of the Case technique, 
Ferziger and Simmons illustrated the compu- 
tational advantages of their work, and estab- 
lished the validity of their highly accurate 
analytical approximations. 

An exhaustive study of radiative heat transfer 
problems in nonconservative media has been 

made by Heaslet and Warming [4] who, in 
addition to making use of the method of normal 
modes, discuss many of the interrelationships 
between Case’s method and several other 
techniques. Although Heaslet and Warming 
emphasized isotropic coherent scattering, it is 
clear that similar analysis may be used to 
advantage when more general scattering laws 
are admitted. 

More recently, &@k and Siewert [5] have 
employed the singular eigenfunction method to 
solve for the radiation intensity in an absorbing, 
emitting, and scattering medium confined be- 
tween reflecting and emitting plates In that 
paper semi-analytical solutions, analogous to 
those found to be highly accurate by Ferxiger 
and Simmons [3], were obtained for various 
inhomogeneous source terms, and the finite- 
medium Green’s function was discussed. 

There is of course a great deal of literature on 
the subject of radiative heat transfer in partici- 
pating media ; for the sake of brevity here, the 
reader is referred to the paper by Heaslet and 
Warming [2] where an extensive bibliography 
is given. 
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II. FORMULATION OF BASIC EQUATIONS If consideration is restricted to the case where 
We consider the steady-state one-dimensional fi(Z& f# and Q(z) are constants fi, fi and Q, 

equation of transfer then equation (4) reduces to the simpler form 

where Z(z, Zl) is the radiation intensity, Zl is the In their work on radiative transport and wall 

direction cosine (as measured from the positive temperature slip, Heaslet and Warming [2] 

z axis) of the propagating radiation, z is the express the temperature distribution and sub- 

optical variable, and Q(r) is an inhomogeneous sequent quantities of interest in terms of two 

source term. For finite-media problems with universal functions @(a(z) and @Jr) which are 

prescribed boundary conditions, a solution to solutions to the equations 
equation (1) is sought, subject to 

Z(0, P) = fi(P), P E (0, 1) (2a) 
8(z) = $E,(r) + 4 1 @(r’) E,(I z - ~‘1) dr’ 

and 
Z(r,, -P) = fz(P), P o (0, 1). (2b) 

Although it need not be the case, we takefi(Zi) 
and &(,u) to be given functions specifying the 
conditions on Z(r, p) at the two surfaces z = 0 
and z=zo; Ferxiger and Simmons [3] and 
&isik and Siewert [S] have discussed the 
manner in which the case of reflecting bound- 
aries may be analyzed in light of the Case- 
method. 

As an alternative statement of the given 
problem equation (I) with equations (2) may be 
integrated to yield an integral equation for the 

and 
(64 

@dr) = $ + 4 1 @dt’) E,(lr - $1) dr’. (6b) 

It is now clear that 8(r) corresponds to pi(r) for 
the case Q = f2 = 0 and fi = 3; similarly @XT) 
is equivalent to the solution pa(r) corresponding 
tothecaseQ=f, =fi=&. 

Ferziger and Simmons [3] have used the 
Case-method to solve the source-free problem 
above, and have demonstrated the computa- 
tional merits of their semi-anal~ic~ solution. 
In the next section, similar analysis is used to 
develop a solution which includes both cases, radiation density (incident radiation) 

p(r) A -j, Z(r, P’) d/l’ ; 

it follows that p(r) is a solution of 

p(z) = ifi e-“# d/t + bf2@) e-fro-r)lli d/l 

+ 1 Q(z') E,(Iz - ~'1) dz' 

+ $1 p(z')E& - ~'1) dz; 

where E,(x) is the first-order exponential 
tegral : 

EN(x) = $ pLNm2 eaxlp d/l. 

(3) III. GENERAL ANALYSIS 

We seek a solution to equation (1) subject to 
the boundary conditions given by equations (2); 
we restrict our attention to the case where Q, fi 
and fi are constants, and thus we shall obtain 
solutions to equation (5) from the more general 
result for the radiation intensity Z(z, 1~). 

Since the normal modes of the homogeneous 

(4) 
equation of transfer are established [l, 61, the 
desired solution can be written as 

in- Zfz, Zl) = A++ + A_& - ,t) 

+ i A(V) brftl, P) e-“” dtt + Z,,(r, cl), (7) 
-1 
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where A+, A_ and A($ are the unknown ex- 
pansion coefficients to be determined from 
equations (2). In addition I,@, ZL) denotes a 
particular solution to the inhomogeneous equa- 
tion of transfer. Lundquist and Horak [7] have 
compiled a very useful table of particular 
solutions; their relevant result is quoted here : 

Z&z, Zl) = Q[ --$r2 + 31~~ - 311~1. (8) 

The generalized function &z, 14) appearing in 
the solution takes the form [l] 

&z,P)=~&+ [l --tanh-‘rjj6(rZ-Z~), 

(9 
where the symbol P is used to indicate that all 
ensuing integrals over 11 or TV are to be evaluated 
in the Cauchy principal-value sense, and 6(x) 
denotes the Dirac delta function. 

Equation (7) may be integrated immediately 
to yield results for the radiation density and the 
net radiative heat flux, 

(IO) 

It follows that 

p(r) = A+ + A-r + 3 A($e-“” drZ 
-1 

- Q(3z2 -I- 2) (11) 

and 
4(r) = --$A_ + 2Qz. (12) 

If for the considered problem the radiative 
transfer mechanism is interpreted as an absorb- 
ing and emitting phenomenon, rather than as a 
scattering process, then the temperature distri- 
bution is also at once available since, as shown 
by Heaslet and Warming [2], it is related in a 
simple manner to p(z). 

It is noted that the solution given by equation 
(7) rigorously satisfies the considered equation 
of transfer, and thus that the essence of the Case- 
method is concerned with the determination of 
the unknown expansion coefficients A+, A_ 
and A(q). These coefftcients must, of course, be 

constructed such that Z(r, 14) meets the boundary 
conditions of the problem; however, once these 
coefficients are obtained all other quantities of 
interest follow immediately. Clearly for the case 
Q = fi = f2 = i, equation (12) yields an exact 
result for the heat flux, since the symmetry of the 
problem requires that q(z,,/2) = 0, and thus 
A- = &. 

We proceed by substituting equation (7) into 
equation (2) and arranging the terms to read 

fi + 31~~Q + +/[A -- [ A( - V) $(-II, rl) dr/ 

= &A+ + j A(V) +(u, r(l) dq, 11 E (0, l), (13a) 
0 

and 

f2 + ($z; + 3/1zo + 3j~~) Q - &(ro + 1~) A- 

- dA(?)9(-~,/1)e-“indtl = iA+ 

f 5 A( - q) +(YI, p) evols drl, 11 E (0, 1). (13b) 

Equatyons (13) must yield the desired solutions 
for A+, A- and A(q). These equations are 
singular; however, they may be converted 
simply to Fredholm-type equations by utilizing 
the existing half-range orthogonality relations 
given by KuSer et al. [S]. We prefer not to use 
the standard X-function notation [8], but rather 
to make use of the half-range weight function 
@Y(p), where H(p) is Chandrasekhar’s H- 
function [9] corresponding to characteristic 
function Y(Zc) = 3. 

Equations (13) are thus multiplied by @(ZL) 
and integrated over Zi from zero to unity; the 
resulting two equations may be written in the 
convenient matrix form : 

1 

MA = G + 
s 

B(q’) A@/‘) $-;, r/’ dt/‘, (14) 

0 

where the unknowns are now expressed as 

A+ A = A_ and A(q) = A(d 
I I I I A(--?) ’ 

r/ E (0, 1). 

(15) 
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In addition, the matrices 

0 -1 
B(q) a I 1 andM 4 _?1_3 ’ -” 

3 
1 zo + 20 I __e--m Ol 

have been defined, and 

fi 
G = 3(,/3) 

(16) 

+ 3Qr, 
, (17) 

where 

Ifi + 3Q(H + roro -t ~1’1 

z. = 3 (43) i H(p) ji2 d/t = ~71~, 
0 

(184 

and 
1 

21 = 3 (,/3) [ H(p) jt3 d/k = 055236682. 

(lgb) 

The continuum coefficients on the right-hand 
sides of equations (13) are isolated similarly by 
multiplying those equations by @Y(p) $((rl’, p)), 
q’ E (0, l), and integrating over p E (0,l). These 
results also can be written mom conveniently in 
matrix notation : 

where 

B= 

and 

where 

2 2 

(1 -~tanh-‘~f2+~ 
-1 

. 

(23) 

Since it is highly unlikely that analytical 
solutions to the coupled equations (14) and (19) 
exist, it follows that the degree of precision with 
which the desired solution can be completed is 
measured by how accurately the expansion co- 
eficients can be computed from equations (14) 
and (19). Although these equations are formid- 
able analytically, they certainly pose no problem 
for existing computing facilities. Thus if highly 
accurate “bench mark” solutions are sought, an 
iterative procedure could be used to construct 
results valid to any reasonable degree of 
accuracy. Bond and Siewert [1 l] have solved 
similar equations numerically for a problem in 
neutron transport theory; their work illustrates 
the computational merits of the singular eigen- 
function expansion technique. 

Fortunately analytical approximations can be 
obtained from equations (141 and (19) which 
should yield solutions of sufficient accuracy. 
Ferziger and Simmons [3] obtained two 
approximate solutions to these equations for 
fi = Q = 0; they showed that the lowest-order 
solution was better than classical diffusion 
theory, whereas the second-order solution was 

0 -1 1 0 nearly exact. 

0 1’ 
W?) = 

0 ezo/~ y 
(201 In the present analysis, the lowest-order 

solution is obtained by neglecting the con- 
tinuum coefftcients entirely; the discrete solu- 

I I tions thus are readily available from equation 

G(tl) = - @g(l, rl) 
? + 20 

. (21) 

? f % f 20 

(14): 

A,(q) s 0; A, = M-‘G. (241 

In addition the kernel is given by The second-order result for the consul 
solution is found by neglecting the contribution 
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from the kernel K(q’ + q) in equation (19X and 
by using A, in that equation Finally A,(q) is 
substituted into equation (14) to yield A,. It 
follows that 

AAd = M-‘(4 

(2W 

1 

A, = M- ’ B(f) A,(f) svq 9’ dq’ 
0 1 

(25’4 
To summarize, the explicit results for the ex- 

pansion coefficients given by equations (25) are 
to be used with equations (7) and (8) to give the 
desired solution for the radiation intensity. 
Since I(z, 14) is thus established, the other 
quantities of interest follow immediately, as 
illustrated by equations (11) and (12). 

It should be noted that the present analysis 
may be generalized to include a linear (or higher- 
order polynomial) inhomogeneous source term 
by making use of the particular solutions given 
by Ltmdquist and Horak [7]. In fact, the only 
difference in the computation of the expansion 
coefficients will be that the vectors G and G(q) 
appearing in equations (14) and (19) will take 
slightly more general forms. 

IV. NUMERICAL ANALYSIS 

Since the analytical advantages of the singular 
eigenfunction expansion technique have been 
exhibited, we should now like to illustrate the 
method by constructing numerical solutions for 
the required expansion coefficients A and A(q), 
q o (0,l). Once these expansion coefficients are 
established, numerical results for the universal 
functions [2] 8(z) and @XT) are immediately 
available through the use of equation (11). 

As discussed previously, we must solve the 

two equations 

1 

A = M-’ G + M-i 
s 

B(q’)A(q’) ‘_ $ dtl’ 
WV’) 

0 

and 

A(q) = M-W G(V) 

(264 

+ M-‘(rj)BA@ ’ 6 @j&,) 

+ M- ‘(4 I WI’) Ah’) Kh’ --, d dtl’, 
0 

tl E (0, 1). (26’4 

Using an improved Gaussian quadrature 
scheme [12] to evaluate the integral terms in 
equations (26), we have solved iteratively the 
above equations to yield numerical results for 
the expansion coefficients A and A($, q E (0,l). 
The tractable analytical approximations given 
by equations (25) were used to initiate the 
calculation, and the iteration procedure was 
terminated when the values of A and A(q) 
evaluated at the nodal points differed after 
successive iterations by less than E = lo- ’ 5 

All computations here and in the determina- 
tion of e(r) and SJz) were performed in double- 
precision arithmetic on an IBM 360/75 com- 
puter, and for all cases two integration pro- 
cedures were used: an 81-point improved 
Gaussian quadrature scheme was used over the 
total interval 1 E (0,l); further, this interval was 
divided equally and the same 81-point inte- 
gration method was used in each subinterval. 

Since the analytical approximations given by 
equations (25) proved to be highly accurate, we 
have given computational priority to the two 
special cases, Q = fi = 0 andfi = 3, and Q = fi 
= h = i, necessary to establish the two uni- 
versal functions 0(z) and @AZ), discussed by 
Heaslet and Warming [2, 131. We consider 
these calculations to be highly accurate, and 
thus would like to mention the further checks 
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Table 1. e(r) and @Jr) for slab of optical thickness 20 = 0.2 

et71 e*(7) 

7/zg _____--___ -__--__ ------- 

Analytical 
Exact 

Analytical 
approximation approximation Exact 

0 0608 1 0.611433 0.3167 0.321694 
0.05 0.5940 0.596683 0.3234 0.328063 
0.10 0.5821 0.584385 0.3278 0.332147 
0.15 @5710 0.572904 0.3311 0.335313 
0.20 0.5603 0.561901 0.3337 0.337843 
0.25 0.5499 0.551215 0.3359 0.339866 
0.30 0.5397 0.540750 0.3375 @341455 
0.35 0.5297 0530441 0.3388 0.342655 
040 0.5197 0.520239 0.3396 0.343495 
0.45 0.5099 0.510103 0.3402 0.343992 
0.50 0.5000 0.5OOc00 0.3403 a344157 

Table 2. e(r) and @AT) for slab of optical thickness 7,, = 1.0 

fw fw) 
7170 

___- _-._-------- 

Analytical Exact 
Analytical 

approximation approximation Exact 

0 0.7576 0.758146 
005 07226 0.722979 
@lo 0.6943 0.694563 
0.15 0.6679 0668163 
0.20 06427 0642872 
0.25 0.6181 0.618285 
0.30 @5941 0.594170 
0.35 0.5703 0.570381 
040 0.5468 0.546809 
0.45 0.5233 0.523372 
0.50 0.5000 0.5OOOOO 

0.5157 0.516842 
0.5666 0.567455 
06000 0600637 
0.6262 0.626803 
06475 0647999 
06647 0665137 
0.6783 0.678718 
06886 0.689045 
0.6959 a696308 
0.7003 0.700624 
0.7017 0.702056 

Table 3. e(r) and Sk) for slab of optical thickness z0 = 2.0 

e(7) e,(7) 

7170 

Analytical Analytical 
approximation Exact approximation Exact 

0 0.8307 0.830791 0.7384 0.738729 
0.05 0.7866 0.786605 D8815 0.88 1646 
0.10 0.7508 a750879 0.9774 0.977575 
0.15 0.7174 @717420 1.0545 1.054567 
0.20 0.6851 0.685130 1.1177 1.117785 
0.25 0.6535 0.653546 1.1694 1.169444 
0.30 0.6224 0.622417 1.2107 1.210721 
0.35 05916 0.591591 1.2423 1.242305 
040 05610 0.560961 1.2646 1.264618 
0.45 0.5305 0.530452 I.2779 1.277915 
@50 @5000 D5OOoOO 1.2823 1.282332 
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employed to substantiate confidence in our where the moments of Chandrasekhar’s H- 
results. function are [9] 

Since equation (7) is obviously a solution of 
the considered equation of transfer, the only 
point in question is how accurately that solution 
can be constrained to meet the boundary 
conditions of the problem Thus, after con- 
structing numerically the expansion coefficients 
A and A(q), ideally we should reconfirm point- 
wise, IL ~(0, l), the boundary conditions given 
by equations (13). Since this procedure would 
necessitate the numerical evaluation of princi- 
pal-value integrals, thus introducing further 
errors, we prefer to evaluate instead moments of 
equations (13). 

(28) 

Defining K,(a) to be the relative difference 
between the two sides of equation (27a) and 
K,(a) similarly with respect to equation (27b), 
we note that for the worst case reported here 
K,(a) < K,(a) < 6 x lo-‘, where a = q, 2,3, 

8. 
Since A and A(q), q E (0, l), have been estab- 

In order to develop this measure of the 
accuracy of our calculations, we multiply equa- 
tions (13) by ~LW(&‘fi and integrate over 11 from 
zero to unity ; we find 

4 +;QH.+,- LA,H, + LA_H,+l= 
1 VI 2% 

a-l 1 

1 

-z c I 
Ha--, 4~) ttp drl 

p=1 0 

lished accurately, the computation of 8(r) and 
@AT) follows directly from equation (11). The 
results of these “exact” calculations and the 
predictions resulting from the analytical 
approximation given by equations (25) are given 
in the accompanying tables, where for display 
purpose the even or odd character of the 
universal functions [ 131 has been utilized. 

As a final indication of the accuracy of our 
“exact” calculations, the quantity 

TO 

F(z,) p ; @AZ) E,(z) dz (29) 

1 1 

(27a) 
0 0 

and 

4 1 H, + p 1 [%H, + 3roH,+ I + 3H,+ 21 

-$A+H,- &A_[T~H.+ H,+J= 
1 1 

WW 

has been shown to differ from the rigorous value 
of unity [13] by less than 1 x lo-‘. 
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TRANSPORT PAR RAYONNEMENT DANS UNE PLAQUE FINIE 
SANS DISSIPATION AVEC UNE SOURCE INTERNE 

R&sm&--La technique de developpemeut en modes normaux est employee pour l’intensite de rayonnement 
dans un milieu fini nondissipatif avec une source interne et des frontibres Bmettrices planes et paralleles. 
Les solutions elementaires de l’equation de transport unidimensionnelle et les theoremes disponibles pour 
le caractbre complet et I’orthogonalitb sont employ& pour obtenii la solution d&i& avec un minimum 
de manipulation Les coefficients inconnus du developpement apparaissent dans la solution satisfont a 
une integrale simple pour laquelle des approximations analytiques de precision elevee sont obtenus De 
plus, un processus d’int~~ati~ par une quadrature Gaussienne amelior&e d’ordre &eve est employ6 
pour construire num~iquement les coefficients demand& du developpement, et ainsi lea deux fonctions 
universellea 0 (r) et f?, (7) sont calcul&es aver une precision “d’atelier”. Puisque l’intensite du rayonnement 
est dtterminee explicitement, tomes les autres quantitb inthessantes telles que le rayonnement incident, 

le flux de chaleur et la distribution de temperature sont imm&liatement disponibles. 

STRAHLUNGSAUSTAUSCH IN EINEM GEWOHNLICHEN, ENDLICHEN SPALT 
MIT EINER INNEREN QUELLE. 

Zusammenfaasung--Die “normal-mode expansion technique” wird verwendet urn Lijsungen fur die 
Strahlungsintensitgt in einem gewiihnhchen, endlichen Medium mit einer inneren Quelle und plan- 
parallelen, emittierenden Grenxfliichen m finden. Die elementaren LBsungen der eindimensionalen Trans- 
~~~ei~hung und bekannte Vollst~ndi~eits- und O~hogon~th~reme werden verwendet urn die gesuchte 
L&sung mit einem Minimum an Aufwand zu erhalten. Es wird gexeigt, dass die unbekannten Entwicklungs- 
koeffmienten der Losung einfachen Integralgleichungen gentigen, fur die sich se.hr genaue analytische 
Naherungen finden lassen. Ferner wird eine verbesserte Gauss’sche Integrationsproxedur hoherer Ordnung 
verwendet urn numerisch die erforderlichen Expansionskoeffmienten xu konstruieren; und damit die heiden 

universalen Funktionen e(r) und 0,(z) auf “bench-mark”-Genauigkeit zu herechnen. Da die Strahlungs- 

intensitat explizit hestimmt wird, kann man aUe anderen interessierenden Grossen, wie die eiufallende 
Strahlung, den ~rm~trom und die T~~ratu~~e~ung sofort erhalten. 

JIY-%ICTbI#i HEPEHOC B KOHCEPBATHBHOH HOHEZIHOH HJIHTE 
C BHYTPEHHHM HCTO=IHWKOM 

~O~-~~~ pome~~~ 3aJ.@lW 06 ~HTeHC~B~OCT~ ~3~yYeH~~ B ~O~~epBaT~BHO~ 

KoHesHott cpene c sHyTpeHaiim MeTO~HKKOM IM nnOeKOnapanJIenbHbIMEf aasy~aiomnurr 

rpaHKuaniu HcnoabsyeTcH TexfiKua paaaoxeK5iK no HopMaJrbmm MonHM . zI~06ti nonyrKTb 
HymHoe pemeKKe HaK6onee npoc~b~r cnoco6oM, KCllOJIb3yIoTCH 3neMeHTapHne pemeaarr 
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O~HOMepHOrO ypaBHeHHR nepeHOCaH CyIUeCTByIOUHe TeOpeMbl nOJIHOTbIHOpTO~OHa;IbHOCTII- 

nOKaaaH0, YTO HeK3BeCTHbIe KO3~~H~HeHTbI pa3JIOmeHHH, norrsnmo~necrr B perueam. 

yHOBJIeTBOpRlOT npOCTOMy HHTerpaJIy, JIJIR KOTOpOrO nOJIyqeHbI aHaJlKTH4eCKHe annpOkiCw- 

MaIWIl 6onburoZI TOqHOCTki. fiaJIee liCnOJlb3yfl npoqenypy MHTerpMpOBaHMH nOCpe;lCTBOY 

yJfyW.IeH&iH rayCCOBCKMX KBanpaTyp BblCOKOrO nOpXAKa, WlCJIeHHO HaXOaHTCR HyiKHbIe 

KO3f$@i~HeHTbI pa3JIOHteHAR El, TaKAM o6pa30M, paCCWTbIBaH)TCfl ;(Be yH&lBepCaZhHbIe 

@~HK~HI~ 0(7)x 0,(7)c sagaHHoi% Hanepeg ToqHocTbm. 
~OCKOJrbKyllHTeHCIlBHOCTbH3~y~eHMIIOnp~~eJIReTCRBRBliOlI BLi~e,BCe~py~~l~B~;lLI'(HHbI, 

npe~cTasnfno~ne KHTepec, TaKKe KaK nagamwee KanyseHne, TennoBoB ~OTOK II pacnpe- 

AeneHKe TemnepaTypbI KaxoAflTca cpaay me. 


