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Abstract—The normal-mode expansion technique is used to obtain the radiation intensity in a conserva-
tive finite medium with an internal source and plane-parallel emitting boundaries. The elementary
solutions of the one-dimensional equation of transfer and existing completeness and orthogonality
theorems are used to effect the desired solution with a minimum of manipulation. The unknown expansion
coefficients appearing in the solution are shown to satisfy simple integral equations to which highly
accurate analytical approximations are obtained. Further, a high-order improved Gaussian quadrature
integration procedure is used to construct numerically the required expansion coefficients, and thus the
two universal functions (1) and 8z} are calculated to “bench mark” accuracy. Since the radiation
intensity is determined explicitly, all other quantities of interest, such as the incident radiation, the heat
flux and the temperature distribution, are immediately available.

I. INTRODUCTION

THE PURPOSE of this paper is to illustrate the
advaitage to which Case’s normal-mode ex-
pansion technique [1] may be used to solve a
certain class of radiative heat transfer problems
in finite plane-parallel media. In particular, a
procedure alternative to that used by Heaslet
and Warming [2] for a problem involving
radiative transport and wall temperature slip in
a finite, absorbing, emitting gray medium is
discussed, and an explicit result for the radiation
intensity in a finite conservative medium with
an internal source is presented.

In one of the earlier papers to make use of the
singular eigenfunction expansion technique for
heat transfer applications, Ferziger and Sim-
mons [3] considered the source-free, finite-slab
problem for a conservative medium with emit-
ting and reflecting boundaries. In addition to
making use of the merits of the Case technique,
Ferziger and Simmons illustrated the compu-
tational advantages of their work, and estab-
lished the validity of their highly accurate
analytical approximations.

An exhaustive study of radiative heat transfer
problems in non-conservative media has been

made by Heaslet and Warming [4] who, in
addition to making use of the method of normal
modes, discuss many of the interrelationships
between Case’s method and several other
techniques. Although Heaslet and Warming
emphasized isotropic coherent scattering, it is
clear that similar analysis may be used to
advantage when more general scattering laws
are admitted.

More recently, Ozigik and Siewert [5] have
employed the singular eigenfunction method to
solve for the radiation intensity in an absorbing,
emitting, and scattering medium confined be-
tween reflecting and emitting plates. In that
paper semi-analytical solutions, analogous to
those found to be highly accurate by Ferziger
and Simmons [3], were obtained for various
inhomogeneous source terms, and the finite-
medium Green’s function was discussed.

There is of course a great deal of literature on
the subject of radiative heat transfer in partici-
pating media; for the sake of brevity here, the
reader is referred to the paper by Heaslet and
Warming [2] where an extensive bibliography
is given.
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II. FORMULATION OF BASIC EQUATIONS

We consider the steady-state one-dimensional
equation of transfer
1

d 1 .
;tal(n W+ Iz, p) = 3 J I(r, ) dy’ + Q(n),
-1

1y

where I(r, p) is the radiation intensity, u is the
direction cosine (as measured from the positive
7 axis) of the propagating radiation, t is the
optical variable, and Q(1) is an inhomogeneous
source term. For finite-media problems with
prescribed boundary conditions, a solution to
equation (1) is sought, subject to

10, ) = fi(1), 1€ (0, 1), (22)

and

I(to, — ) = fow), 1€ (0, 1). (2b)
Although it need not be the case, we take f;(1)
and f,(u) to be given functions specifying the
conditions on I{(z, ) at the two surfaces 1 =0
and 1 = 1; Ferziger and Simmons [3] and
Ozisik and Siewert [5] have discussed the
manner in which the case of reflecting bound-
aries may be analyzed in light of the Case-
method.

As an alternative statement of the given
problem, equation (1) with equations (2) may be
integrated to yield an integral equation for the
radiation density (incident radiation)

P& | 1) ' o)
it follows that p(7) is a solution of
ple) = [Fi e~ dp + [ et~
+ I Q(t) Ey(|t — ']y d7’
+ 3§ ) E(r - hdr, (@)

0

where E,(x) is the first-order exponential in-

tegral : 1
Ex(x) = {p¥"2e " *dp.
)
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If consideration is restricted to the case where

fi(w), £2() and Q(z) are constants f,, f, and Q,
then equation (4) reduces to the simpler form

P(1) = fLEx(t) + f,Ex{to — 1) + Q[2 — Ex(1)

— Eyto — )] + é—:f p(T)E (|r — v dr.
(5)

In their work on radiative transport and wall
temperature slip, Heaslet and Warming [2]
express the temperature distribution and sub-
sequent quantities of interest in terms of two
universal functions @(z) and @[t) which are
solutions to the equations

61) = LE,(1) + {g O) Ey(|7 — 7)) de’

(6a)
and

O1) =1+ %:fas(z') Eylt — vdr. (6b)

It is now clear that 6(z) corresponds to p,(1) for
the case Q = f, = 0 and f; = %, similarly @ (1)
is equivalent to the solution p,(t) corresponding
tothecase Q =f, =f, = §

Ferziger and Simmons [3] have used the
Case-method to solve the source-free problem
above, and have demonstrated the computa-
tional merits of their semi-analytical solution.
In the next section, similar analysis is used to
develop a solution which includes both cases.

1. GENERAL ANALYSIS

We seek a solution to equation (1) subject to
the boundary conditions given by equations (2);
we restrict our attention to the case where Q, f;
and f, are constants, and thus we shall obtain
solutions to equation (5} from the more general
result for the radiation intensity I(z, u).

Since the normal modes of the homogeneous
equation of transfer are established [1, 6], the
desired solution can be written as

W= A3+ Az - p)

1
+ _51 A pln, e Mdn + L, w), (D
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where A,, A_ and A(n) are the unknown ex-
pansion coefficients to be determined from
equations (2). In addition I(z, ) denotes a
particular solution to the inhomogeneous equa-
tion of transfer. Lundquist and Horak [7] have
compiled a very useful table of particular
solutions; their relevant result is quoted here:

It W)= Q[ 32 + 3uix — 3¢°].  (8)

The generalized function ¢(n, ) appearing in
the solution takes the form [1]

n P -
¢("’“)=§ln_:ﬁ+ [1 — ntanh™" y] é(n — p),

©)

where the symbol P is used to indicate that all
ensuing integrals over u or # are to be evaluated
in the Cauchy principal-value sense, and d(x)
denotes the Dirac delta function.

Equation (7) may be integrated immediately
to yield resuits for the radiation density and the
net radiative heat flux,

1
g(r) & _jl I(z, ) ' dye' (10)
It follows that
1
pR)=A, +A_t+ | Alpe ""dy
1
— 0372 + 2), (11)
and
q(t) = ~34_ + 2Qr. (12)

If for the considered problem the radiative
transfer mechanism is interpreted as an absorb-
ing and emitting phenomenon, rather than as a
scattering process, then the temperature distri-
bution is also at once available since, as shown
by Heaslet and Warming [2], it is related in a
simple manner to p(t).

It is noted that the solution given by equation
(7) rigorously satisfies the considered equation
of transfer, and thus that the essence of the Case-
method is concerned with the determination of
the unknown expansion coefficients A,, 4_
and A(n). These coefficients must, of course, be
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constructed such that I(t, ) meets the boundary
conditions of the problem; however, once these
coefficients are obtained all other quantities of
interest follow immediately. Clearly for the case
Q = f, = f, = , equation (12) yields an exact
result for the heat flux, since the symmetry of the
problem requires that g(to/2) =0, and thus
A_ =$1,.

We proceed by substituting equation (7) into
equation (2) and arranging the terms to read

1
fi+ 3170 + dpd =~ ](;A(—'l) $(—n, 1) dn

1
=34, + Q)A(rl) ¢,y dn, ne(0,1),  (13a)

and

fo+ @3+ 3ty +3)0 — Yo + WA

1
- gA('I) (~n, e *"dn =3 A,

1
+ g A(—n) d(n, weondn, ue(0,1).  (13b)

Equations (13) must yield the desired solutions
for A,, A_ and A(y). These equations are
singular; however, they may be converted
simply to Fredholm-type equations by utilizing
the existing half-range orthogonality relations
given by KusCer et al. [8]. We prefer not to use
the standard X-function notation [8], but rather
to make use of the half-range weight function
uH(y), where H(u) is Chandrasekhar’s H-
function [9] corresponding to characteristic
function ¥Y(u) = }.

Equations (13) are thus multiplied by uH(u)
and integrated over u from zero to unity; the
resulting two equations may be written in the
convenient matrix form:

1

1
MA = G + jB('l') A g A,
0

i) (14

where the unknowns are now expressed as

An)
A(—n)

and A(p) = , ne(0,1)

(15)
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In addition, the matrices

0 _1 _Zo
B(n) & and M 2 V3

—e~wMm 1 15+ 24

{16} .
have been defined, and
fi + 30z,
G =4%J3 , (17
f2 + 30073 + 192 + z,)

where

1
2o = $(/3) g H{p) 112 dp = 071044609,
(18a)

and

1
z; = $(/3) "; H(u) p3 dp = 0-55236682.
(18b)

The continuum coefficients on the right-hand
sides of equations (13) are isolated similarly by
multiplying those equations by uH(p) d(n', p),
n' €(0,1), and integrating over ue(0, 1). These
results also can be written more conveniently in
matrix notation:

M(n) A(n) = G(n) + BA}(,/3) Hor )9(1, )
+ [ B AW Ko > dr,ne @1, (19)
where
0 —1 10
B= , M@= . (20
0 1 0 el
and
N+ 2
6 = - 430 ey
f+ 2o+ Ty

In addition, the kernel is given by

J. T. KRIESE and C. E. SIEWERT

1

1
Ko =) =390 ) ooy

22)

where

g(L,n) ={(1 — ntanh~ ! 9)® + fgi}_l.
(23)

Since it is highly unlikely that analytical
solutions to the coupled equations (14) and (19)
exist, it follows that the degree of precision with
which the desired solution can be completed is
measured by how accurately the expansion co-
efficients can be computed from equations (14)
and (19). Although these equations are formid-
able analytically, they certainly pose no problem
for existing computing. facilities. Thus if highly
accurate “bench mark” solutions are sought, an
iterative procedure could be used to construct
results valid to any reasonable degree of
accuracy. Bond and Siewert [11] have solved
similar equations numerically for a problem in
neutron transport theory; their work illustrates
the computational merits of the singular eigen-
function expansion technique.

Fortunately analytical approximations can be
obtained from equations (14) and (19} which
should yield solutions of sufficient accuracy.
Ferziger and Simmons [3] obtained two
approximate solutions to these equations for
J2 = Q = 0, they showed that the lowest-order
solution was better than classical diffusion
theory, whereas the second-order solution was
nearly exact.

In the present analysis, the lowest-order
solution is obtained by neglecting the con-
tinuum coefficients entirely; the discrete solu-
tions thus are readily available from equation
(14):

Am=0; A, =M'G (24
The second-order result for the continuum
solution is found by neglecting the contribution
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from the kernel K(r' — 1) in equation (19), and
by using A, in that equation. Finally A,(x) is
substituted into equation (14) to yield A,. It
follows that

Asln) = M=) [G(n)

+ BM™! G‘/3 !

¢ Hu )g(l 'l)] (25a)

and

A, =M~ [G+JB(71)A2(11)H( )ﬂd'l]

(25b)

To summarize, the explicit results for the ex-
pansion coefficients given by equations (25) are
to be used with equations (7) and (8) to give the
desired solution for the radiation intensity.
Since I(t,p) is thus established, the other
quantities of interest follow immediately, as
illustrated by equations (11) and (12).

It should be noted that the present analysis
may be generalized to include a linear (or higher-
order polynomial) inhomogeneous source term
by making use of the particular solutions given
by Lundquist and Horak [7]. In fact, the only
difference in the computation of the expansion
coefficients will be that the vectors G and G(r)
appearing in equations (14) and (19) will take
slightly more general forms.

IV. NUMERICAL ANALYSIS

Since the analytical advantages of the singular
eigenfunction expansion technique have been
exhibited, we should now like to illustrate the
method by constructing numerical solutions for
the required expansion coefficients A and A(y),
n€(0, 1). Once these expansion coefficients are
established, numerical results for the universal
functions [2] ©(r) and @(r) are immediately
available through the use of equation (11).

As discussed previously, we must solve the
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two equations
1

= _1 — 4
A=M"'G+M" jB('I)A('I)H( A "dn
(26a)
and
A(n) = M™(n) G(n)
1
+ M) BA L gt
+M™ () jB(n’) A()K(' — n)dr,
(1]
ne©,1).  (26b)

Using an improved Gaussian quadrature
scheme [12] to evaluate the integral terms in
equations (26), we have solved iteratively the
above equations to yield numerical results for
the expansion coefficients A and A(y), n (0, 1).
The tractable analytical approximations given
by equations (25) were used to initiate the
calculation, and the iteration procedure was
terminated when the values of A and A(y)
evaluated at the nodal points differed after
successive iterations by less than ¢ = 1073

All computations here and in the determina-
tion of ©(t) and O (z) were performed in double-
precision arithmetic on an IBM 360/75 com-
puter, and for all cases two integration pro-
cedures were used: an 81-point improved
Gaussian quadrature scheme was used over the
total interval n € (0, 1); further, this interval was
divided equally and the same 81-point inte-
gration method was used in each subinterval.

Since the analytical approximations given by
equations (25) proved to be highly accurate, we
have given computational priority to the two
special cases, Q = f, = 0andf;, = 4,and Q = f;
= f, = }, necessary to establish the two uni-
versal functions @(t) and @/z), discussed by
Heaslet and Warming [2, 13]. We consider
these calculations to be highly accurate, and
thus would like to mention the further checks



1354

J. T. KRIESE and C. E. SIEWERT

Table 1. 6(1) and 8 [z) for slab of optical thickness 1o = 02

(v 8,1
T/t
Analytical Analytical
approximation Exact approximation Exact
0 0-6081 0611433 0-3167 0-321694
005 0-5940 0-596683 0-3234 0-328063
010 0-5821 0-584385 0-3278 0-332147
015 0-5710 0-572904 0-3311 0-335313
020 0-5603 0-561901 0-3337 0-337843
025 0-5499 0-551215 0-3359 0-339866
030 0-5397 0-540750 0-3375 0-341455
035 0:5297 0-530441 0-3388 0-342655
0-40 0-5197 0520239 0-3396 0-343495
045 0-5099 0-510103 0-3402 0-343992
0-50 0-5000 0-500000 0-3403 0-344157

Table 2. 6(t) and O (1) for slab of optical thickness 14 = 1-0

(1) 6.7)
/10
Analytical Analytical
approximation Exact approximation Exact

0 07576 0-758146 0-5157 0-516842
0-05 07226 0-722979 0-5666 0-567455
0-10 0-6943 0-694563 0-6000 0-600637
015 0-6679 0-668163 0-6262 0-626803
0-20 0-6427 0-642872 0-6475 0-647999
025 0-6181 0-618285 0-6647 0-665137
030 0-5941 0-594170 0-6783 0678718
035 0-5703 0-570381 0-6886 0-689045
040 0-5468 0-546809 0-6959 0-696308
0-45 0-5233 0-523372 0-7003 0-700624
0-50 0-5000 0-500000 0-7017 0-702056

Table 3. ©(7) and 8 f7) for slab of optical thickness 1y = 20

6(r) 6,7
T/T¢ e
Analytical Analytical
approximation Exact approximation Exact
0 0-8307 0-830791 0-7384 0-738729
0-05 0-7866 0-786605 0-8815 0-881646
010 0-7508 0-750879 09774 0977575
015 07174 0-717420 10545 1054567
0-20 0-6851 0-685130 1-1177 1-117785
025 0-6535 0-653546 1-1694 1-169444
0-30 06224 0-622417 1-2107 1-210721
035 0-5916 0-591591 1-2423 1-242305
040 0-5610 0-560961 1-2646 1264618
045 0-5305 0-530452 12779 1-277915
0-50 0-5000 0-500000 1-2823 1-282332
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employed to substantiate confidence in our
results.

Since equation (7) is obviously a solution of
the considered equation of transfer, the only
point in question is how accurately that solution
can be constrained to meet the boundary
conditions of the problem. Thus, after con-
structing numerically the expansion coefficients
A and A(n), ideally we should reconfirm point-
wise, ;1 €(0, 1), the boundary conditions given
by equations (13). Since this procedure would
necessitate the numerical evaluation of princi-
pal-value integrals, thus introducing further
errors, we prefer to evaluate instead moments of
equations (13).

In order to develop this measure of the
accuracy of our calculations, we multiply equa-
tions (13) by p*H(u)/f, and integrate over u from
zero to unity; we find

1 1

H, +f QH,\p— FA+H T a7 A-Hyy=

Z a pJA(ﬂ)ﬂ‘dﬂ
2f JA( n)nju"H(u)mdn (27a)

0

and

b+ 23, + St + 3H,00)

"‘2—f1A+Ha f 57 A-[toH, + Hyy 1] =

21 1
1 z :
—_ H, ;| A(— et/ yb 4
=1 (]

1
1 du
+-—1A4 e ~to/n *H __l._..
0

(27b)
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where the moments of Chandrasekhar’s H-
function are [9]
1
H, 4 [ p*H(i) dp. (28)
0

Defining K,(2) to be the relative difference
between the two sides of equation (27a) and
K, () similarly with respect to equation (27b),
we note that for the worst case reported here
K, (@) < Ky(a) < 6 x 10°7, where a=gq,2,3,
.8

Since A and A(ry), 1€ (0, 1), have been estab-
lished accurately, the computation of €(r) and
6 (1) follows directly from equation (11). The
results of these “exact” calculations and the
predictions resulting from the analytical
approximation given by equations (25) are given
in the accompanying tables, where for display
purpose the even or odd character of the
universal functions [13] has been utilized.

As a final indication of the accuracy of our
“exact” calculations, the quantity

to

Fleg & 2 f O EMd  (29)
0

has been shown to differ from the rigorous value
of unity [13] by less than 1 x 107"
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TRANSPORT PAR RAYONNEMENT DANS UNE PLAQUE FINIE
SANS DISSIPATION AVEC UNE SOURCE INTERNE

Résumé—La technique de développement en modes normaux est employée pour I'intensité de rayonnement
dans un milieu fini non-dissipatif avec une source interne et des frontiéres émettrices planes et paraliéles.
Les solutions élémentaires de I'équation de transport unidimensionnelle et les théorémes disponibles pour
le caractére complet et I’orthogonalité sont employés pour obtenir la solution désirée avec un minimum
de manipulation. Les coefficients inconnus du développement apparaissent dans la solution satisfont 4
une intégrale simple pour laquelle des approximations analytiques de précision élevée sont obtenus. De
plus, un processus d’intégration par une quadrature Gaussienne améliorée d’ordre élevé est employé
pour construire numériquement les coefficients demandés du développement, et ainsi les deux fonctions
universelles, # (1) et 8, (z) sont calculées avec une précision “d’atelier”. Puisque I'intensité¢ du rayonnement
est déterminée explicitement, toutes les autres quantités intéressantes, telles que le rayonnement incident,
le flux de chaleur et la distribution de température sont immédiatement disponibles.

STRAHLUNGSAUSTAUSCH IN EINEM GEWOHNLICHEN, ENDLICHEN SPALT
MIT EINER INNEREN QUELLE.

Zusammenfassung—Die “normal-modg expansion technique” wird verwendet um Losungen fir die
Strahlungsintensitit in einem gewd&hnlichen, endlichen Medium mit einer inneren Quelle und plan-
parallelen, emittierenden Grenzflichen zu finden. Die elementaren Losungen der eindimensionalen Trans-
portgleichung und bekannte Vollstindigkeits- und Orthogonaltheoreme werden verwendet um die gesuchte
Ldsung mit einem Minimum an Aufwand zu erhalten. Es wird gezeigt, dass die unbekannten Entwicklungs-
koeffizienten der Losung einfachen Integralgieichungen geniigen, fiir die sich sehr genaue analytische
Niherungen finden lassen. Ferner wird eine verbesserte (Gauss'sche Integrationsprozedur hdherer Ordnung
verwendet um numerisch die erforderlichen Expansionskoeffizienten zu konstruieren ; und damit die beiden
universalen Funktionen 6r) und 6,(r) auf “bench-mark”-Genauigkeit zu berechnen. Da die Strahlungs-
intensitit explizit bestimmt wird, kann man alle anderen interessierenden Gréssen, wie die einfallende
Strahlung, den Wirmestrom und die Temperaturverteilung sofort erhalten.

JYYUCTEII NIEPEHOC B KOHCEPBATMBHOR KOHEYHOR IJIUTE
C BHYTPEHHUM MCTOYHHNHOM

Anporauus—J[JIA pemeHdA 331348 06 NHTEHCHBHOCTH H3IY4EBMA B KOHCEPBATMBHOH
KOHEYHON CpeNé € BHYTPeHHMM MCTOUHHKOM M TUIOCKONADAJIIENbHHMH HATY4Yaloluyy
rPaHMIAMH HCTIOIBL3YETCH TeXHHKA PABIOMKEHHSA N0 HOPMANLHEIM MOJAM. YTofHn NOJy4nTH
HY®HOe pemende HauGoliee NPOCTHM CHOCOGOM, MCHOJB3YIOTCH DIIEMEHTAPHHE DPeleHHS
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OJIHOMEPHOT0 YPABHEHUA MEPEHOCA U CYLIECTBYIOIME Te0PeMbl MOJHOTH H OPTOrOHAIBHOCTH-
IToxasano, uTO HemsBeCTHHIE KOIPOUIMEHTHl DPA3NOMKEHUA, MOABIAKIIMECA B pPEILCHHH.
YAOBIIETBOPAIOT IIPOCTOMY MHTErpaiy, AJIA KOTOPOTO NOJYYeHH AHAIHUTHYECKHME ANNPOKCH-
Manuu Goabiiolt rTounocT. Jlajee MCMOIL3YA NPONEAYPY UHTErPHUPOBAHUA HOCPEICTBOM
yayumenuss I'ayCcoBCKUX KBaZpaTyp BHCOKOr0 NOPANKA, YHCIEHHO HAXOIATCA HY#KHBIE
KOa(UUMEHTE PA3JI0KEHUA U, TAKUM 00pasoM, DACCYMTHBAOTCH [Be VHHBEPCAJbHLIE
$ynkumn 0(7) n 6,() c 3agaHHONl Hamepex TOYHOCTHIO,

ITockombKYy MHTEHCHBHOCTL UBNYYEHUA OIPERENALTCA B ABHOM BHe, BCE APYrHe BeIUYUHH,
HpeACTaBIAONIMEe UHTEPEC, TAKME KaK Najalollee U3IyyeHHe, TEIUIOBON MOTOK H pacmpe-

IeJIeHHe TEMIEPATYPHL HAXONATCA Cpasy ke,
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