
J. Quunr. Sprcfrosc. Rudiat. Transfer. Vol. IO, pp. X65-879. Pergamon Press 1970. Printed in Great Bntain 

AN EXACT SOLUTION OF THE MILNE PROBLEM IN THE 
PICKET-FENCE MODEL 

G. R. BOND and C. E. SIEWERT 

Department of Nuclear Engineering, North Carolina State University, Raleigh. North Carolina 27607 

(Received 2 I Nowmher 1969) 

Abstract-The results of numerical calculations for several of the quantities of interest in a non-gray radiative 
transfer problem are presented. The model considered is the “uniform” or “random” picket-fence model, with 
the assumption of local thermodynamic equilibrium. The extrapolation distance, the integrated black-body 
radiation intensity and the exit angular intensities for the classical Milne problem are explicitly calculated for 
several parametrical representations of the model. 

I. INTRODUCTION 

THE CONCEPT of the picket-fence model as an approximation to non-gray radiative transfer 

for astrophysical applications was discussed by CHANDRASEKHAR(‘) in a paper published 
in 1935. In this model the radiation absorption coefficient is represented by a set of discrete 

values over the entire frequency spectrum, and thus to some approximation the absorption 
by resonance lines is included in the basic formulation of the equations of transfer. The 
defining equations considered by Chandrasekhar are somewhat more general than those 
considered here in that the effect of radiation scattering was included. Our equations, 

in fact, correspond to Chandrasekhar’s case E = 1. 
The Milne problem for the picket-fence model was also investigated by 

CHANDRASEKHAR,(‘) and a solution was constructed within the limitations of the Eddington 

approximation. Various other approximate and numerical solutions have been developed 
and have been summarized by GINGERICH (‘) who considered numerical solutions. 

With the emphasis placed more explicitly on engineering applications, two papers by 

LICK(~) and GRIEF(~) have also discussed the picket-fence model in connection with studies 
of combined radiative and conductive heat transfer; however, because of the complexity 

of the equations involved, only approximate analytical methods were used. 
More recently SIEWERT and ZWEIFEL (5) developed the normal modes of the equation 

of transfer in the picket-fence approximation with the assumption of local thermodynamic 
equilibrium. They also proved the necessary completeness and orthogonality theorems 
and constructed a rigorous solution to the Milne problem. This work has also been extended 
to the generalized picket-fence model’6’ and applied to finite media problems by SIMMONS 

and FERZIGER.“) 

In this paper we investigate numerically the analytical solutions given by SIEWERT 

and ZWEIFEL’~) for the Milne problem and calculate explicitly several of the quantities of 
interest. Also, since these analytical solutions were written in terms ofthe so-called X-function 
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notation more familiar in neutron transport theory, we summarize this earlier work’51 and 
utilize Chandrasekhar’s N-function in order to be more consistent with classical methods 

in radiative transfer.‘8’ 
In Section II we discuss very briefly the picket-fence model with local thermodynamic 

equilibrium, and in Section III we review the normal modes of the equation of transfer 

and discuss the necessary completeness and orthogonality theorems in the H-function 

notation. Section IV is devoted to the Milne problem, and there we give the results ol 
our explicit calculations for the Milne-problem extrapolation distance, the incident 
radiation, the integrated Planck function, and the exit angular intensities (laws of darkening) 
for several sets of basic parameters. 

Il. THE I'IC‘KET-FENC‘F MODbL 

The equations of radiative transfer considered initially are written ast8) 

and 

I I I 

s dvk,R,.[T(z)] = ; dvk, 
* 

s J 
d/J,J;. /1). 

0 0 1 

(‘I 

Here I,,(,-, p) is the frequency-dependent angular intensity, k,. is the absorption coefficient, 

P(Z) is the density of the medium as a function of position Z, T(Z) is the local temperature 
and B,.[T(z)] is the Planck black-body function : 

Equation (1) is simply the balance equation for the radiation of frequency 1’ at position L 
propagating with direction cosine ,u relative to the positiw ;-axis, and equation (7) is ;I 
statement of energy conservation. 

In the picket-fence model, the absorption coefficient is assumed to take either of two 
constant values, kl or As by CHANDRASEKHAR.~') let A~‘i the 
frequency over which k,, has value ki integrate equations and (2) 
obtain 

FIere ,u) is by 

(5) 
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and Wi is given by 

A 7I 
Wi = -4 

c=fT (z) 
B,[T(z)] dv, i = 1 or 2, 

Av, 

(6) 

where 6 is the Stefan-Boltzmann constant. To obtain equation (4) the Schwarzschild 
condition has been used ; for the present model equation (2) takes the form 

,i kj 1 zj(z, P’) dP’. 
J1 -1 

(7) 

We note that in general the Wi are functions of z; however, we proceed in the classical 
manner”’ and consider the case of constant wr and w2. 

We prefer to write equation (4) in the more convenient matrix notation and also to 
introduce an optical variable, 

z 4 k2 r p(z’) dz’, 
.l 
0 

defined in terms of k,, which is taken to be the smaller of the two absorption coefficients. 
Further, we denote the ratio kl/kl by 0 and thus write equation (4) as 

a 
P-h p) + W? P) = c a7 s UT, ~‘1 d/J. 

-1 

Here I(r, cl) is a two-component vector with elements li(Z, cl), while the C-matrix and the 
transfer matrix C are given by 

E= 
(T 0 I I 0 1 

and 

c= 
2(ow,1+w,,~Z’ “::I. 

(10) 

(11) 

We note that equation (9) is analogous to the two-group neutron transport problem 
discussed by DAVISON and *(9) SYKES, however, here we have the simplifying fact that 
det C = 0. 

III. BASIC FORMALISM 

Since the normal modes or elementary solutions of equation (9) and the necessary 
completeness and orthogonality theorems were introduced by SIEWERT and ZWEIFEL,“’ we 
should simply like to state here that part of the previously reported analysis that is germane 
to the Milne-problem solution given in Section IV. In addition to establishing these 
principal features, we believe we have improved the notation and that the use of a 
Chandrasekhar-type H-function instead of the X-function usually encountered in the 
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solution of a class of singular integral equations facilitates the use of this method for radiative 

transfer applications. 
A general solution to equation (9) may be written as 

where the regions of integration 1 and 2 imply respectively q E (- l/o, l/a) and q E (- I, 
-l/o)and(l/a,l),A.,A~,A,(r?),or= 1,2and3, are arbitrary expansion coefficients, and 

c124cJvp) 

@l(ltP) = 

I (‘12V 

WV> PI = 1 fJrl-/l p 
~ c2211 ~+6(r?-I*)[1-2rlL’l1T(llo?)-211(’22T(rl)l 

I V--P 

rlt(-1, -l/o) and (l/a, 1). 

(13e) 

In addition, the symbol P is used in the above equations to indicate that all ensuing integrals 
over ‘1 or p are to be evaluated in the Cauchy principal-value sense, and 6(x) denotes the 
Dirac delta function; the notation here that T(x) 2 tanh-‘(x) should be noticed since a 
similar symbol is used for the temperature. 

The half-range completeness and orthogonality theorems necessary for half-space or 
finite media problems state”) that a “well-behaved”, but arbitrary, function F(,u) may be 
expanded in the manner 
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where the expansion coefficients may be obtained readily by utilizing the following summary 
of orthogonality relations and normalization integrals : 

1 

s @Ct, PWW. dp = 0, 5 E (0, l), a = 1,2, or 3, (15c) 

0 

and 

1 Pt,H(p)I+ dp = N,. Wd) 

Here the superscript tilde denotes the transpose operation, and the matrix H(p) is given 

by 

(16) 

where H(p) is Chandrasekhar’s H-function w for characteristic function Y(p) = c22 + 

cl 1 O(p), with 

W) = f,PE(--1/g, l/a) 

= 0 otherwise. 

Further, 

N,(5) = [1-2~c,,T(a5)-25~22T(5)1~+~~5~(~~~+~22)~, a 

and 

N+ = c~~[;(Y+C~~)]"~. 

(17) 

1 or2, (lga) 

(fgb) 

(18~) 

In addition, the adjoint vectors I\ and CD&c, p) are obtained respectively simply by inter- 
changing cij with cji in equations (13a) and (13e). Because of the degeneracy associated with 
that part of the eigenvalue spectrum for which r] E (- l/o, l/c), the adjoint vectors a:((, P), 
c( = 1 or 2, take slightly different forms : 

@I(<,/4 = ~II(OGI(~, P)+MI~(W~(LP) (194 

and 
@t(L 14 = M21(0G(L d+M22(W2(5, d. (19b) 
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Here 

M,z(ul) = M21h) = ’ [1-2~1.2LT()?)+2Y~(.LZT(~YJ)]. 
(‘22 

and 

( 2Ob) 

We note that C,(& ,LL) and G,(<, ,D) are obtained respectively by replacing c12 with c2, in 

equations (13~) and (13d). 
Thus all of the expansion coefficients in equation (14) can be obtained simply by taking 

scalar products of that equation with the appropriate adjoint vectors ; thus 

and 

(‘lb) 

IV. NUMERICAL RESULTS FOR THE MIl.Nl: PROBLEM 

We should now like to establish the Milne problem solution given by SIEWERT and 
ZWEIFEL,“’ and will proceed to discuss the numerical evaluation of the several quantities 
of interest. We seek a diverging (for large r) solution of equation (9) which satisfies the 

Milne-problem boundary conditions :(8) 

(i) I,,{(O, ,u) = 0, fi E (0, 1) (al) 

(ii) lim c~~‘I,(T. p) = 0. (72b) 
T-X 

A solution which meets this second boundary condition can be obtained from equation ( 12) 
simply by taking A,(q) = 0, q < 0, SI = I, 2 and 3. Thus 

1 in 

where A is an arbitrary normalization constant, and A + and A,(q), c( = 1, 2 or 3. are to 
be determined from the zero re-entrant condition; these expansion coefficients are thus 



An exact solution of the Milne problem in the picket-fence model 871 

determined from 

A- 

Cl2 
l/O 

CT2 

P = A+I+ + 
s 

[Al(vP~h ,4+A2W’2@1, dl drl 

c22 0 

In the manner discussed in the previous section, we now take scalar products ofequation (24) 
and evaluate ensuing integrals to find 

and 

where 

Ai --M 
-_[1-21?C22~(Yl)+24C22~(~YIII, 

A- = H(rl)Wd 

,42(v) 
~- = jq~clr,k” SC2215 

A- 2 

A&/) 
___ = &g&jk2211 

A- 

Wb) 

WC) 

(254 

(26) 

Since all of the unknown expansion coefTicients are now determined, the solution is 
complete : 

I/d 

M? PI = 4(c,~~~c22)~~o~+ +I-(% /4-a j I[1 -2~C22T(r)+21?C22T(~Il)l~)I(Yl,~) 

0 

1 

s 
c22@3h ~1 emriq 

drl 

wd~3(d ’ 
(27) 

l/u 

where the normalization 

2 
7 1 

I I s 1 
I,(t,/&dp p -F 

-1 

cw 
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has been imposed. The surface quantity I,(O, -p, 11 E (0, 1) may be readily obtained from 
equation (27) by utilizing equation (24) and the half-space S-matrix”O.’ ‘) for this problem : 

T,W(O, -p) = (20) 

The intensity of the integrated black-body radiation is found from the Schwarzschild 
condition, equation (7), to be 

(3Oa) 

or more explicitly, 

where the solution given by equation (27) has been used. 
Since solutions for the several quantities of interest here, viz. the Milne-problem 

extrapolation distance, the integrated Planck function and the distribution ofexit radiation. 
have been established analytically, we proceed to evaluate numerically these solutions 
and thus to establish quantitatively the effects of the various parameters. Further these 
numerical calculations should serve to indicate the transport corrections to the Eddington 

(or diffusion) theory approximation. 
Once the required H-functions have been constructed, there remains only to evaluate 

numerically the various explicitly given functions. However, since computational experience 
with the normal mode technique has been rather limited, several precautionary measures 
were taken to establish confidence that our results were valid to the degree of accuracy 

reported here. All calculations were performed in double-precision arithmetic on an 
IBM 360/7.5 computer, and the 81-point improved Gaussian quadrature scheme discussed 
by KR~NROD('~' was the basic method used for the numerical evaluation of required 
integrals. 

In the usual manner,@’ the necessary H-functions were obtained by solving numerically 
the nonlinear integral equation 

I 

1 

H(p) 
- JI.‘P’Il)FI(~.)~~. pL4(- 1,O). (31) 

0 

Replacement of the integration process by numerical quadrature results in a set of nonlinear 
algebraic equations which subsequently may be solved by iteration. The iterative process 
was initiated by setting H(p) to unity and was considered converged when successive 
iterates differed by less than lo-r4; these converged results were then used to verify 
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Chandrasekhar’s identities :(s) 

Wb) 

The errors thus encountered were less than lo- I3 for all cases considered. As an additional 
measure, the converged H-functions were found to satisfy the alternative integral equation,‘*’ 

1 

1 
- = l-/J 

dv 

H(P) 
Y(v)H(v)--- 

\?+p’ 
P $ t - 1, OL (33) 

0 

to within a difference of lo- 13. 
With the H-functions so established the expansion coefficients A+ and A,(q), CI = 1, 2 

and 3, were readily available, and thus the remaining quantities of interest were obtained 
by numerical integration. Initially, we used the 81-point quadrature scheme in each of 
the intervals (0, l/o) and (l/o, 1); however, in a number of cases (generally for large 0 and 
small wl) a rather sharp peak occurs in the coefficient A3(q). This peak is due to the pro- 
nounced variation, for these cases, of N,(q) which appears in the denominator of A,(q). 
In order to minimize the errors in the numerical integration, it was deemed advisable to 
increase the quadrature nodal density by subdividing the interval (l/a, 1) and to apply 
81-point scheme in each of the subintervals. This subdivision was continued until it 
failed to alter the reported values of the integrated black-body radiation intensity. The 
H-function and thus both the extrapolation distance and the law of darkening, being 
independent of A3(q), were found to be rather insensitive to the quadrature order. 

Further confidence in the results was provided by a number of numerical checks, which 
we shall describe. The free-surface boundary condition, equation (22a), is difficult to 
verify pointwise since it involves numerical integration of generalized functions. However, 
a verification of this condition which avoids the distributional nature of the solution can 
be accomplished by computing numerous moments of equation (24). A satisfactory check 
for each component is then 

(34) 

where Mi,(k) and MiL(k) are, respectively, the result of operating on the right- and left- 
hand sides of the ith component of equation (24) with the operator 

o(k)Lf(/4l p ~P'MP)I dp, k = 0, 1, 2, . . . . (35) 
0 

This form of &i(k) is preferred since it is independent of both the normalization of the 
problem and the absolute magnitude of the quantities involved. 
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A second check of the free-surface condition was devised in a similar manner using 
“weight function moments” obtained by operating on equation (24) with 

(36) 

The resulting equations were compared by a rearrangement to the form of equation (34); 
in this case, of course, a scalar comparison has been made, whereas equation (34) was a 
vector check. 

Confidence in the results may be additionally substantiated by a pointwise comparison 
of the law of darkening as given by equation (27) with that given by equation (29) and also 
by comparing the moments of these two equations after using the operator (35). Since 
equation (29) depends only upon an evaluation of the H-function (a procedure in which. 
from above indications, we are fairly confident) then these latter comparisons will be 

essentially a test of equation (27) and thus some indication of how accurately the numerical 
integrations have been performed. As was accomplished above, such comparisons can 

be made independent of the absolute magnitude and the particular normalization by 

dividing through by the term associated with I(0, -cc). 
There is, of course, no rigorous basis for concluding that the checks which we have 

described provide any criterion to validate the accuracy of the results. However, we feel 
that because oftheir number and diversity the above tests provrde some degree ofconfidence 
in the calculations. We are further convinced that such precautionary measures should 
be taken until more computational experience in the normal-mode technique is developed. 

We have utilized the preceding equations to compute several quantities of interest in 
the present problem. The results shown in the accompanying tables have been arranged 
to demonstrate the effects of individual parametrical variations. Table 1 lists the extra- 
polation distance for each of the considered cases. The intensity of the integrated black- 
body radiation is shown in Table 2, while the emergent angular distributions (laws of 

darkening) are presented in Tables 3, 4 and 5. Finally. in Tables 6, 7 and 8. we compare 

,-ABLE 1. TW EXTRAI’OI ATION I)IS’IANC’k 

5 

5 
5 
5 

10 
IO 
IO 
10 

2 
5 
8 
10 
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0.4 
0.6 
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0.2 
0.4 
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0.5 
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0.650810 
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0.499781 
0.376044 

0.657946 
0.602537 
0.529955 
0.409874 

0.566812 
0.545117 
0.560306 
0.569535 
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TABLE 3. THE LAWS ok DARKENING WITH o = 5 

I,(O. - I) t I#, ~- I) 

WI = 0.2 \I’1 = 0.4 H‘, = 0.6 WI = 0.x 

I’ 
i=l j=2 i=l ;=2 [=I j=2 i=l j-2 

0.0 0.05544 0.22177 0.10179 0.15268 0.15191 0.10127 0.21912 0.0547x 
0.1 0.06300 0.32880 0.11978 0.25092 0.18302 0.17959 0.26888 0.10360 
0.2 0.06854 0.40489 0.13331 0.32274 0.20711 0.23997 0.30852 0.14366 
0.3 0.07344 0.47333 0.14541 0.38739 0.22903 0.29529 0.34529 0.18143 
0.4 0.07795 0.53805 0.15665 0.44832 0.24966 C.34785 0.38041 0.2 1792 
0.5 0.08220 0.60058 0.16728 0.50700 0.26939 0.39866 0.41442 0.25356 
0.6 0.08626 0.66170 0.17746 0.56418 0.28843 0.44828 0.44758 0.28862 
0.7 0.09016 0.72186 0.18728 0.62032 0.30692 0.49705 0.48009 0.32323 
0.x 0.09394 0.78132 0.19680 0.67570 0.32496 0.54517 0.51205 0.35752 
0.9 0.09762 0.84025 0.20609 0.73050 0.34262 0.59280 0.54355 0.39154 
1.0 0.10122 0.89878 0.21516 0.78484 0.35995 0.64005 0.57465 0.42535 

TAHLE 4. THE LAWS OF IIAKKENING WITH 0 = IO 

[,(O. --1)+1,(0, I) 

WI = 0.2 \1‘, = 0.4 H', = 0.6 ,VI = 0.8 

1' 
i=l j=2 i=l i=2 i=l ;=2 i=l r-2 

0.0 0.04484 0.17935 0.07836 0.11753 0.11647 0.07765 0.17510 0.04377 
0.1 0.05134 0.32064 0.09291 0.24785 0.14099 0.18372 0.21525 0.11433 
0.2 0.05592 0.40636 0.10369 0.33317 0.15983 0.26008 0.24712 0.17077 
0.3 0.05983 0.47987 0.11319 0.40633 0.17687 0.32722 0.27657 0.22259 
0.4 0.06335 0.54793 0.12190 0.47359 0.19278 0.38946 0.30460 0.27172 
0.5 0.06657 0.61300 0.13002 0.53744 0.20788 0.44871 0.33162 0.31908 
0.6 0.06958 0.67622 0.13770 0.59914 0.22234 0.50598 0.35786 0.36521 
0.7 0.07241 0.73822 0.14500 0.65936 0.23627 0.56187 0.38347 0.41045 
0.8 0.07511 0.79934 0.15200 0.71855 0.24975 0.61676 0.40854 0.45501 
0.9 0.07768 0.85983 0.15873 0.77695 0.26284 0.67088 0.43314 0.49904 
1.0 0.08016 0.91984 0.16523 0.83477 0.27558 0.72442 0.45733 0.54267 
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TABLE 5. THE LAWSOFDARKENING WITH wl = 0.5 

I,@, - l)+r,(o. - 1) 

(r=2 a=5 a=8 c = 10 

P 
i=l i=2 i=l i=2 i=l i=2 i=l i=2 

0.0 0.16133 0.16133 0.12573 0.12573 0.10536 0.10536 0.09616 0.09616 
0.1 0.19382 0.21975 0.14985 0.21510 0.12604 0.21452 0.11532 0.21555 
0.2 0.21975 0.26702 0.16824 0.28210 0.14167 0.29178 0.12979 0.29743 

0.3 0.24388 0.31159 0.18484 0.34285 0.15566 0.35976 0.14272 0.36837 
0.4 0.26702 0.35478 0.20035 0.40027 0.16863 0.42293 0.15468 0.43375 
0.5 0.28953 0.39712 0.21510 0.45564 0.18086 0.48319 0.16594 0.49584 

0.6 0.31159 0.43890 0.22928 0.50962 0.19252 0.54156 0.17664 0.55581 
0.7 0.33331 0.48028 0.24299 0.56262 0.20371 0.59860 0.18689 0.61431 
0.8 0.35478 0.52136 0.25633 0.61490 0.21452 0.65468 0.19676 0.67175 
0.9 0.37603 0.56221 0.26935 0.66662 0.22499 0.71003 0.20630 0.72840 
1.0 0.39712 0.60288 0.28210 0.71790 0.23517 0.76483 0.21555 0.78445 

CT WI Diffusion theory* Transport theory 

5 0.2 0.6019 0.650810 
10 0.2 0.6065 0.657946 

*CHANDRASEKHAR.(" 

our results with those given by CHANDRASEKHAR (l) who used the Eddington or diffusion 
theory approximation. 

For each case, the checks mentioned above were performed through the tenth moment. 
Of these; the maximum difference occurred consistently in the first component of the 
free-surface boundary check and was less 5 x 10m6. The comparison of the law of darkening 
as given by equations (27) and (29) was made at 20 equally spaced points covering the 
interval (- 1,0) and here the difference was never greater than 2 x 10e6, with the maximum 
difference always occurring at p = 0. Because of the close agreement of these checks, as 
well as the other precautionary measures taken, we have confidence in the values to the 
degree of precision reported. 
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TAHLE 7. DIFFUSION ANII TRANSPOKT THEORY RI:SULTS KM H(r) 

0 = 5, W, = 0.2 

Diffusion theory* Transport theory 

0.00 0.4127 0.35215 
0.02 0.4445 0.40400 
0.05 0.4893 0.45984 
0.10 0.5577 0.53707 
0.20 0.6778 0.66695 
0.30 0.7841 0.78118 
0.40 0.8829 0.88713 
0.50 0.9774 0.98809 
0.60 1.0696 1.08581 
0.80 1.2506 1.2753X 
1 .oo 1.4299 1.46047 
1.20 1.609 1.64314 
1.40 1.787 1.X2442 
1.60 1.966 2.00483 
1.80 2.145 2.18469 
2.00 2.323 2.36417 
3.00 3.216 3.25901 
4.00 3.109 4.15233 

- 

* C~HANIIRA~EKHAR.“’ 

fJ = IO. M, = 0.2 

Diffusion theory* Trnnsport theory 

0.3398 0.2X.577 
0.3949 0.3633') 
0.4660 0.44024 
0.5620 OS3875 

0.7040 0.68905 
0.8162 0.x1130 
0.9155 0.92072 
1.0100 I.02354 
1.1027 I.12271 
1.2863 I.3 1577 
1.4693 1.503XY 
1.652 1.6904X 
I.835 LX75XX 
2.01X 2.06053 
7.701 2.24468 
2.384 2.42X4X 
3.290 3.34504 
4213 4.26014 

TABLE 8. DIFFUSION ANII TRANSPORT IHEORY RESULTS FOR THE I.AWS OF I)ARKIZNING 

I,((). ~ IIt I,((). -I) 

I’ 
(i = 5, 11’, = 0.2 

Diffusion theory* Transport theoq 

0 = IO, “I’, = 0.2 

Diffuswn theory* Transport theory 

0.0 

0.1 

0.2 
0.4 
0.6 
0.x 
0.') 
I .o 

II.3241 0.27122 0.2684 0.22419 
0.4234 0.391x0 (3.3963 0.37198 
0.4997 0.47343 0.4808 0.4622X 
0.6330 0.61600 0.6163 0.61127 
0.7578 0.74796 0.7514 0.74580 

0.8797 0.87526 0.8768 0.x7445 
0.9400 0.93787 0.9386 0.93752 
1.0000 I .ooooo I .oooo I .ooooo 

* CHANI~RASEKHAR.“’ 
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