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Abstract—The normal-mode-expansion technique is used to solve a class of non-grey radiative heat transfer
problems in finite plane-parallel media appropriate to radiative and local thermodynamic equilibrium conditions.
The frequency-dependent absorption coefficient is characterized by a two-band ‘picket-fence’ model. The
boundary surfaces are maintained at uniform, but arbitrary, temperatures and are allowed to be diffuse emitters
of radiant energy and to possess both specular and diffuse components of reflectivity. Rigorous solutions of the
vector equation of transfer are constrained to meet the considered boundary conditions, and pertinent orthog-
onality relations are invoked to convert the resulting singular integral equations to coupled non-singular integral
equations. All relevant integrals are represented by a high-order Gaussian-quadrature scheme, and the system
of regular integral equations is solved iteratively to yield sufficiently accurate solutions for the required expansion
coefficients. In addition to being used to evaluate the accuracy of developed, tractable analytical approximations,
these ‘exact’ expansion coeflicients render available the complete angular intensity of radiation at any optical
depth in the medium. To report a parameter survey tabular results are given for the temperature-profile and
heat-flux functions for a representative class of cases.

1. INTRODUCTION

THE picket-fence model as an approximation to non-grey radiative transfer has been
discussed in two early papers by CHANDRASEKHAR'" and MUNCH.®® The fact that the
absorption coefficient is represented by a set of discrete values, rather than a single value,
is basic to the picket-fence model, and thus the effects of resonance lines are included in the
formulation of the equation of radiative transfer. As one of the first astrophysical applica-
tions of this model, CHANDRASEKHAR!) has reported a diffusion-theory solution of the
classical Milne problem, and more recently BOND and SIEWERT® numerically evaluated
the exact analytical solution'® of the Milne problem.

With the emphasis directed more explicitly toward engineering applications, Lick®
and Grerr'® have discussed the picket-fence model in connection with a study of combined
radiative and conductive heat transfer ; however, because of the complexity of the equations
involved, only approximate analytical methods were used. The most elegant and rigorous
work on the engineering aspects of this non-grey heat transfer model is that of SIMMONS
and FERZIGER!” who used the normal modes'® of the equation of transfer as a basis for
numerical calculations in finite plane-parallel media. Though the work of SiMMONS
and FerziGER'” represents the first semi-analytical treatment of finite-slab problems
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appropriate to the picket-fence model, they consider only the case of black boundaries
and do not attempt to report calculations of bench mark accuracy.

In the present paper, we report the required extension of the analysis of finite-slab
problems, defined in terms of the picket-fence model, to include the effects of specularly
and diffusely reflecting boundaries. We cast our analysis in the familiar H-function notation
of CHANDRASEKHAR®), and we illustrate that computations relevant to the considered
model can be made with a suitably high degree of precision. Further, we present the results
of a rather extensive parameter survey and investigate several approximations to the
‘exact’ solution.

Since the picket-fence model to non-grey theory has been reviewed recently by SIMMONS
and FerRZIGER,!” we give here only a brief sketch of the formulating equations. We consider
the equation of transfer

)
#a—zl Az, 1) + p2)k, (2, p) = p(2)k,B,[T(2)], 1)

where I,(z, u) is the radiation intensity, considered as a function of the frequency v, the
position z, and the direction cosine u (measured from the positive z-axis) of the propagating
radiation. Further, p(z) denotes the density of the medium, &, is the frequency-dependent
absorption coefficient, and B,[T(z)] is the Planck black-body function:

2hy? h -1
B[T(2) = C—I[exp(ﬁ) - 1} . @

We now consider that the entire frequency spectrum is divided into two (uniform or
non-uniform) bands Av, and Av, such that the radiative properties are constant in the
two regions. Denoting the two constant values of k, by k,, ve Av,, and k,, ve Av,, we
integrate equation (1) to find

1
0
ugo Ao, ) + B, ) = € f I, 1) A, 3)
=1

where the condition of radiative equilibrium,

w© o 1

1
[rBarenar =3 [k [ 1@ auas, @)
0 0 -1

has been used. Here I(z, y) is a two-vector with elements I(t, u) defined by

i = [Lewd,  i=1or2 5)
Av;
and 7 is the optical variable defined in terms of the smaller of the two values of the absorption
coeflicient (assumed without loss of generality to be k,):

dr = p(2)k, dz. (6)
Further, in writing equation (3), we have defined the removal matrix as
c 0 k
T = =1
0o 11° B 1, (7a)




Non-grey radiative transfer 1443

and the transfer matrix as

1 olw, ow,
= 7
2Aow; + W) ow,  w, |’ (76)
where w, and w, are given by
n
. = ——— i = 2
w; 7% (z)f B,[T(2)] dv, i=1lor2 8)

Avq

with & denoting the Stefan—Boltzmann constant and T(2) the local temperature. Clearly
w; and w, must sum to unity.

Seeking solutions in the medium bounded by parallel planes at z = 0 and z = z,,
we consider frequency-dependent boundary conditions of the form

1
h®40=8n3iﬂ]+ﬁﬁJﬂl—#)+2ﬂvfhmr-WWWW$ ue@©1), (©a)
0
and
1
a0, 1) = e BT + P3uLe0s ) + 204, [ Laos kW dW,  we @1, O
0

Here T,, ¢,,, p5, and p2,, « = 1 or 2, are respectively the temperature, emissivity, specular
reflectivity and diffuse reflectivity at the boundary surfacesz = 0(x = 1)and z = z4 (x = 2).

Consistent with the considered two-band model, we now assume (as was assumed for
the absorption coefficient k,) that the emissivity and reflectivity also have two values;
we thus integrate equations (9) over the frequency ranges Av;, i = 1 and 2, to find the
required boundary conditions on the two-vector I(z, u):

1
10, p) = A; + BKO, —p) + 2B] f 10, — ) dy, pe(©1), (10a)
(4]
and
1
I(to, —p) = Ay + B3l(zo, p) + ZB‘ifI(fo,u’)u’ dy', pe(01) (10b)
(V]

Here 1, is the optical thickness of the slab and A,, B, and B¢, « = 1 or 2, are known con-
stants defined in terms of previously mentioned quantities:

€41 Wy

A=2T (11a)

€22 W3
and

Pa 0 s,a=1lor2i=sord (11b)
0 pi;

B. =
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With the foregoing definitions introduced, we proceed to construct a solution to the
considered equation of transfer, equation (3), constrained to satisfy the boundary conditions
given by equations (10).

2. GENERAL ANALYSIS

Since the normal modes for the equation of transfer have been established, we write
the general solution to equation (3) as

1/e 1

I, )= A0, + A1 (1, ) + f A(mM®y(n, e dn + | Ay®(n, pe "dn, (12)
-1

—1fo
where
1 1
—C12 3012(1’ — /o)
+ = s I.(t,pn) = ) 13a,b
! €22 =0 Caa(t — 1) (132,0)
@ _ cy20(0n — )
= | b ne(=1e1/o) (13c)
and
D, 1) = @,(n, WO(n) + Ps(n, w)[1 — On)]. (13d)

Here we have written ®(y, u) as a sum of the vectors

Ci121 P + don — Wl —2nc,7 (on)]
®,(n, p) = ,  ne(—1/s,1/0), (14a)

Caall,— + o(n — w1 — 2nc,,7 ()]
and
1
012’76’1 .

Dy, p) = p )

Coall—— + 0 — w| 1 — 2nc T |—| — 29¢,,T .

22l + ol u)[ ncyy (an) nC2, (n)]

—1, —1/o and /g, 1, (14b)

by utilizing the definition
Om) =1, ne(-1/s,1/0),

(15)
=0, otherwise.
In addition, the symbol P is used in the above equations to indicate that all ensuing integrals
over 5 or u are to be evaluated in the Cauchy principal-value sense, the Dirac delta function
is written as §(x) and, for the sake of brevity, the abbreviation J(x) = tanh ™! x is used.
Since equation (12) has been shown® to be a rigorous solution to equation (3), there
remains only the need to construct the expansion coefficients A, , 4_, 4,(n) and A(n)



Non-grey radiative transfer 1445

such that the solution will satisfy the appropriate boundary conditions, equations (10).
Before proceeding to the determination of these expansion coefficients, however, we note
that the integrated black-body function (or alternatively the temperature distribution)
follows immediately from equations (4), (8) and (12):

1
G 1 a|T J‘
0 T — Iz, 1) dgs,
B(7) nT (7) 2ow, T wy)|1 (r, Wy dp (16a)
-1
or
1
R —1t/n
B(1) Sow. T wz)[A+ +1A_ + fA(n)e dnl. (16b)
-1
Similarly, the radiative heat flux is given by
|1| T /lv
a@ = 2x | | Ko wpdp (17)
-1
which simplifies to the constant
q= —2nfA_, (17b)
where we have defined
2( 1
B= E(FCIZ + 022)- (18)

We use the superscripts T and tilde interchangeably to denote the transpose operation.

If we now substitute the solution given by equation (12) into equations (10), we find
that the required expansion coefficients must satisfy the following system of singular
integral equations:

1/o 1

A+ L = 4,0, + f_A,(n)ml(n,u)dw f Amy®m, p)dn,  ue©,1), (19)
0

0

and

1/o

Ap+ Ly = AL, + f Ay(—n)®,(r, 1) € di
(]

1

+ f A(-m)®(, e dy,  pe©,1),  (19b)
0
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where
Ly(u) = A[B§ + B{lI, + A_[yE + 4B} + $B{IE7 1,

1/o

4 f (A BL®,(— 1, 1) + 2B, ()]

4]
+ Ay (=) [— Py (—n, u) + B{®(n, p) + 2BI,(—n)]} dn
+ [ {4 (B (=1, ) + 28300

0

+ A(—n)[—®(—n, 1) + Bi®(n, p) + 2BIH(—n]}dy,  pe(0,1), (20a)
and
Ly(w) = A.[B5 + B —E)l, + A_[14B5 + B} —E) + E — (uE + uB + 3BT 'L,
1/o

+ J{Al(”)[Bsiq)x(ﬂ, W — Ql(—n, w + 2B§J1(—n)} e~ To/M
0

+ A=) [By® (1, 1) + 2B3J ()] "} dy
1

+ [ (A B30, 1) — W1, 1) + 28L3(~ne
0

+ A(—n)[B®(—n, p) + 2B3I(m)] e} dy,  pe(0,1). (20b)

Here we have used E to denote the unit matrix and invoked the definitions

1 1
3,n) = f ®,(7, —uyt dys and J() = f O, —pudu. (21a,b)
0 ]

From the half-range-expansion theorem proved by SIEWERT and ZWEIFEL,"* we know
that the right-hand sides of equations (19) are sufficiently general for expansions of arbitrary
two-vectors whose elements satisfy a required Hélder condition.® In fact, the orthogonality
theorem reviewed in the H-function notation by BOND and SIEWERT*) may be employed
to solve equation (19a) in the manner

1
A, = N—+[I+’A1 + L, (1)}, (22a)
no_ 1 ’ ’
Ay(n') = W[‘”Jﬂ 1), Ay + Ly(w), n' €(0, 1/0), (22b)
and
NS S , ,
A(r,) - ﬂ’H(",)N(rI’) [‘b(r’ > ”), Al + Ll(l“)]’ '7 € (05 1)' (220)
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Similarly, from equation (19b), we find

1
4. = TV_;[I"’A’ + L,(w), (23a)
—to/n’
A(—n) = r’—,ﬁ(‘m,‘)[d’x(ﬂ A, + La(p), n €(0, 1/0), (23b)
and
—toln’
A1) = o [ O, ), Ay + L], 7/ €(0,1). (23¢)

n'H(n')N(n)
Here we have defined the scalar product by

1
(X(w), Y(u)] = J. X' (wH ()Y (s) dp, 24
]

with X'(u) denoting the transpose adjoint of the eigenvector X(u). The ‘weight’ matrix is
given by

uH(p/e) 0
0 kH(p)
where H{u) is Chandrasekhar’s H-function® for the characteristic function W(u) = ¢,, +

¢,,©(u). Though an analytical form of H(u) is available,* ' an iterative solution of the
non-linear integral equation

H(y) = ’

, (25)

1
1 dv

- of HOO) T, #e1) 26)

provides the most efficient method for establishing H(x) numerically. The adjoint eigen-

vectors and the normalization factors appearing in equations (22) and (23) follow from
previously reported work :4

I, =caa) | (27a)
®l(n, p) = M, (MG (1, p) + M1,(NG(n, p), (27b)

and
®'(n, 1) = [M (MG, 1) + Mo,(mGa(n, 1O(m) + @3, w1 — O]  (27c)

where G, (7, ), G,(1, u), and ®4(n, p) follow respectively from equations (13c), (14a), and
(14b) by replacing c;; with c;;. The functions M, (n) are listed in Appendix A. In addition,
the normalization factors are

N, = szx/ﬂ, (28a)
Ny(m) = [1 = 2ncy, T (on) — 2nc2, T ()] + nPnP(cyy + €20 (28b)
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and

1 2
N(n) = [1 — 2ncy2 7 () — 211011{0('1)9_ (om) + (1 — OM)]T (Eﬁ) H + 2 n*¥2(n). (28¢)

It is quite clear (by comparison, for example, with the analysis reported by Ozisix and
SiIEWERT! ! for the grey analogue to this problem) that since L, (u) and L,(u) are themselves
expressed in terms of expansion coefficients, equations (22) and (23) yield coupled integral
equations, rather than the closed-form results obtained for typical half-space problems.”®

If we now write the sought expansion coefficients in the forms

A, Ay(n) Aln)
A= , A = , and A(y) = , 29a, b, c
’A_ W) Ay(—1) () A(—1) ( )
equations (22) and (23) can be written more explicitly in matrix notation :
l/o 1
SA=G + [UnAmdn+ [ Vimdr, (302)
0 0
1/o
SimA (M) = G,(n') + W, (A + JUl(n, n')A(n) dn
0

1
+ [Viewmamadn, e, 170, (30b)

0

and
1/
S()A(M') = G(n') + W(n)A + f U(n,n")A(n)dn
0

1
+ [Vomaman,  reo, (30¢)

]

where, for the sake of continuity, we defer the definitions of all new, but known, functions
to Appendix B. The ‘cross-product’ integrals required here are listed in Appendix A for
reference. Further, in writing equations (30), we have made the assumption that the specular
reflection at the boundary surfaces is grey, i.e. we have taken

B = plE, = 1or?2. 31)

We note that the assumption here of grey specular reflection can be relaxed ; however,
the ensuing complications are considerable. For non-grey specular reflection, equations (30)
remain singular, as opposed to the regular nature of those equations for grey specular
reflection. Though a procedure similar to that used by KuszerLL'? for a two-media
problem related to the grey equation of transfer can be followed to regularize equations (30)
for the case of non-grey specular reflection, we do not report the required analysis here.
Since non-grey diffuse reflection is considered in the present work and since there appears
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to be little difference between the effects of specular and diffuse reflection, we do not consider
non-grey specular reflection.

It is rather unlikely that analytical solutions to equations (30) exist, and thus two
procedures may be pursued: either reasonably tractable approximate solutions may be
obtained analytically for A, A(n), A(n), or, as discussed in the next section, accurate
numerical solutions may be computed by solving these regular integral equations iteratively.
We obtain our lowest-order approximate solution by neglecting entirely the continuum
coefficients in equations (30):

AV =0, AV =0, and AV =S"'G (32a,b,¢)

Similarly, the next-order approximation is developed by substituting equations (32) into
the right-hand sides of equations (30b) and (30c) to find

AP(y) = ST HMG(n) + Wi)ST'G), 7' €(0, 1/o), (33a)
and

ANy = STH)GM) + W)STIG],  7'e(0,1); (33b)
these results can now be entered into equation (30a) to yield

1/

A® = s—l{c + [ VST IG1n) + WienS ™G dn
0

1
+ f VS~ m)[G) + WS~ 'G) dn}. (330)
[4]

In the next section the accuracy of these two analytical approximations is investigated
by comparing each to our ‘exact’ numerical solutions of equations (30).

Equations (30) are the basic equations to be solved for the general case of non-grey
emitting and diffusely reflecting, and grey specularly reflecting boundaries, and, as such,
contain many special cases. In particular, for the special case without specular reflection,
we find it convenient (for purposes of reporting our computations) to write the desired
solution in terms of an albedo problem independent of surface parameters. If we let ¥(z, p)
denote a 2 x 2 matrix solution of equation (3) such that

YO,u)=E, pe(01), (34a)
and
¥(to, —) =0, ue(01), (34b)

then the solution I(z, ) to equation (3) which satisfies

1
10, ) = A; +2B] JI(O, - dy,  pe(0,1) (35a)
o
and

1
It,, — ) = A, +2B¢ fl(ro, W de,  pe@1), (35b)
(4]
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can be expressed as

I(z, ) = ¥(r, WL + P(zo — 1, —p)R. (36)
Here the two vectors L and R are the easily established solutions of the algebraic equations
L = A, + 2B{[PL + QR] (37a)

and
R = A, + 2B%[QL + PR}, (37b)

where P and Q can be computed from the solution of the albedo problem :

1
P f W0, — o du (382)
0
and
1
Q- f ¥(to, wu dp. (38b)
0
We note that since
17 11T
= — 9
.15 (P + Q] 2’1 : (39)

a maximum of six of the eight matrix elements defined by equations (38) are independent.
In terms of this basic albedo problem, we write the heat flux and the temperature
distribution as

q=12m TQ[L — R] (40)
and
%T‘(t) =T(7)L + I'(t, — 7)R, 41
where we have invoked the definition
1
rg=— Lt |7 J W(z, ) dpe (42)
2(ocw; + wy)|1 J

3. NUMERICAL ANALYSIS AND RESULTS

As noted previously, equation (12) is a rigorous solution of the considered equation of
transfer; however, upon constraining that general solution to meet the boundary con-
ditions represented by equations (10), we obtained equations (30), the coupled integral
equations from which the required expansion coefficients must be determined. Thus, in
contrast to typical half-space applications® for which solutions for the expansion
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coefficients can be written in closed form, we must solve equations (30) iteratively to yield
the final ‘exact’ semi-analytical result. On the other hand, equations (12), (32) and (33) are
tractable analytical approximate solutions. Clearly, once the expansion coefficients are
determined, the radiative flux and the temperature distribution (and any other moment
of the radiation intensity) will follow immediately from equations (12), (16) and (17).

Using an improved Gaussian-quadrature scheme'® to evaluate the integral terms,
we have solved equations (30) iteratively to yield numerical results for all expansion
coefficients. The analytical approximations given by equations (32) were used to initiate
the calculation, and the iterative procedure was terminated when successive iterates yielded
expansion coefficients in agreement to at least ten significant figures. For all cases studied,
convergence was achieved in an average of 8 and a maximum of 24 iterations. It was
observed, as expected, that convergence became less rapid as the slab thickness was
decreased.

All computations were performed in double-precision arithmetic on an IBM 360/75
computer, and the 81-point improved Gaussian-quadrature scheme’® was the basic
method used to evaluate required integrals. For most cases studied, an 81-point scheme in
each of the intervals (0, 1/6) and (1/s, 1) provided results of sufficient accuracy ; however,
in a few cases (specifically for large ¢ and small w,) it was necessary to subdivide the
interval (1/o, 1) and to apply the 81-point scheme in each subinterval. The H-functions
required in the calculations were constructed by solving equation (26) iteratively in the
usual manner.®

In contrast to SIMMONS and FERZIGER’s work,'” where only black boundaries were
considered, we encounter here the need to evaluate numerically Cauchy principal-value
integrals, which arise as a consequence of various scalar products and are characterized
by equations (A-16) of Appendix A. These integrals can be evaluated from the expression!

: dp . _ du a—n
P f () - f (kH( rlH(n)]——ﬂ_n+nH(n)ln( . ) ne,a), @3)

which, of course, requires the derivative of H(u). Rather than compute this derivative from
the H-function tabulations, a procedure surely to be avoided, we prefer to base this cal-
culation on

dn

w0 pre(0,1), (44)

e HG) = k) [ ot
” 0

a form resulting from the non-linear H-equation.

Since we consider the calculations reported here to be highly accurate, we would like
to mention several checks employed to substantiate confidence in our results. To develop
one such check, the calculations were performed with an integration scheme having N nodal
points and then repeated with a scheme having 2N nodal points. This doubling procedure
was continued until two successive calculations failed to alter the reported values. For the
albedo problem, a check of computed values of the matrices Q and P is provided by
equation (39), which was verified to at least five significant figures for all cases considered.
The basic test of the computed expansion coefficients is how accurately the boundary
conditions, equations (10), are satisfied. Since the distributional nature of the continuum
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eigenvectors limits the accuracy of a pointwise verification of the boundary conditions, we
have chosen to consider, instead, various moments of equations (10). To illustrate these
checks, we consider equations (10) rearranged and written symbolically as L(u) = R(u),
u € (0, 1). We have computed

1 1
f Lt du and f R dy, k=0,1,2,...,10,
0 0

and found agreement consistent with the data reported herein. Although the above checks
do not rigorously guarantee the accuracy of our results, we believe that the number and
diversity of these checks provide a reasonable degree of confidence in our reported values.

We should now like to present the results of numerical solutions to the albedo problem
for a wide variety of cases. In Tables 1-3, we list a choice of six elements of the matrices
P and Q for representative values of the parameters o, w; and t,. These values plus
equation (39) permit the calculation of the radiative heat flux for diffusely reflecting
problems through equation {(40), with L and R being evaluated from equations (37). Table 4
is devoted to a compilation of the elements I';(t) and I",(z) of I'(z) required in equation (41)
to evaluate the temperature distribution, again for diffusely reflecting problems. Thus,

TABLE 1. SIX ELEMENTS OF P AND Q REQUIRED FOR DIFFUSE PROBLEMS WITH g = 2

Wy To Py, Py P, (02%) 0 129)

0.1 0.1 0.012404 0.0069553 0.062597 0.0067931 0.061138 045103
0.1 0.5 0.030880 0.020657 0.18591 0.016842 0.15158 0.33472
0.1 1.0 0.038264 0.028140 0.25326 0.017796 0.16017 0.25775
0.1 20 0.043789 0.034939 0.31445 0.014180 0.12762 0.17911

0.1 10.0 0.051346 0.045214 0.40693 0.0042888  0.038599 0.052970

0.3 0.1 0.032546 0.018254 0.042592 0.017838 0.041622 0.43994
0.3 0.5 0.085250 0.057245 0.13357 0.047123 0.10995 0.30357

0.3 1.0 0.10816 0.080254 0.18726 0.051933 0.12118 0.22159
0.3 20 0.12567 0.10178 0.23749 0.042802 0.099872 0.14729
0.3 10.0 0.14873 0.13371 0.31198 0.012895 0.030087 0.042172

0.5 0.1 0.048202 0.027039 0.027039 0.026434 0.026434 0.43131
0.5 0.5 0.13172 0.088715 0.088715 0.073589 0.073589 0.27642
0.5 1.0 0.17091 0.12778 0.12778 0.084339 0.084339 0.18749
0.5 2.0 0.20184 0.16574 0.16574 0.072137 0.072137 0.11504
0.5 10.0 0.24152 0.22154 0.22154 0.021748 0.021748 0.031126

0.7 0.1 0.060721 0.034066 0.014600 0.033314 0.014277 0.42440
0.7 0.5 0.17197 0.11612 0.049765 0.096925 0.041539 0.25252
0.7 1.0 0.22795 0.17156 0.073524 0.11520 0.049369 0.15518

0.7 20 0.27395 0.22783 0.097642 0.10253 0.043942 0.081973
0.7 10.0 0.33213 0.31088 0.13323 0.031128 0.013341 0.019501

0.9 0.1 0.070960 0.039814 0.0044238  0.038946 0.0043273  0.41875
0.9 0.5 0.20724 0.14022 0.015580 0.11765 0.013073 0.23133
0.9 1.0 0.28031 0.21217 0.023575 0.14464 0.016071 0.12449
0.9 20 0.34318 0.28884 0.032094 0.13427 0.014919 0.047760
0.9 10.0 0.42279 0.40405 0.044895 0.041402 0.0046002  0.0068754
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TABLE 2. S1X ELEMENTS OF P AND Q REQUIRED FOR DIFFUSE PROBLEMS WITH ¢ = 5

w1 To Py Py, Py 012 %) 032

0.1 0.1 0.040449 0.011537 0.10384 0.011037 0.099335 0.44666
0.1 0.5 0.063160 0.026121 0.23509 0.018303 0.16472 0.33193
0.1 1.0 0.066952 0.031570 0.28413 0.015337 0.13803 0.25827
0.1 20 0.069678 0.036407 0.32766 0.010753 0.096774 0.18072
0.1 10.0 0.073753 0.043997 0.39598 0.0031748  0.028573 0.053442

0.3 0.1 0.087508 0.025083 0.058527 0.024083 0.056194 043346
0.3 0.5 0.15433 0.067162 0.15671 0.049208 0.11482 0.29862
0.3 1.0 0.16731 0.085398 0.19926 0.044479 0.10378 0.22440
0.3 20 0.17537 0.10073 0.23503 0.031632 0.073808 0.15376
0.3 100 0.18635 0.12341 0.28795 0.0091302  0.021304 0.044264

0.5 0.1 0.11412 0.032791 0.032791 0.031541 0.031541 0.42592
0.5 0.5 0.21999 0.098966 0.098966 0.074663 0.074663 0.27166
0.5 1.0 0.24484 0.13286 0.13286 0.073415 0.073415 0.19190
0.5 20 0.25927 0.16141 0.16141 0.054121 0.054121 0.12586
0.5 10.0 0.27685 0.20119 0.20119 0.015272 0.015272 0.034909

0.7 0.1 0.13125 0.037768 0.016186 0.036369 0.015587 0.42105
0.7 0.5 0.27090 0.12477 0.053472 0.096098 0.041185 0.24919
0.7 1.0 0.31036 0.17715 0.075921 0.10303 0.044155 0.15946
0.7 20 0.33359 0.22398 0.095991 0.080860 0.034654 0.094013
0.7 10.0 0.35881 0.28627 0.12269 0.022413 0.0096056  0.024200

0.9 0.1 0.14320 0.041248 0.0045831  0.039749 0.0044165 041764
0.9 0.5 0.31206 0.14628 0.016254 0.11442 0.012713 0.23011
0.9 10 0.36876 0.21982 0.024425 0.13368 0.014854 0.12648
09 20 0.40512 0.29339 0.032599 0.11537 0.012819 0.054490
0.9 100 0.44154 0.39162 0.043513 0.032087 0.0035653  0.010050

both the heat flux and temperature distribution for a problem with any type of diffuse
boundaries (as characterized by equations (35)) are easily obtained from the information
in Tables 14.

We have investigated the effects of purely specular as opposed to purely diffuse reflection
on both the net radiative heat flux and the temperature distribution within the medium.
Figure 1 shows the temperature distribution for each type of reflection, with the surfaces
at ¢ = 0 and T = 7, maintained at temperatures T; and zero respectively. To emphasize
the effects of reflectivity, we have taken the wall at = 0 to be opaque and highly reflective
by choosinge,,; = &, = 0.1,and the surface at T = 1, to be non-reflecting. The temperature
distribution within the medium is slightly higher with specular reflection than with diffuse
reflection. The magnitude of the corresponding heat flux, however, is smaller with specularly
reflecting walls than with diffusely reflecting walls ; but the difference is less than one percent,
and we do not present these results. Analogous comparisons for various other values of
6, Wy, To have led to similar conclusions. To characterize the difference in temperature
between specularly and diffusely reflecting cases, we present in Table S the percent differ-
ences in the resulting temperature distributions for selected cases.

To illustrate the effects of non-grey boundaries on the temperature distribution, we
consider a slab with a diffusely reflecting and emitting boundary at T = 0 maintained at
temperature T;, and a non-reflecting boundary at © = 1, maintained at zero temperature.
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TABLE 3. SIX ELEMENTS OF P AND Q REQUIRED FOR DIFFUSE PROBLEMS WITH ¢ = 10

Wy To Py Py, Py Q12 02 1079

0.1 0.1 0.079747 0.014709 0.13238 0.013756 0.12380 0.44375
0.1 0.5 0.096882 0.026891 0.24202 0.016556 0.14900 0.33268
0.1 1.0 0.098978 0.030990 0.27891 0.012882 0.11594 0.25985

0.1 20 0.10079 0.034953 0.31458 0.0089564  0.080607 0.18200
0.1 10.0 0.10360 0.041268 0.37141 0.0026469  0.023822 0.053876

0.3 0.1 0.15164 0.028617 0.066774 0.027008 0.063019 0.43026
0.3 0.5 0.20834 0.066668 0.15556 0.044294 0.10335 0.30161
0.3 1.0 0.21465 0.079910 0.18646 0.035970 0.083930 0.23104
0.3 20 0.21912 0.091551 0.21362 0.024871 0.058033 0.15960
0.3 10.0 0.22559 0.10928 0.25499 0.0071990  0.016798 0.046209

0.5 0.1 0.18553 0.035335 0.035335 0.033469 0.033469 0.42371
0.5 0.5 0.27989 0.098019 0.098019 0.068532 0.068532 0.27540
0.5 1.0 0.29233 0.12395 0.12395 0.060221 0.060221 0.20238
0.5 20 0.29949 0.14514 0.14514 0.041995 0.041995 0.13656
0.5 10.0 0.30893 0.17554 0.17554 0.011866 0.011866 0.038439

0.7 0.1 0.20534 0.039298 0.016842 0.037295 0.015983 0.41983
0.7 0.5 0.33365 0.12465 0.053422 0.090400 0.038743 0.25221
0.7 1.0 0.35552 0.16885 0.072363 0.088528 0.037941 0.17035
0.7 20 0.36671 0.20499 0.087852 0.064367 0.027586 0.10805
0.7 10.0 0.37940 0.25298 0.10842 0.017653 0.0075657  0.028957

0.9 0.1 0.21834 0.041914 0.0046571  0.039825 00044250  0.41727
0.9 0.5 0.37713 0.14802 0.016446 0.11034 0.012260 0.23132
0.9 1.0 0.41316 0.21827 0.024252 0.12349 0.013721 0.13215
0.9 20 0.43249 0.28360 0.031511 0.10062 0.011180 0.064788
0.9 10.0 0.45061 0.36610 0.040678 0.026969 0.0029966  0.014146

Figure 2 shows the temperature distribution for grey and non-grey wall conditions. The
upper and lower curves are for opaque non-grey walls with ¢;, = 0.9, ¢;, = 0.1 and
&, = 0.1, g,, = 0.9 respectively, whereas the middle curve is for opaque grey walls with
g1 = &, = 0.5. Clearly, there is a significant difference in the temperature distributions
for grey as opposed to non-grey walls. Figure 3 displays results similar to those of Fig. 2,
but with ¢ = 10; we note that there is an increase in the difference in the temperatures for
the grey and non-grey cases for the larger value of o.

008
.. 007
N
3 SPECULAR
$ 006 /
T
-
005 DIFFUSE
004 ———— S

—
o 02 04 06 08 |10

T/

FiG. 1. Temperature distributions resulting from specular and diffuse reflection for opaque walls
andw, = 05,7, =0.1,6 =2and ¢, = ¢;, = 0.1.
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TABLE 5. TEMPERATURE COMPARISONS BETWEEN SPECULAR AND DIFFUSE REFLECTION

FOR THE CASE OF OPAQUE WALLS AND W, = 0.5,0 = 2 AND &;; = ¢,
7/To
0.0 0.5 1.0
T4 T4
:»{T/Tol 2(t/70) % 100
To €11 Ty(t/10)
0.1 0.9 0.6 0.3 0.2
0.1 0.5 3.2 1.6 1.1
0.1 0.1 5.9 31 2.1
1.0 0.9 0.4 0.1 0.1
1.0 0.5 24 0.2 0.2
1.0 0.1 5.0 1.0 0.3
05

A€, =09, ¢,=01
B:¢, =05, ¢,=05

04t
1- Cieg=0l, e=09
>
@ 03F A
£ B
& c
02 \

O. | 1 B 1 L i
0 02 04 06 08 10

T

F1G. 2. Temperature distributions resulting from diffuse reflection and various opaque wall
conditions for w; = 0.5, 75 = 0.1 and ¢ = 2.

Though we have, in fact, solved equations (30) to obtain the ‘exact’ results quoted here,
we should like to emphasize that the second-order analytical approximation given by
equations (33) is sufficiently accurate for many engineering applications. To illustrate the
accuracy of the two analytical approximations, and to provide accurate numerical results
for several examples of the most general problem discussed here, we list in Table 7 the
heat flux and the temperature distribution for the six cases defined in Table 6. We note
that Table 6 includes cases with both opaque and partially transparent wall conditions.

TABLE 6. DATA FOR SIX SELECTED CASES

Case o Wy To & £y €24 £32 o1 pl. Pl 52 Moo /T,
1 20 06 0.5 0.2 04 0.3 0.2 0.7 0.5 0.5 0.6 0.1 0.2 20
11 2.0 04 0.5 0.5 0.2 0.1 0.3 0.1 04 04 0.2 04 0.3 20
mn 20 04 1.0 0.5 0.2 0.1 0.3 0.1 04 0.4 0.2 04 0.3 20
v 20 0.5 1.5 0.1 0.3 0.6 0.1 0.6 0.5 0.2 0.7 0.2 0.1 20
v 50 06 1.0 0.8 0.6 0.5 0.3 0.1 0.3 0.2 0.1 0.1 0.2 2.0

Vi 50 05 1.5 01 03 06 01 06 05 02 07 02 o0t 20
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F16. 3. Temperature distributions resulting from diffuse reflection and various opaque wall
conditions for w, = 0.5, 7, = 0.1 and ¢ = 10.

The entries in Table 7 represent the prediction of the first- and second-order approximations
and the ‘exact’ values.

In conclusion, we note that, as for the grey model," V the analysis here may be easily
modified to include particular solutions required for similar problems with inhomogeneous
source terms. In addition, since the normal modes and relevant expansion and orthogonality
theorems have been reported,! > the present work may be generalized to the 3-,4-,- - - N-band
model.
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As discussed in the main text of this paper, equations (30) were developed by ‘taking’
scalar products of the boundary conditions written in the form of equations (19), and by
then invoking the appropriate half-range orthogonality theorem.®*® In so doing, we
encounter the need to evaluate many ‘cross-product’ integrals, and though most of the
pertinent relations are available,!”” we should like to summarize in a consistent H-function
notation the integral results required here.

In the subsequent equations, we shall write the symbol B to denote an arbitrary two-
vector with constant elements, B, and B,, and we shall make use of the definitions

1/e 1

0 = o0y [HOudn 2= caa [ HGmdn (A-la,b)
0 0
1 2 1 112
o= fH(u)‘P(,u),u dp = [5(;612 + sz):l ) (A-2)
0
and
1 .
1 2
= | B d: (A-3)
* (4]

here 7, is the Milne-problem extrapolation distance tabulated by BoND and SIEWERT.?®
Recalling the definition

X, Y0 = [ R HWY () du (A-4)
0
we find
(I.,B] =a,B, + a,B,, (A-5)
(L, I_(z, £)] = cp00(t F 1), (A-6)
7 —_ r 1 ’
[I+,®(—'lal~l)] = Caa1 Em’ n E(O, 1)’ (A'7)
(®,(n, w),B] = D,;(n)B, + D,(m)B;, n€(0,1/0), (A-8)
[01(17, ﬂ)s I—(T’ i”’)] = i C227](XM1 2(")’ n € (09 1/0.), (A'9)

1
(@,(n7, ), D(—11', )] = szﬂ’l'mMu(ﬂ), ne(0, 1/0),n' €(0, 1), (A-10)

[(®(n, u), B] = Dy(n)B; + Dy(m)B,, ne(0,1), (A-11)
[d)(", ")a I—(Ta i#)] = i ﬂa‘y(ﬂ)’ ne (Os l)s (A'lz)
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and

[®(n, ), D(—1', )] = ¥, n.7€(1) (A-13)

1
NG
" Ho o+ )
We note that the identity

\ 1
p f H(u)‘P(u)u—d_li— = H(n)[l — 2n¢y27 (1) — 2ncu{3’ (om)®(m) + 7 (—)[1 - ®(n)]}:]
J p—n an (A1)

is required to establish several of the foregoing results. In addition, we have made use of
the previous® definitions

1
M (n) = i c {caalcry + co)m?n® + [1 — 2nc,, T (M) + 4nPey ¢, Hom)),  (A-152)
11€22
1
Myy(n) = —(cyy + ¢32), (A-15b)
C22
and
1
Mym) =M ,(n) = 7[1 = 21227 (1) + 2nc,27 (o)), (A-15c¢)
22

and have introduced the quantities
1/o

d
Dmm=aqm%mMMnmr—Mﬁmeumu—MWWPmew;ﬁg} (A-16a)
0

D)) = WH("I){"CllMl W) + [1 = 2n¢,,7 ()M 1,(n)}

1

d

— My, (n)ecaanP f H(,u)u;j#ﬁ, (A-16b)
0

D(n) = chlﬂ{H(ﬂ)[Mu('I) — 2M ,,(nnT (on)]O(n)

1/o
1 d
—~4wwawaL} (A-16¢)
Cra v uw—n
and

1
Dy(n) = nH(n) {—Cl 1M, (mO(n) — 2’16117(;;)[1 = O(n)]

1
1 d
+ C—‘P(n)[l — 2ncy, 7 (n)]} - ‘P(n)nPf H(u)u—“—~ (A-16d)
22 0 H—n
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APPENDIX B

To complete this work, we should like to define the various known matrices appearing
in equations (30). First, on the left-hand sides of those equations, we find

pi—1 (01 + 1)
S = —u,K; — 0Ky —acy; ' » , (B-1)
Py -1 oo — 1) — 103+ 1)
where
2¢
P‘{i ‘iig 12
w; Cyy
= , i=1and?2, (B-2)
2ow, + w,) . e 2¢q,
P2i P2 To 3¢,
S.(n) = nH(n)N(n).#(n) and S(n) = nH(m)N(n).#(n), (B-3)
where
1 -pi
M) = ! -0 e~w™M gt ’ (B-4)
The free terms on the right-hand sides of equations (30) can be written as
G=|A, Aj)q, (B-5a)
G,(n) = |A; A2|TD1(’1) and G(n) = |A, A,|"™D(n), (B-5b, ¢)

where a, D, (1) and D(y) are column vectors with elements a; and a,, Dy;(n) and D,,(n),
and D,(n) and D,() respectively.
In addition, we have made the definitions

0 -1-p)
W, (1) = D,;(mK, + DK, + O"1‘322]"112(’7)‘ (B-6)
0 1+
0 -1-p
W(n) = DMK, + Dy(mK, + an'¥(n) , (B-7)
0 14 p%
Un) = « Eq1(m) + 0E;,(), (B-8)
and
1
V(n) = aEy(n) + 02Ex(n) + c2on4—-Bn), (B-9)
H(m)
where
I -1
B(n) = PR —: , (B-10)
11 piJ =1
Elj(r,)=2 ) pl; 11(71)_” dij 1j t)/ , (B-ll)
Pz,'-]lj(“’?) e o szjlj(ﬂ)e ot
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P n) phJi(—n

En =2

Finally, we note that

and

plJ—me o pd.J (m)eeinl

Ui(n,7') = Dy (n)E1(n) + D1,(7)E2(n),
U(n, ') = Dy(m)E;4(n) + Da(n')Eq(n),

Vi1, 7) = Dy ()E () + Dy (n)E(n) + c20mn’

V(n, ') = Dy(n")E(n) + D,(1)Ez(n) + (1)

1
H(n)(n + n)

1
Hm)(n + 1)

M, ,(n')B(n),

B(n).

(B-12)

(B-13)

(B-14)

(B-15)

(B-16)



