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Abstract-T%e normal-mode-expansion technique is used to solve a class of non-grey radiative heat transfer 
problems in finite plane-parallel media appropriate to radiative and local thermodynamic equilibrium conditions. 
The frequency-dependent absorption coefficient is characterixed by a two-band ‘picket-fence’ model. The 
boundary surfaces are maintained at uniform, but arbitrary, temperatures and are allowed to be diffuse. emitters 
of radiant energy and to possess both specular and diffuse components of reflectivity. Rigorous solutions of the 
vector equation of transfer are constrained to meet the considered boundary conditions, and pertinent orthog- 
onality relations are invoked to convert the resulting singular integral equations to coupled non-singular integral 
equations. All relevant integrals are represented by a high-order Gaussianquadrature scheme, and the system 
of regular integral equations is solved iteratively to yield sufficiently accurate solutions for the required expansion 
coefficients. In addition to being used to evaluate the accuracy of developed, tractable analytical approximations, 
these ‘exact’ expansion coefficients render available the complete angular intensity of radiation at any optical 
depth in the medium. To report a parameter survey tabular results are given for the temperature-profile and 
heat-flux functions for a representative class of cases. 

1. INTRODUCTION 

THE picket-fence model as an approximation to non-grey radiative transfer has been 
discussed in two early papers by CHANDRASEKH&) and MACH. The fact that the 
absorption coefficient is represented by a set of discrete values, rather than a single value, 
is basic to the picket-fence model, and thus the effects of resonance lines are included in the 
formulation of the equation of radiative transfer. As one of the first astrophysical applica- 
tions of this model, CHANDRASEKHAR (r) has reported a diffusion-theory solution of the 
classical Milne problem, and more recently BOND and SIEWERT(~) numerically evaluated 
the exact analytical solution’4’ of the Milne problem. 

With the emphasis directed more explicitly toward engineering applications, LICK(‘) 
and GREIF(@ have discussed the picket-fence model in connection with a study of combined 
radiative and conductive heat transfer ; however, because of the complexity of the equations 
involved, only approximate analytical methods were used. The most elegant and rigorous 
work on the engineering aspects of this non-grey heat transfer model is that of SIMMONS 
and FERZIGER(~) who used the normal modes(4) of the equation of transfer as a basis for 
numerical calculations in finite plane-parallel media Though the work of SIMMONS 
and FWZIGER(~) represents the first semi-analytical treatment of finite-slab problems 
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appropriate to the picket-fence model, they consider only the case of black boundaries 
and do not attempt to report calculations of bench mark accuracy. 

In the present paper, we report the required extension of the analysis of finite-slab 
problems, defhred in terms of the picket-fence model, to include the effects of specularly 
and diffusely reflecting boundaries. We cast our analysis in the familiar H-function notation 
of CHANDRASEKHAR@), and we illustrate that computations relevant to the considered 
model can be made with a suitably high degree of precision. Further, we present the results 
of a rather extensive parameter survey and investigate several approximations to the 
‘exact’ solution. 

Since the picket-fence model to non-grey theory has been reviewed recently by SIMMONS 
and FERZIGER,(‘) we give here only a brief sketch of the formulating equations. We consider 
the equation of transfer 

where I,(z,,u) is the radiation intensity, considered as a function of the frequency v, the 
position z, and the direction cosine ~1 (measured from the positive z-axis) of the propagating 
radiation. Further, p(z) denotes the density of the medium, k, is the frequency-dependent 
absorption coefficient, and B,[ T(z)] is the Planck black-body function : 

B,[T(z)] = 2;:’ -[_p(&) - 1-j-l. (2) 

We now consider that the entire frequency spectrum is divided into two (uniform or 
non-uniform) bands Av, and Av, such that the radiative properties are constant in the 
two regions. Denoting the two constant values of k, by k, , v E Avi , and k2, v E Av, , we 
integrate equation (1) to find 

a 

where the condition of radiative equilibrium, 

co m 1 

s UWWI dv = ; s I k Iv@, PL) dp dv, 
0 0 -1 

(4) 

has been used. Here I(z, p) is a two-vector with elements li(r, ,Y) defined by 

zi(79 cl) = 
s 

Zvb, PI dv, i = 1 or 2, (5) 
AVi 

and t is the optical variable defined in terms of the smaller of the two values of the absorption 
coefficient (assumed without loss of generality to be k,) : 

dz = p(z)k, dz. (6) 

Further, in writing equation (3), we have defined the removal matrix as 

Z= (74 
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and the transfer matrix as 

C 
= 2(OWl + w2) crw2 l Ywl :I3 

where w1 and w2 are given by 

II 
Wi = 4 

f7T (z) s 
By[ T(Z)] dv, i = 1 or 2, 

Avt 

(7b) 

(8) 

with 3 denoting the Stefan-Boltzmann constant and T(z) the local temperature. Clearly 
w1 and w1 must sum to unity. 

Seeking solutions in the medium bounded by parallel planes at z = 0 and z = zO, 
we consider frequency-dependent boundary conditions of the form 

Z,(Q P) = ~12Wil + ~“,Jl,(o, -14 + W!, s ZdQ -P’)P’ W, c1 E (0, l), (94 
0 

and 

Z&o, -PI = ~2JWil + ~S,d,(zo,d + %% 
s 

Z,(zo,/WW, PEP, 0 PW 

0 

Here T., E,, , A and P&, a = 1 or 2, are respectively the temperature, emissivity, specular 
reflectivity and diffuse reflectivity at the boundary surfaces z = 0 (a = 1) and z = z. (a = 2). 

Consistent with the considered two-band model, we now assume (as was assumed for 
the absorption coefficient k,) that the emissivity and reflectivity also have two values ; 
we thus integrate equations (9) over the frequency ranges Avi, i = 1 and 2, to find the 
required boundary conditions on the two-vector I(z, p) : 

I(0, P) = A, + B”,I(O, -/J) + 2B’: I(0, -cl’)@ dp’, P E (0, l), (lOa) 
0 

and 

1 

wo 9 -14 = A, + %I(~,, 14 + 2% I I@, , /4/J W, P E (0, 1). (10’4 
0 

Here to is the optical thickness of the slab and A,, BS,, and B$ a = 1 or 2, are known con- 
stants defined in terms of previously mentioned quantities : 

A CT4 cl?1 Wl 
a=- a 

I I k %2 wz 

B6 = t 
I I 

Py2 , a = 1 or 2, i = s or d. 
d 

(114 

(11’3 
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With the foregoing definitions introduced, we proceed to construct a solution to the 
considered equation of transfer, equation (3), constrained to satisfy the boundary conditions 
given by equations (10). 

2. GENERAL ANALYSIS 

Since the normal modes for the equation of transfer have been established,(4’ we write 
the general solution to equation (3) as 

l/Q 1 

I(T,P) = A+I+ + A_I_(r,~) + 
s 

A1(rl)%(?, P) e-*‘9 d? + 
s 

&P(v, P) e-“” d?, (12) 

where 

-l/l7 -1 

and 

@(VP P) = %(% P)@(V) + @P,(?, P)[l - @(rl)l. 

Here we have written #(q, p) as a sum of the vectors 

@2(% PL) = 

and 

C12? & + m - /4[-~rlC12nJ~)l 

c22rl & + 41 - PW - 21c229701 

- 1, - l/a and l/a, 1, 

by utilizing the definition 

O(V) = 1, ? E (- l/e, l/e), 

= 0, otherwise. 

(13c) 

(134 

v E (- lb, lb), (144 

2v229-_(r) ’ 1 U4b) 

(15) 

In addition, the symbol P is used in the above equations to indicate that all ensuing integrals 
over q or p are to be evaluated in the Cauchy principal-value sense, the Dirac delta function 
is written as 6(x) and, for the sake of brevity, the abbreviation F(x) = tanh- ’ x is used. 

Since equation (12) has been shown (4) to be a rigorous solution to equation (3), there 
remains only the need to construct the expansion coefficients A + , A_ , A,(q) and A(q) 
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such that the solution will satisfy the appropriate boundary conditions, equations (10). 
Before proceeding to the determination of these expansion coefficients, however, we note 
that the integrated black-body function (or alternatively the temperature distribution) 
follows immediately from equations (4), (8) and (12) : 

or 

Similarly, the radiative heat flux is given by 

1 

lT 
4(4 = 27r l  I/ s I(z, P)P dp, 

-1 

which simplifies to the constant 

q = -27cjIA_, 

where we have defined 

8=&l* +e,,). 

(164 

(174 

(1W 

(18) 

We use the superscripts T and tilde interchangeably to denote the transpose operation. 
If we now substitute the solution given by equation (12) into equations (lo), we find 

that the required expansion coefficients must satisfy the following system of singular 
integral equations : 

lb 1 

A, + L,(P) = A+I+ + I A,(M’Av~ 14 dv + s 4N’o, 14 drlv 
0 0 

and 

l/a 

A2 + L,(p) = 
0 

P E (0, 11, W4 

p E (0, 11, (19’3 
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where 

L,(p) = A+[BS, + Bf]I+ + A_[pE + pB”, + $Bd,]C-‘I, 

l/a 

+ s {A,h)M’h(-rt,d + 2B:J,(r)l 
0 

+ Ad-?)[-@I(-%P) + B”,‘W/,p) + 2B:J1(-$1) dr/ 
1 

+ bWWW’f-rl,~) + 2B:Jh)l 
s 
0 

and 

+ 4-UN-cp(-tl,d + J%WLPL) + 2BdlJhtl)l) drl, P E (0, I), (204 

I&) = A+[B; + B; - E]I+ + A_[z,(B”, + B; - E) + E - (pE + pB; + +B$)r,-l]I+ 

lb 

+ 
I 

{AMBS,Wtl, P) - @P,(-r, P) + 2BdzJ1(--)I e-ro’q 
0 

+ A~(-c9P;@l(--rl,p) + 2B~J1(v)JeTo/q} dq 

+ 
s 

{A(v)[B”,W,P) - W-v?,P) + 2Bd,J(-~)le-‘“‘q 

+ l( -v) [BS,W - rl, P) + 2BdzJh)l era”‘} dv, P 6 (091). 

Here we have used E to denote the unit matrix and invoked the definitions 

(20b) 

1 1 

J1h) = s WL -P)P & and J(v) = s WI, -PIP dp. 6% b) 
0 0 

From the half-range-expansion theorem proved by SIEWERT and ZWEIFEL,(~) we know 
that the right-hand sides of equations (19) are sufficiently general for expansions of arbitrary 
two-vectors whose elements satisfy a required Holder condition.(9) In fact, the orthogonality 
theorem reviewed in the H-function notation by BOND and SIEWERT(~) may be employed 
to solve equation (19a) in the manner 

A+ = &‘+A + L,Wl, 
+ 

A,(?‘) = v,Htv,;N (II,+%h’, 14 AI + J-&l, 
1 

Ah’) = q~H&,&Y4’~ 14 AI + W41, 

(224 

(22b) 

rl’ E (0, 1). PW 
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Similarly, from equation (19b), we find 

A- = $I+, AZ + L2oLI1, 
+ 

1447 

(2W 

and 

A( -q’) = rl.;t;;;tq.I W’ftl’v 14 A2 + L2W9 

Here we have detied the scalar product by 

tt’ E @I0 (23~) 

[x04, WI = 
I 

%M-UP)Y@) % (24) 
0 

with Xtb) denoting the transpose adjoint of the eigenvector X@). The ‘weight’ matrix is 
given by 

(25) 

where H(p) is Chandrasekhar’s H-function ~3) for the characteristic function Y@) = c22 + 
c,,O(~). Though an analytical form of H(p) is available,‘4p’0) an iterative solution of the 
non-linear integral equation 

1 l dv 
- = 
HW s 

vH(v)Y(v)- 
v + p' 

P E(Q 0, (26) 
0 

provides the most efficient method for establishing H(p) numerically. The adjoint eigen- 
vectors and the normalization factors appearing in 
previously reported work :(3*4) 

I’+ = CT22 
1 I/ 1’ 

equations (22) and (23) follow from 

(27a) 

and 

WL P) = m42,h9Gh I4 + Mzz(tl)cz(rl, Pw(tl) + w1, m - WI)1 (27~) 

where Gl(q, p), G2(q, p), and a$(~, p) follow respectively from equations (13c), (14a), and 
(14b) by replacing cij with cji . The functions M&) are listed in Appendix A. In addition, 
the normalization factors are 

N+ = ~22 Js9 CW 
NAtl) = [1 - 2v119h) - 2v22~(t1)12 + ~2t12h, + c22J2, P-V 
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and 

2 

N(V) = 1 - 2V,,Ql) - 2?C,, 
i 
@(@+J?) + [l - @(rl)l~ $ 

( III + ~‘q”P~(q). (28~) 

It is quite clear (by comparison, for example, with the analysis reported by ~)zI.~K and 
SIEWERT(’ ‘) for the grey analogue to this problem) that since L,(p) and L,b) are themselves 
expressed in terms of expansion coefficients, equations (22) and (23) yield coupled integral 
equations, rather than the closed-form results obtained for typical half-space problems.‘3) 

If we now write the sought expansion coefficients in the forms 

A= A,(V) = and A(q) = (29a, b, c) 

equations (22) and (23) can be written more explicitly in matrix notation : 

lb 1 

SA = G + 
s 

U(r/)A,(q) dq + 
s 

V(rl)A(rl) dq, 
0 0 

Ilo 

W,W,(rl') = G,W) + W,W)A + 
s 

UI(V, r')A,(rl)dv 

0 

VW 

(30’4 

and 

1 

+ I Vh OW) dv, 9’ E (0, l), (304 
0 

where, for the sake of continuity, we defer the definitions of all new, but known, functions 
to Appendix B. The ‘cross-product’ integrals required here are listed in Appendix A for 
reference. Further, in writing equations (30), we have made the assumption that the specular 
reflection at the boundary surfaces is grey, i.e. we have taken 

B”, = p”,E, a = 1 or 2. (31) 

We note that the assumption here of grey specular reflection can be relaxed ; however, 
the ensuing complications are considerable. For non-grey specular reflection, equations (30) 
remain singular, as opposed to the regular nature of those equations for grey specular 
reflection. Though a procedure similar to that used by KUSZELL(~‘) for a two-media 
problem related to the grey equation of transfer can be followed to regularize equations (30) 
for the case of non-grey specular reflection, we do not report the required analysis here. 
Since non-grey diffuse reflection is considered in the present work and since there appears 
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to be little difference between the effects of specular and diffuse reflection, we do not consider 
non-grey specular reflection. 

It is rather unlikely that analytical solutions to equations (30) exist, and thus two 
procedures may be pursued: either reasonably tractable approximate solutions may be 
obtained analytically for A, A,(q), A(q), or, as discussed in the next section, accurate 
numerical solutions may be computed by solving these regular integral equations iteratively. 
We obtain our lowest-order approximate solution by neglecting entirely the continuum 
coefficients in equations (30) : 

A’,‘) = 0 > AC’)(~) = 0, and A(‘) = S-‘G. (32a, b, c) 

Similarly, the next-order approximation is developed by substituting equations (32) into 
the right-hand sides of equations (30b) and (30~) to find 

A’?‘(V) = S; ‘(~‘)[G,(rl’) + W,(rl’)S- ‘(7, ?’ E (0, l/d, (334 
and 

AC2’(rj’) = S-‘($)[G(rj’) + W(q’)S- ‘G], ?’ E (091); 

these results can now be entered into equation (30a) to yield 

iin 

A’2’=S-’ G+ 
i s 

U(#% ‘(rl)[G,(~) + W,(tl)S- ‘Gl dv 
0 

(33b) 

(33c) 

In the next section the accuracy of these two analytical approximations is investigated 
by comparing each to our ‘exact’ numerical solutions of equations (30). 

Equations (30) are the basic equations to be solved for the general case of non-grey 
emitting and diffusely reflecting, and grey specularly reflecting boundaries, and, as such, 
contain many special cases. In particular, for the special case without specular reflection, 
we find it convenient (for purposes of reporting our computations) to write the desired 
solution in terms of an albedo problem independent of surface parameters. If we let 'Y(7, p) 
denote a 2 x 2 matrix solution of equation (3) such that 

‘I’(09 P) = E, P E (0, l), 

and 

v70, -p) = 0, PE(O, I), 

then the solution I(r, p) to equation (3) which satisfies 

(34a) 

(W 

and 
1 

I(7,, -P) = A2 +2B"I 
I 

I(z,,p')p'dp', PE(O, I), (35b) 
0 

ItO, P) = Al + 23’: 
s 

I(0, - p’)p’ d/i, P E (0, l), (35a) 
0 



1450 R. J. REITH, JR., C. E. SIEWERT and M. N. ~)ZISIK 

can be expressed as 

I(r, p) = ‘P(r, p)L + ‘P(r, - z, -p)R. (36) 

Here the two vectors L and R are the easily established solutions of the algebraic equations 

L = A, + 2Bd,[PL + QR] (37a) 

and 

R = A, + 2B;[QL + PR], (37b) 

where P and Q can be computed from the solution of the albedo problem : 

We note that since 

Q = j- ‘Wo > P)P dp. 
0 

I ! 
~,b+Ql=;~ , 

i I 

T 

WW 

(39) 

a maximum of six of the eight matrix elements defined by equations (38) are independent. 
In terms of this basic albedo problem, we write the heat flux and the temperature 

distribution as 

4 = 2rc : TQ[L - R] 
~ I 

w 

and 
_ 

;T4(z) = T(r)L + I’(r, - r)R, (41) 

where we have invoked the definition 

(42) 

3. NUMERICAL ANALYSIS AND RESULTS 

As noted previously, equation (12) is a rigorous solution of the considered equation of 
transfer; however, upon constraining that general solution to meet the boundary con- 
ditions represented by equations (lo), we obtained equations (30), the coupled integral 
equations from which the required expansion coefficients must be determined. Thus, in 
contrast to typical half-space applications (4) for which solutions for the expansion 
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coefficients can be written in closed form, we must solve equations (30) iteratively to yield 
the final ‘exact’ semi-analytical result. On the other hand, equations (12), (32) and (33) are 
tractable analytical approximate solutions. Clearly, once the expansion coefficients are 
determined, the radiative flux and the temperature distribution (and any other moment 
of the radiation intensity) will follow immediately from equations (12), (16) and (17). 

Using an improved Gaussian-quadrature scheme (13) to evaluate the integral terms, 
we have solved equations (30) iteratively to yield numerical results for all expansion 
coefficients. The analytical approximations given by equations (32) were used to initiate 
the calculation, and the iterative procedure was terminated when successive iterates yielded 
expansion coefficients in agreement to at least ten significant figures. For all cases studied, 
convergence was achieved in an average of 8 and a maximum of 24 iterations. It was 
observed, as expected, that convergence became less rapid as the slab thickness was 
decreased. 

All computations were performed in double-precision arithmetic on an IBM 360/75 
computer, and the 81-point improved Gaussian-quadrature schemeo3) was the basic 
method used to evaluate required integrals. For most cases studied, an 81-point scheme in 
each of the intervals (0,1/o) and (l/a, 1) provided results of sufficient accuracy; however, 
in a few cases (specifically for large 0 and small wi) it was necessary to subdivide the 
interval (l/o, 1) and to apply the 81-point scheme in each subinterval. The H-functions 
required in the calculations were constructed by solving equation (26) iteratively in the 
usual manner.‘3) 

In contrast to SIMMONS and FERZIGER’S work,(7) where only black boundaries were 
considered, we encounter here the need to evaluate numerically Cauchy principal-value 
integrals, which arise as a consequence of various scalar products and are characterized 
by equations (A-16) of Appendix A. These integrals can be evaluated from the expressiono4’ 

a 

P 
f 

dp a pH(p- = 
P-V s WU.4 - Mrlll$ + NW) ln 

0 0 

tl E (0, a), (43) 

which, of course, requires the derivative of H(p). Rather than compute this derivative from 
the H-function tabulations, a procedure surely to be avoided, 
culation on 

we prefer to base this cal- 

1 

d 
P&H(P) = PH 2P ( 

s 
drl 

) o ~‘y(~)H(tl)(~ + P)z 3 cc E (0, l), (44) 

a form resulting from the non-linear H-equation. 
Since we consider the calculations reported here to be highly accurate, we would like 

to mention several checks employed to substantiate confidence in our results. To develop 
one such check, the calculations were performed with an integration scheme having N nodal 
points and then repeated with a scheme having 2N nodal points. This doubling procedure 
was continued until two successive calculations failed to alter the reported values. For the 
albedo problem, a check of computed values of the matrices Q and P is provided by 
equation (39), which was verified to at least five significant figures for all cases considered. 
The basic test of the computed expansion coefficients is how accurately the boundary 
conditions, equations (lo), are satisfied. Since the distributional nature of the continuum 



1452 R. J. REITH, JR., C. E. WWERT and M. N.C)ZI$IK 

eigenvectors limits the accuracy of a pointwise verification of the boundary conditions, we 
have chosen to consider, instead, various moments of equations (10). To illustrate these 
checks, we consider equations (10) rearranged and written symbolically as L(p) = R(p), 
p E (0,l). We have computed 

1 1 

I UP)P~~P and s R(P)P~~P, k = 0, 1,2,. . . , 10, 

0 0 

and found agreement consistent with the data reported herein. Although the above checks 
do not rigorously guarantee the accuracy of our results, we believe that the number and 
diversity of these checks provide a reasonable degree of confidence in our reported values. 

We should now like to present the results of numerical solutions to the albedo problem 
for a wide variety of cases. In Tables 1-3, we list a choice of six elements of the matrices 
P and Q for representative values of the parameters 0, wi and zo. These values plus 
equation (39) permit the calculation of the radiative heat flux for diffusely reflecting 
problems through equation (40), with L and R being evaluated from equations (37). Table 4 
is devoted to a compilation of the elements I,(r) and I,(z) of T(r) required in equation (41) 
to evaluate the temperature distribution, again for diffusely reflecting problems. Thus, 

TABLE 1. SIX ELEMENTS OF P AND Q REQUIRED FOR DIFFUSE PROBLEMS WITH D = 2 

P 11 P 12 P 2, Q 12 Q 21 Q 22 

0.1 
0.1 
0.1 
0.1 
0.1 

0.3 
0.3 
0.3 
0.3 
0.3 

0.5 
0.5 
0.5 
0.5 
0.5 

0.7 
0.7 
0.7 
0.7 
0.7 

0.9 
0.9 
0.9 
0.9 

0.9 

0.012404 0.0069553 0.062597 0.0067931 0.061138 0.45 103 
0.030880 0.020657 0.18591 0.016842 0.15158 0.33472 
0.038264 0.028140 0.25326 0.017796 0.16017 0.25775 
0.043789 0.034939 0.31445 0.014180 0.12762 0.17911 
0.051346 0.045214 0.40693 0.0042888 0.038599 0.052970 

0.032546 0.018254 0.042592 0.017838 0.041622 0.43994 
0.085250 0.057245 0.13357 0.047123 0.10995 0.30357 
0.10816 0.080254 0.18726 0.051933 0.12118 0.22159 
0.12567 0.10178 0.23749 0.042802 0.099872 0.14729 
0.14873 0.13371 0.31198 0.012895 0.030087 0.042172 

0.048202 0.027039 0.027039 0.026434 0.026434 0.43131 
0.13172 0.0887 I 5 0.088715 0.073589 0.073589 0.27642 
0.17091 0.12778 0.12778 0.084339 0.084339 0.18749 
0.20184 0.16574 0.16574 0.072137 0.072137 0.11504 
0.24152 0.22154 0.22154 0.02 1748 0.021748 0.031126 

0.060721 0.034066 0.014600 0.033314 0.014277 0.42440 
0.17197 0.11612 0.049765 0.096925 0.041539 0.25252 
0.22795 0.17156 0.073524 0.11520 0.049369 0.15518 
0.27395 0.22783 0.097642 0.10253 0.043942 0.081973 
0.33213 0.31088 0.13323 0.031128 0.013341 0.019501 

0.070960 0.039814 0.0044238 0.038946 0.0043273 0.41875 
0.20724 0.14022 0.015580 0.11765 0.013073 0.23133 
0.2803 1 0.21217 0.023575 0.14464 0.016071 0.12449 
0.34318 0.28884 0.032094 0.13427 0.014919 0.047760 
0.42279 0.40405 0.044895 0.041402 0.0046002 0.0068754 
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TABLE 2. LX ELEMENTS OF P AND Q REQUIRED FOR DIFFUSE PROBLEMS WITH U = 5 

Wl To Pll P 12 P 21 Q 12 Q 21 Q 22 

0.1 
0.1 

0.1 

0.1 

0.1 

0.3 
0.3 
0.3 
0.3 
0.3 

0.5 
0.5 
0.5 
0.5 
0.5 

0.1 
0.7 
0.7 
0.7 
0.7 

0.9 
0.9 
0.9 
0.9 
0.9 

0.1 
0.5 
1.0 
2.0 

10.0 

0.1 
0.5 
1.0 
2.0 

10.0 

0.1 
0.5 
1.0 
2.0 

10.0 

0.1 
0.5 
1.0 
2.0 

10.0 

0.1 
0.5 
1.0 
2.0 

10.0 

0.040449 0.011537 0.10384 
0.063160 0.026121 0.23509 
0.066952 0.031570 0.28413 
0.069678 0.036407 0.32766 
0.073753 0.043997 0.39598 

0.087508 0.025083 0.058527 
0.15433 0.067162 0.15671 
0.16731 0.085398 0.19926 
0.17537 0.10073 0.23503 
0.18635 0.12341 0.28795 

0.11412 0.032791 0.032791 
0.21999 0.098966 0.098966 
0.24484 0.13286 0.13286 
0.25927 0.16141 0.16141 
0.27685 0.20119 0.20119 

0.13125 0.037768 0.016186 
0.27090 0.12477 0.053472 
0.31036 0.17715 0.075921 
0.33359 0.22398 0.095991 
0.35881 0.28627 0.12269 

0.14320 0.041248 0.0045831 
0.31206 0.14628 0.016254 
0.36876 0.21982 0.024425 
0.40512 0.29339 0.032599 
0.44154 0.39162 0.043513 

0.011037 0.099335 
0.018303 0.16472 
0.015337 0.13803 
0.010753 0.096774 
0.0031748 0.028573 

0.024083 0.056194 
0.049208 0.11482 
0.044419 0.10378 
0.031632 0.073808 
0.0091302 0.021304 

0.031541 0.031541 
0.074663 0.074663 
0.073415 0.073415 
0.054121 0.054121 
0.015272 0.015272 

0.036369 0.015587 
0.096098 0.041185 
0.10303 0.044155 
0.080860 0.034654 
0.022413 0.0096056 

0.039749 0.0044165 
0.11442 0.012713 
0.13368 0.014854 
0.11537 0.012819 
0.032087 0.0035653 

0.44666 
0.33193 
0.25827 
0.18072 
0.053442 

0.43346 
0.29862 
0.22440 
0.15376 
0.044264 

0.42592 
0.27166 
0.19190 
0.12586 
0.034909 

0.42105 
0.24919 
0.15946 
0.094013 
0.024200 

0.41764 
0.23011 
0.12648 
0.054490 
0.010050 

both the heat flux and temperature distribution for a problem with any type of diffuse 
boundaries (as characterized by equations (35)) are easily obtained from the information 
in Tables 1-4. 

We have investigated the effects of purely specular as opposed to purely diffuse reflection 
on both the net radiative heat flux and the temperature distribution within the medium. 
Figure 1 shows the temperature distribution for each type of reflection, with the surfaces 
at r = 0 and z = z0 maintained at temperatures TI and zero respectively. To emphasize 
the effects of reflectivity, we have taken the wall at r = 0 to be opaque and highly reflective 
by choosing .sl 1 = s1 Z = 0.1, and the surface at z = z0 to be non-reflecting. The temperature 
distribution within the medium is slightly higher with specular reflection than with diffuse 
reflection. The magnitude of the corresponding heat flux, however, is smaller with specularly 
reflecting walls than with diffusely reflecting walls ; but the difference is less than one percent, 
and we do not present these results. Analogous comparisons for various other values of 

c, Wit z,, have led to similar conclusions. To characterize the difference in temperature 
between specularly and diffusely reflecting cases, we present in Table 5 the percent differ- 
ences in the resulting temperature distributions for selected cases. 

To illustrate the effects of non-grey boundaries on the temperature distribution, we 
consider a slab with a diffusely reflecting and emitting boundary at z = 0 maintained at 
temperature TI, and a non-reflecting boundary at r = z,, maintained at zero temperature. 
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TABLE 3. SIX ELEMENTS OF P AND Q REQUIRED FOR DIFFUSE PROBLEMS WITH 0 = IO 

0.1 
0.1 
0.1 
0.1 
0.1 

0.3 
0.3 
0.3 
0.3 
0.3 

0.5 
0.5 
0.5 
0.5 
0.5 

0.7 
0.7 
0.7 
0.7 
0.7 

0.9 
0.9 
0.9 
0.9 
0.9 

0.1 
0.5 
1.0 
2.0 

10.0 

0.1 
0.5 
1.0 
2.0 

10.0 

0.1 
0.5 
1.0 
2.0 

10.0 

0.1 
0.5 
1.0 
2.0 

10.0 

0.1 
0.5 
1.0 
2.0 

10.0 

0.079747 
0.096882 
0.098978 
0.10079 
0.10360 

P 12 

0.014709 
0.026891 
0.030990 
0.034953 
0.041268 

0.13238 
0.24202 
0.27891 
0.31458 
0.37141 

0.013756 0.12380 
0.016556 0.14900 
0.012882 0.11594 
0.0089564 0.080607 
0.0026469 0.023822 

0.027008 0.063019 
0.044294 0.10335 
0.035970 0.083930 
0.024871 0.058033 
0.0071990 0.016798 

0.033469 0.033469 
0.068532 0.068532 
0.06022 1 0.060221 
0.041995 0.041995 
0.011866 0.011866 

0.037295 0.015983 
0.0904oo 0.038743 
0.088528 0.037941 
0.064367 0.027586 
0.017653 0.0075657 

0.44375 
0.33268 
0.25985 
0.18200 
0.053876 

0.15164 0.028617 0.066774 
0.20834 0.066668 0.15556 
0.21465 0.079910 0.18646 
0.21912 0.091551 0.21362 
0.22559 0.10928 0.25499 

0.43026 
0.30161 
0.23104 
0.15960 
0.046209 

0.18553 0.035335 0.035335 
0.27989 0.098019 0.098019 
0.29233 0.12395 0.12395 
0.29949 0.14514 0.14514 
0.30893 0.17554 0.17554 

0.42371 
0.27540 
0.20238 
0.13656 
0.038439 

0.20534 0.039298 0.016842 
0.33365 0.12465 0.053422 
0.35552 0.16885 0.072363 
0.36671 0.20499 0.087852 
0.37940 0.25298 0.10842 

0.41983 
0.2522 1 
0.17035 
0.10805 
0.028957 

0.21834 0.041914 0.0046571 0.039825 0.0044250 0.41727 
0.37713 0.14802 0.016446 0.11034 0.012260 0.23 132 
0.41316 0.21827 0.024252 0.12349 0.013721 0.13215 
0.43249 0.28360 0.031511 0.10062 0.011180 0.064788 
0.4506 1 0.36610 0.040678 0.026969 0.0029966 0.014146 

Figure 2 shows the temperature distribution for grey and non-grey wall conditions. The 
upper and lower curves are for opaque non-grey walls with sI1 = 0.9, .s12 = 0.1 and 
&II = 0.1, El2 = 0.9 respectively, whereas the middle curve is for opaque grey walls with 
sI1 = sr2 = 0.5. Clearly, there is a significant difference in the temperature distributions 
for grey as opposed to non-grey walls. Figure 3 displays results similar to those of Fig. 2, 
but with 0 = 10; we note that there is an increase in the difference in the temperatures for 
the grey and non-grey cases for the larger value of cr. 

FIG. 1. Temperature distributions resulting from specular and diffuse reflection for opaque walls 
and w, = 0.5, 70 = 0.1, g = 2 and eI1 = e12 = 0.1. 
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TABLE ~.TEMPERATURECOMPARISONS BETWEENSPECULARAND DIFFUSE REFLECTION 

FOR THECASEOFOPAQUEWALLS AND M‘, = 0.5,O = 2 AND&,, = C,Z 

0.0 0.5 1.0 

%/%I - G(r/.ro) x *oo 

50 &II T:(+,) 

0.1 0.9 0.6 0.3 0.2 
0.1 0.5 3.2 1.6 1.1 
0.1 0.1 5.9 3.1 2.1 
1.0 0.9 0.4 0.1 0.1 
1.0 0.5 2.4 0.2 0.2 
1.0 0.1 5.0 1.0 0.3 

0.5 - 
A: E,, = 0.9, q2 = 0.1 

B: E,, = 0.5, E,2 = 0.5 

0.1 ’ I I I I t 

0 0.2 0.4 0.6 0.8 I .o 
TV&J 

FIG. 2. Temperature distributions resulting from diffuse reflection and various opaque wall 
conditions for W, = 0.5, r0 = 0.1 and Q = 2. 

Though we have, in fact, solved equations (30) to obtain the ‘exact’ results quoted here, 
we should like to emphasize that the second-order analytical approximation given by 
equations (33) is sufficiently accurate for many engineering applications. To illustrate the 
accuracy of the two analytical approximations, and to provide accurate numerical results 
for several examples of the most general problem discussed here, we list in Table 7 the 
heat flux and the temperature distribution for the six cases defined in Table 6. We note 
that Table 6 includes cases with both opaque and partially transparent wall conditions. 

Case 0 w, to El1 I:12 621 E22 P: I P:, Pd,, P”z* PS PS TJT, 

I 2.0 0.6 0.5 0.2 0.4 0.3 0.2 0.7 0.5 0.5 0.6 0.1 0.2 2.0 
II 2.0 0.4 0.5 0.5 0.2 0.1 0.3 0.1 0.4 0.4 0.2 0.4 0.3 2.0 
III 2.0 0.4 1.0 0.5 0.2 0.1 0.3 0.1 0.4 0.4 0.2 0.4 0.3 2.0 
IV 2.0 0.5 1.5 0.1 0.3 0.6 0.1 0.6 0.5 0.2 0.7 0.2 0.1 2.0 
V 5.0 0.6 1.0 0.8 0.6 0.5 0.3 0.1 0.3 0.2 0.1 0.1 0.2 2.0 
VI 5.0 0.5 1.5 0.1 0.3 0.6 0.1 0.6 0.5 0.2 0.7 0.2 0.1 2.0 
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A: E,, = 0.9, s,s = 0.1 

B: E,, = 0.5, 6,s = 0.5 

c: o,, = 0.1, E,e = 0.9 

0 I I I t I 

0 0.2 0.4 0.6 0.8 1.0 
7/7e 

FIG. 3. Temperature distributions resulting from diffuse reflection and various opaque wall 
conditions for wi = 0.5, to = 0.1 and D = 10. 

The entries in Table 7 represent the prediction of the first- and second-order approximations 
and the ‘exact’ values. 

In conclusion, we note that, as for the grey model, (i ‘) the analysis here may be easily 
modified to include particular solutions required for similar problems with inhomogeneous 
source terms. In addition, since the normal modes and relevant expansion and orthogonality 
theorems have been reported, cl ‘) the present work may be generalized to the 3-, 4-, . . . N-band 
model. 
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As discussed in the main text of this paper, equations (30) were developed by ‘taking’ 
scalar products of the boundary conditions written in the form of equations (19), and by 
then invoking the appropriate half-range orthogonality theorem.‘3y4’ In so doing, we 
encounter the need to evaluate many ‘cross-product’ integrals, and though most of the 
pertinent relations are available, (‘I we should like to summarize in a consistent H-function 
notation the integral results required here. 

In the subsequent equations, we shall write the symbol B to denote an arbitrary two- 
vector with constant elements, B, and Bz , and we shall make use of the definitions 

and 

i/a 1 

ccl = m21 
s 

HOL~P~CL, a2 = c22 
s 

WP)P~PL, (A-la, b) 

1 

a = 1 H(~)W)~d~ = [i[$ci2 :c22]]1;1, (A-2) 
J 
0 

here z* is the Milne-problem 
Recalling the definition 

we find 

z* = i s WW’W2 dp; (A-3) 

0 

extrapolation distance tabulated by BOND and SIEWERT.@) 

(A-4) 

[I+,Bl = aI& + a2B2, 

[I+, 1-k Ml = cz2dz T 5J, 

[I+ 7 W-v’, I41 = c22+)9 r’ E (O,l), 

[%(a P), Bl = DIIW& + 42hV2, VE@, w, 

PWLPL)~ 1-k +dl = +c22rlaM12(tl)y ttEK4 lb), 

1 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 

[Q,(% P)? W-V’, I41 = c22)t't'H(tl,)(~l + VI M,,(v)9 VE@, W),tt'~Kt 11, (A-10) 

[@h,d, Bl = 4W, + D,W,, v E (0, 0, (A-l 1) 

[WI, P), I - (r, f 141 = f wWrlh rlE(Q 11, (A-12) 
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and 

?, v’ 6 (0, 1). (A-13) 

We note that the identity 

1 

p 
dp 

w4w4P- = 
P--V 

WV) 1 - 2w22m) - 2Vll 
0 (A-14) 

is required to establish several of the foregoing results. In addition, we have made use of 
the previous@) definitions 

M,,(rl) = &{&1 + c22)~n2v12 + r1 - 2?c,,~mz + 4r12c,,c,,~-2(~tl)~~ (A-15a) 

M22(V) = $1 + c22), (A-Mb) 

and 

M21(Yl) = M,*(V) = $,[l - 2Vk~(vl) + ‘w22~ml~ 

and have introduced the quantities 

110 

D,,(V) = ac21vl 
i 

fm)[Mll(rl) - w-(wP412(rl)1 - MI2h)P 
s 
0 

(A- 1 SC) 

(A-16a) 

D,,(v) = rlfw/){ -c1,~,1(rl) + [1 - 2v22mw412(~,f 

and 

(A-16b) 

(A-16c) 

(A-16d) 
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To complete this work, we should like to define the various known matrices appearing 
in equations (30). First, on the left-hand sides of those equations, we find 

S = -alK1 - a2K2 - acz2 
P”1 - 1 r*wl + 1) 

P”z - 1 To(P”z - 1) - ~*(Ps2 + 1) ’ 
where 

d 
Pli 

d 2 c12 

Ki = 2(0W-+ w2) 

Plij G 
, i = 1 and 2, 

Pdzi 

where 

1 -P”l 
Jwl) = _& ,-rob efO/s . 

The free terms on the right-hand sides of equations (30) can be written as 

G = IA, A21Ta, 

G,(v) = IA, A21TD,(v) and G(q) = IA, A21TD(q), 

(B-1) 

(B-2) 

(B-3) 

(B-4) 

(B-5a) 

(B-5b, c) 

where a, D,(q) and D(q) are column vectors with elements a1 and a2, Dll(q) and D12(q), 
and Dl(q) and D2(q) respectively. 

In addition, we have made the definitions 

0 -1-p; 
WI(V) = DI1(?)K1 + D&)K2 + atlcz2M12(n) 

0 l+& ’ 
(B-6) 

w(u) = D,(& + D,(v)K2 + w@(v) 
0 -1-p; 

0 l+ps2 ’ 
(B-7) 

U(v) = alEll(d + a2E12h)~ (B-8) 

and 

where 

V(v) = alEl(tl) + a&(tl) + ~22~ 
1 

-WI), 
Wl) 

(B-9) 

E&I) = 

Pi -1 
B(V) = - e-r&l & etoh ’ 

(B-10) 

(B-l 1) 
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and 

E,(v) = 2 
P’fj J,(V) PYj Jj(-V) 

p~jJj(-q)e-‘o”’ ~;~J,(q)e~~‘~ . 
(B-12) 

Finally, we note that 

U,(?, v’) = D, r(W,,(v) + DIAYI’)WV)> (B-13) 

WI, v’) = D,(v’)E,~(rl) + M~‘)E,z(rl), (B-14) 

and 

(B-16) 


