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Abstrae--The normal-mode-expansion technique is used to obtain a semi-analytical solution for the 
angular distribution of radiation at any optical distance within a linearly anisotropicscattering, absorbing, 
emitting, non-isothermal, gray medium between two parallel reflecting boundaries. Both conservative and 
nonconservative cases are considered. The general problem is decomposed into simpler problems, and 
the net radiative heat flux is calculated to “bench mark” accuracy for these basic problems for several 
representative combinations of surface reflectivities and emissivities. By the superposition of these basic 
solutions, the net radiative heat flux can be determmed for an absorbing, emitting, scattering slab with 
reflecting boundaries for the cases of uniform temperature and linearly varying fourth power of the 
temperature within the medium. Simple analytical expressions are presented for the intensity of radiation 
by utilizing first- and second-order approximations to the exact solution, and the accuracy of these approxi- 

mations is evaluated for a variety of cases. 

1. INTRODUCTION 

THE PURPOSE of this paper is to develop a semi- 
analytical solution to a general radiative heat 
transfer problem in a linearly anisotropic- 
scattering, absorbing, emitting, non-isothermal 
gray medium confined between two parallel 
reflecting boundaries. The analysis is based on 
the singular-eigenfunction-expansion technique 
developed by Case [l] for treating one-dimen- 
sional neutron transport problems. This method 
has been applied only recently in the field of 
radiative heat transfer. One of the greater 
advantages of Case’s method derives from the 
fact that analytical approximations obtained 
from the rigorous solution are simple yet 
accurate. One of the earlier applications of the 
normal-mode-expansion technique was made 
by McCormick and Mendelson [2] who dis- 
cussed the slab-albedo problem; Siewert and 
McCormick [3] solved rigorously the problem 

of an absorbing, emitting, anisotropically scat- 
tering, semi-infinite medium with a linear source 
term and a free boundary. Ferziger and Sim- 
mons [4] solved the radiative transfer problem 
for a conservative medium between heated 
black boundaries, and later Simmons and 
Ferziger [5] extended this work to the two- 
group non-gray model. i5zisik and Siewert [6] 
have solved a radiative transfer problem for an 
isotropically scattering, absorbing, and emitting 
slab with specularly reflecting boundaries, and 
recently Siewert and ozisik [7] reported a 
rigorous solution to a line formation problem 
based on the interlocked-doublet model. Heaslet 
and Warming [8, 91 considered radiative trans- 
fer in finite and semi-infinite non-conservative 
media. Bowden et al. [lo] examined numerical 
methods of solving the one-dimensional trans- 
port equation with anisotropic scattering in 
slab geometry. Here we do not cite the many 
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references on radiative heat transfer treated by 
classical techniques, but we note that the papers 
by t)zisik and Siewert [6] and Heaslet and 
Warming [ll] contain a more complete litera- 
ture survey of work utilizing classical or 
numerical methods. 

The outline of the paper is as follows: in 
Section 2 the problem of radiative heat transfer 
is formulated and the analysis basic to the 
normal-mode-expansion technique is given for 
the non-conservative case (i.e. 0 < c < 1). In 
addition, various analytical approximations 
obtained from the rigorous solution are given, 
and the particular solutions of the transport 
equation for source terms represented as poly- 
nomials are presented. In Section 3 the con- 
servative case (c = 1) is discussed in a similar 
manner. In Section 4 the physical quantities of 
interest, such as the incident radiation and the 
net radiative heat flux, are expressed explicitly 
in terms of the expansion coefficients, and in 
Section 5 the method of superposition of simpler 
problems to obtain solutions to more general 
problems is discussed. Section 6 is devoted to a 
presentation of highly accurate numerical results 
for the net radiative heat flux pertinent to the 
basic problems for a variety of boundary surface 
reflectivities. Solutions to the more general cases 
are thus readily available by superposition of 
these basic solutions. Also, the accuracy of 
analytical approximations for several repre- 
sentative cases is evaluated, and a discussion of 
the various methods used to establish confidence 
in our “exact” calculations is given. 

2. THE NON-CONSERVATIVE CASE 

General analysis 
We consider the equation of transfer 
a 

+ tc j (1 + B/w’) I(T, ~‘1 dl*‘, (1) 
-1 

where r is the optical variable, and ~1 is the 
direction cosine (as measured from the positive 
z axis) of the propagating radiation. The constant 

c is the ratio of the scattering coefficient to the 
extinction coefficient, I,,[T(r)] is the prescribed 
frequency-integrated Planck function, and the 
constant fl is the anisotropy factor. 

The boundary surfaces 1 and 2 are positioned 
at r = 0 and T = r0 respectively and are kept at 
uniform temperatures T1 and T2. The surfaces 
are diffuse emitters with emissivities .sr and sZ, 
and the reflectivities are expressed as the sum of 
diffuse and specular reflectivity components : 
pi = pf + pz, i = 1 or 2. The boundary condi- 
tions subject to which equation (1) is to be solved 
are written as 

I(O, p) = ~1; T: + p;I(O, - p) 

+ 2~: ,[ I(O, - p’) ~1’ dp’, p E (0, l), 

and 

(2a) 

I(%, - p) = ~2 ; Tt + pY(r,, I*) 

+ 2pd2 .i I(?,, &’ dp’, /J E (0, l), (2b) 

where (T is the Stefan-Boltzmann constant. 
Clearly many special cases existing in the 
literature can be obtained from the considered 
problem. 

For convenience in the analysis, we define 

ai 2 Ei(~/n) Tf, bi g pf, di 4 2pf, i = 1 and 2, 

S(r) e (I - c)l,[T(z)l, (3) 

and thus consider the equations 

+ tC :i, (1 + Bp,4Zk d dL (4) 

I@, ~0 = a, + b140, - PL) 

+ 4 .j, W, - P’)P’~P’, LLE (0, 11, (54 
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and 

I(%, - P) = a2 + ~2~(~0~ P) 

+ 4 i Z(zo> $1 P’ dp’, P E ((41). (5b) 

In equation (4) S(r) represents a prescribed 
inhomogeneous source term, which later will be 
represented by a polynomial expansion in the 
optical variable. The desired solution can be 
written as a linear combination of normal modes, 
satisfying the homogeneous version of equation 
(4) and a particular solution : 

only two discrete zeros, + qo, of the dispersion 
function 

A(Z)= R(zz) [l - cz tanh-’ (l/z)] - /3(1- c)~z~. 

(7e) 

Here P is a mnemonic symbol used to denote 
that all ensuing integrals are to be evaluated in 
the Cauchy principal-value sense, 8(x) denotes 
the Dirac delta function, and Z&r, CL) is the par- 
ticular solution to be determined for source 
terms of interest. To complete the analysis, the 
arbitrary expansion coefficients A(?,), A(- ‘lo), 
A(q) and A( - q), q E (0, 1) must be determined 
by constraining equation (6) to meet the con- 
sidered boundary conditions. We thus introduce 
equation (6) into equations (5) and rearrange the 
resulting expressions to find 

where the normal modes, due to Mika [12] 
and collected by Case and Zweifel [13], can be 
written as 

and and 

with 

R( * 4 P) = 1 f B(1 - c)L% 

+ .i [b,A( - q) erolq - A(V) e-‘““r] @( - ~7, p) dq 

5 = q. or ‘I E (0, l), (7c) 
= [A( - qo)e’0190 - b,A(qo) eP”‘lro] @(rjo, p) 

and 
+ i [A( - V) eTols - b,A(q) e-‘o/q] @(q, p) dq, 

A(V) = R(qq)(l - cq tanh-’ ‘1) - j?(l - ~)~r,r~; b 

(7d) 
P E (0, l), (9) 

we consider those cases [ 121 for which there are where we have introduced the definitions 
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4= ?o or v (0, 11, (lob) 

J,(O) A ,i &CO, - P’) P’ dp’, uw 

f2(/4 4 a2 + b24hO? P) - &o, - II) 

+ d,[A(q,) e-TO’qO J(q,) + A( - q0)ero/40J( - qo) 

and 

J,(~o) 4 ,i &o> P’) P’ G’. (lib) 

Equations (8) and (9) are the defining constraints 
from which the unknown expansion coefficients 
are to be determined. To solve these equations 
we make use of the half-range completeness 
theorem proved initially by Mika [12] and the 
half-range bi-orthogonality relations developed 
by McCormick and KuS&r [14] and given by 
Case and Zweifel [ 131. 

In order to isolate the discrete coefficients 
[A(?,) - b,A(- ao)] on the right-hand side of 
equation (8), we multiply that equation by 
m(r),, ,u) W(p) and integrate over P from zero 
to unity. We then utilize the half-range bi- 
orthogonality relations and various normaliza- 
tion integrals to obtain 

- (+Io)2 X(?o) R(?oVo) L&o) - b,A( - rlo)l 

WIO’IO) 
x Lb,&,) - -4( - ?o)l + (I/4)C2?o ___ 

R(tl ori) 

x .b?X(-?)R(-~a)[b,A(~)-~(-~)ld~. (12) 

Similar!y, to isolate the factor [A( --vO)ero/~O 
- b,&,) e-ro’Vo] on the right-hand side of 
equation (9) we apply the same operation to find 

(~Io)~ WVO) R(rlovo) P24rlo) e-rO/sO 

- 4 - rlo) ero’T = F2k70) - (ho)2 X( - vo) 

Rhorlo) - b,A( - tjo) ero/qo] - $c2~, ~ 
W~or?) 

x [A(q) e-zO’q - b,A( - 9) era’s] dq. (13) 

To isolate the continuum coefficient 
[A(q) - b,A(- $1 on the right-hand side of 
equation (8) we multiply that equation by 
a(~‘, p) W(p), Y)’ ~(0, l), integrate over p from 
zero to one and utilize the half-range bi- 
orthogonality relations and the normalization 
integrals to obtain (after interchanging q and q’) 

fl[4rl) - &A(- 111 
9 

= F,(r) + cvo VW - rlo) @(- ?OT 9) 

x Wove) R( - ~7) 
Rhorl) R( - wo) 

x h4ro) - A(- rlo)l + ; 

x h-4$) - A(- $)I dv’, v E (0, 1). (14) 

The same operation when applied to equation (9) 
yields 
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EM- 44 ezojq - b,A(q) e-‘“‘q] 
3 

= F,(rt) + C?oM - vo) @i - ?o, rl) 

WI,?,) R( - tlrl) 
’ Rhort) R( - wo) 

x [b,A(- r],) erolqo - A(qo) e-lo’qo] 

+ acr .i ho + rl’) w - rl’) &I’, - tl) 

x [b,A( - q’)ero”” - A(rf)e-‘O”“] dq’, 

rl E ((41). 

Here we have used the expressions [ 131 

F,(5) = 6’ L(P) 4% 14 W/4 dp, 

CI = 1 and 2, 

g(c, 4 = [J’(V) + bcz$n2 R2b,v)1 - I, 

M&o) = d + J 4tt’) 4rl’) W, (174 
0 

and 

WI) 4) = c(V) + D(V) 4/k) 

+ .[ 4~’ + or) 41’) drl’, v E (0, l), (17b) 

where various quantities are defined as 
2 

1 

’ X(V,) WI, rlo) 
v (t10)? (lga) 

(15) M(r) = 
1 -b, 
__b2 ,-roit e%i< ’ 

bl -1 
U(5) = _,-to/< b, e’“i’ ’ (lgb) 

d,J(-5) 
V(5) = 

d2J(t)e-ro’5 

i P’YW W 
+p 

Y 
(1) 

i y(p’) d$ = y’O’ 

Y(P) = CPM1 - c)(l - M.o(?~ - p2)X( - p)] - l, 

(lfk) 

and 

W(P) = (rlo - P) Y(P). 
(‘@ and 

1 

’ X(VO) NW/~ 
v (4’)P 

Also, X(z) is Case’s X-function for linearly 
anisotropic scattering. Equations (12)-(15) are B($ -+ V) = K($ + q)U($) + 

ji?) & ?) 

the four basic equations to be considered; they WV) 

are written more compactly in matrix notation : x VW)* (184 
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!I a, + b, I,@, - P) - qo> P) + 4J, (WI s (rl, 14 W/4 dp 

@) A g(c’ ?) 3 (W 
WV) 

K&) p rlX( - ?)R( - rlri) 
~oX(?o)wIo+7) ’ 

K 
1 
(rl) p ctlo?X( - %J)W - ‘lo 7 ?I& ?)wfo’lo)N - ?ci) 

wdmom - wo) 
? Wh) 

K(tj’ -+ Y/) 4 fcq (vo + ?‘)W - ?‘)&‘Y -co&> rl) 
W?) 

3 (18i) 

and 

Further z. is the Milne-problem extrapolated 
end-point [13], and the unknowns have been 
written as 

45) 
A(t) ki , cf= q. or v E (0, 1). (18k) 

4-c) 

Up to this point our analysis has been mathe- 
matically rigorous; however, it is highly un- 
likely that analytical solutions to equations (17) 
exist. Although these equations are formidable 
analytically, they certainly pose no problem for 
existing computing facilities. Thus if highly 
accurate “bench mark” solutions are sought, an 
iterative numerical procedure can be used to 
solve these equations to any desired degree of 
accuracy. The degree of precision with which we 
can complete the desired solution will be meas- 
ured by how accurately we determine A(qo) and 
A(q) from equations (17). 

Analytical approximations can also be ob- 
tained from equations (17) to yield solutions of 
sufficient accuracy. Ferziger and Simmons [41 
obtained two different approximate solutions 
to a related problem; they showed that the 
lowest-order solution was better than classical 

diffusion theory, whereas the second-order 
solution was highly accurate. 

Approximations 
In the present analysis, the lowest-order (or 

first-order) solution is obtained by neglecting 
the continuum coefficients entirely; the discrete 
solutions are thus readily available from equa- 
tion (17); 

A(‘)(q) = 0 and A(‘) (qo) = M- ‘G, (19) 

where superscripts are used to denote the order 
of approximation. 

The second-order continuum coefficients 
A@’ (q) are found by neglecting the contribution 
from the kernel B($ -+ q) in equation (17b) and 
by using A(‘)(r],) in that equation. Finally 
A@)(q) is substituted into equation (17a) to 
yield At2) (qo). Thus 

Ac2’ (v) = M- ‘(4 [G(V) + D(?)A”’ (rlo)l (20) 

and 

Ac2’ (qo) = M- ’ [G + b B(tf)A’2’(q’)drfl. (21) 
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Particular solutions 
In order to evaluate the vectors G and G(q), 

the particular solution Z,(r, cl) for the source 
term of interest is needed. Several particular 
solutions of the equation of radiative transfer 
have been reported by &isik and Siewert [ 151. 
Here we list the particular solutions for source 
terms represented by polynomials in the optical 
variable z. Considering a source term of the type 

S(i) (r) = zi, i=O,1,2 ,..., 

we find the first three solutions to be 

(22) 

Z’O’(z /L) = (1 - c)-‘, 
P ’ (234 

(23b) 

and 

Zf’(z,p) = (1 - c)-’ 1 -; 
( > 

-1 

X 
2c 

----2rp+ri(1 -;)+2p2].(23c) 
3(1 - c) 

To determine solutions for higher-order poly- 
nomials is a straightforward but tedious task. Of 
course, solutions corresponding to sources of 
the form S(r) = Cai S’“(z) are obtained by super- 
position. Once the particular solution is known, 
the evaluation of the G-vectors follows in a 
simple manner [6]. 

Relations between X- and H-functions 
In the foregoing analysis our results are given 

in terms of Case’s X-function. However, it may 
be desirable to express these results in terms of 
Chandrasekhar’s [ 161 well known H-function. 
For linearly anisotropic scattering, Case’s X- 
function is related to Chandrasekhar’s H-func- 
tion by [14] 

where the H-function is a solution of 

with 

$(A = (c/2) [l + B(1 - c) P21. VW 
To solve equation (25a) iteratively for H(p) 

certainly poses no problem for modern com- 
puting facilities ; however, reasonably accurate 
predictions of H(p) follow from Shure and 
Natelson’s [17] concise approximation to the 
X-function. 

3. THE CONSERVATIVE CASE 

General analysis 
Though the foregoing analysis can be inter- 

preted in the limit c + 1 and thus q. -+ co, we 
prefer to develop the special forms required 
since in some cases the limiting values are 
tedious to obtain. This conservative case clearly 
corresponds to a purely scattering gray medium 
or to a gray medium in radiative equilibrium. We 
consider the equation of transfer 

P & Z(V) + Z(V) = fi (1 + PM’) 

x Z(r,/QlcL (26) 

subject to the boundary conditions given by 
equations (5). 

Since the normal modes of equation (26) are 
established [ 131, the desired solution can be 
written as 

3P Z(z,p) = A, + A_(7 - - 
3 -d 

+ / 4MwW”~ dv + [ A(- vW(-w) 
x erlq d % (27) 

where A +, A_, A(q) and A( - Q) are the expansion 
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coefficients to be determined from the boundary coefficients. The equations obtained from the 
conditions. The continuum normal mode &q,,~) substitution of the solution given by equation 
takes the form (27) into the boundary conditions given by 

&LP) =z& + (1 - qtanh-‘g)6(tl - 14. 

equations (5) are multiplied successively by 
y(p) and &‘&y@), @(O,l), and integrated over 
p from zero to unity. Various normalization 

(28) integrals and orthogonality relations are then 

We follow a procedure similar to that used 
invoked to yield the following equations for the 

in Section 2 to determine the unknown expansion 
determination of the expansion coefficients 
A+, A_, A(q) and At-q). 

NA=St 

N(v)A(rt) = WA 

where the various matrices are defined as 

1 - b, - d,/2 & [+“(l + b,) - d,/3] 

NA 

1 - b, - d,/2 
3 d, ~ 

3-P 
+ b,) + - + z 

3 1 [ o l-b,-d$ 

al 

) sp 
a2 

0 - &l + b,)$$ 
3-8 

F(u) 4 

0 &(l + b,)s 

d,J(-r’) + b, 
rl’X( -- 9’) 

2 

d,J($) _ )l’x(z-v’) 

&I’) 4i 
v’x;-q”l ,-%h’ k,J(_f) + ,2~‘x:-“‘l e%i4’ 

(294 

(29W 

> (304 

(3W 

(3Oc) 

(304 

(304 
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-4, A(v) 

A4 and A($ A 

1559 

(301) 

I I A- 14-v) 1 

Here we have also defined 

and 

1 

0 

2 

__ = (1 - qtanh-ii)’ + 7 . 
sml) 

(314 

Case’s X(-q) function can be related to 
Chandrasekhar’s H(q)-function by utilizing 
equation (24) and noting that as c + 1, ‘lo -+ co. 
We find 

X(-V) = J3&. 

Approximations 
The lowest-order and second-order approxi- 

mations to equations (29) are found in a manner 
identical to that used in Section 2; thus 

AC’)(~) = 0 and A(‘) = N’S, (324 

A”‘(q) = N-l(rj)F(q)A’l’, (=b) 

and 

A”’ = JV- ’ [S + j p(f) A’2’(q’)d$]. (324 

4. THE INCIDENT RADIATION AND THE 
NET RADIATIVE HEAT FJJJX 

It is apparent from the analysis given in the 
previous sections that the determination of the 
expansion coefficients is the most basic step 

for the solution of the considered problem. 
Once these expansion coefficients have been 
evaluated from the relations given in Sections 2 
and 3, the intensity of radiation Z(z,p) every- 
where in the medium is immediately available 
through equations (6) and (27) for the non- 
conservative and conservative cases respectively. 
Other physical quantities of interest, such as 
the incident radiation E(r) and the net radiative 
heat flux q(r) are evaluated from the definitions 

and 

E(r) = 2n _! Z(V@P (33) 

q(r) = 2n :\ Z(r,&dp. (34) 

For the nonconservative case, 0 < c < 1, we 
find 

E{z) = 2n[A(q,)e-p + A( -qo)e’/lo + 

i A(q)e-“qdq + d A( -$e”‘rdrZ + 

i Z,(r, P) dCc], c # 1 (35) 
and -i 

4(r) = 2n(l - c) [#(~o)~oe-“~~ - 

A( - tlo)roedsO + j A(rl)rle-“Vdq 

(36) 

For the conservative case c = 1 we find 

Ed= 2n[2A+ + 2A_T + 

+ [ A(-tW’“dql, c = 1, 
d A(W”“dv 

(37) 

and 

q(2)= -&A-, c= 1. (38) 
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5. SUPERPOSITION OF ELEMENTARY where we have defined the operator B as 
SOLUTIONS 

The most general problem considered in the 
basic analysis of Sections 2 and 3 contains many 

Bf(r,~) A p&Ar,lr) +Av) - ; 

parameters and thus clearly includes many x jlAW)[l + Bw’lW. (43) 
special cases. If some discussion of the numerical 
calculations is to be reported in a reasonable 
space, it is desirable to present the results in the 

The function QT(zo - z) is obtained from the 

form of dimensionless functions independent of 
solution of equations defining Qi(z) by inter- 
changing the radiative properties at the boundary 

several parameters, such that the solution to the surfaces 1 and 2. 
general problem can be constructed by the super- 
position of these elementary functions. Fortu- 

For conservative media with opaque boun- 

nately, the linearity of the governing equations 
daries equation (39) simplifies to 

permits the construction of the solution to the 
general problem by the superposition of elemen- 

q(r) = ~$7”: - fi] Q1 for c = 1, (44) 

tary solutions independent of the temperature. 
We present below the principle of superposition where the constant Q1 is a solution of the system 

for the cases of a constant inhomogeneous source 
of equations defining Qi(r) with, however, c = 1. 

term and a linearly varying inhomogeneous (ii). When the fourth power of the temperature 
source term. of the medium varies linearly from the surface 

(i) When S(z) is a constant it can be shown that temperature T;’ at z = 0 to the surface tem- 
the net radiative heat flux is given by perature TT at z = r,,, it can be shown that the 

q(r) = C’$Qo(d + T:Q,H - T;QTbo - 91; 
net radiative heat flux is given by 

(39) q(r) = 0:&(r) - T:QT(r, - 41. (45) 

Ti and T2 are the temperatures at the boundary 
surfaces r = 0 and t = r0 respectively, and To is 

The dimensionless function Q,(r) has been 
defined as 

the uniform temperature in the medium. The 
dimensionless functions Qi(r) have been defined (46) 
as 

Q,(r) = 27r 1, $Wj&, 

Qi(z) = 2711 @X~+)P’P> i = 0 or 1, (40) where $(T,P) satisfies the following problem 

where the functions II/,(z,p) satisfy the following 
system 

Bikd = G(l - k), (47) 

l-c 
BIl/lkP) = ----6oi, i = Oor 1, 

71 
(41) 

‘?(OJJ) = $1 + b,$@,-P) f d, $ $(0,-p’) 

IcIXO,P) = i s 161i + blll/;(O~-P) 

x hW> P E (OJ) , (484 

+ 4 j tii(O> - /WW, p E (W), (424 
and 

and 3(rcl, -,“) = b&(%?P) 

+i@,> ;P) = b&Xr0,C1) 
+ d, j 3(r,, &‘dk, P 4091) (4gb) 

+ d, j $l(ro.cl’)$dcl’, PLE (OJ, (42b) 
where B is defined by equation (43). 

The function @jr,, - r) is obtained from the 
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solution of the system defining Q,(r) by inter- 
changing the radiative properties at the boundary 
surfaces 1 and 2. 

6. DISCUSSION OF RESULTS 

It is to be emphasized that the most general 
calculation to be made is that of the determina- 
tion of the expansion coefficients A(?,) and A(q) 
VIZ (OJ). Clearly, once these coefficients are 
established, the intensity of radiation, the heat 
flux and the incident radiation at any point in the 
medium are immediately available. 

The integral equations corresponding to the 
linear and constant source problems discussed 
in Section 5 have been solved for the expansion 
coefficients by an iterative process with the 
integral terms being evaluated by a 41-point 
improved Gaussian quadrature scheme [ 181. 
Starting values for this process were obtained 
from the approximations previously discussed, 
and the iteration process was terminated when 
successive values of the coefftcients agreed to at 
least ten significant figures. The calculations 
were performed on the IBM 360/75 computer in 
double-precision arithmetic. 

Since we consider our calculations to be highly 
accurate, it is appropriate to report here several 
checks made on the accuracy of our results. A 
check could be made by testing how accurately 
the computed expansion coefficients satisfy the 
boundary conditions, but since this would in- 
volve the evaluation of principal-value integrals 
which might introduce errors itself, we preferred 
to consider a check on the moments of the 
boundary conditions. We multiply equation (5) 
by fl and integrate over /J from zero to unity. In 
comparing the two sides of the resulting expres- 
sion, for c1 = 0, 1,2. . . . 9, we found agreement to 
the order of 10e5. 

Additional confidence in the calculations re- 
ported here is established by noting that doubling 
the order of the quadrature scheme (from 41 to 
81) did not change the results to the accuracy 
presented. 

Another check on the accuracy was made by 
calculating with the present analysis the radiative 

heat flux for the special case of c = 0, for which 
simple analytical solutions can be obtained, and 
by comparing the numerical and analytical 
results. The agreement was excellent. 

The computer program prepared for the 
present analysis is capable of calculating the 
expansion coefficients, the intensity of radiation 
the incident radiation and the net radiative heat 
flux anywhere in the medium. For most engineer- 
ing applications the net radiative heat flux at the 
boundary surfaces is of primary interest. For 
this reason, and for brevity in the presentation 
of results, we have concentrated most of our 
attention on the net radiative heat flux at the 
boundaries. We present tabulations of the 
boundary values of the net radiative heat flux 
for several cases of isotropic scattering and 
diffusely reflecting boundaries, and report in- 
vestigations of the effects of linearly anisotropic 
scattering and specular reflection. 

o,gvl 

____----. 

c 0.5- 

Ki- ----fl..o.g 
o-4 - 

-S-O 

0.3 - 

FIG. 1. The effects of linearly anisotropic scattering on the 
function a&) for c = @5. 
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We list in Table 1 the numerical values of the of diffuse surface reflectivities and emissivities 
functions Qo(0), Ql(0) and QT(q,) for three for the case of isotropic scattering. The net 
optical thicknesses and for several combinations radiative heat flux at the surface z = 0 can be 

Table 1. The heatJuxfunctions QO(0), Q,(O)and Q1 *(ro)f or non-conservative media at constant temperature 

Boundary Boundary 
at at z. = 0.1 to = 1.0 To = 10.0 

7=0 7 = 70 

El Pld E2 P2d c=o C 7 0’5 c=o c = 0.5 c=o C=@S 

- Qo(O) 
1.0 0.0 0.0 1.0 0.3068 0.1736 0.9519 0.7572 1+lOOO 0.8535 
1.0 0.0 0.5 0.5 0.2371 0.1316 0.8662 0.6510 1mOO 0.8534 
1.0 0.0 1.0 0.0 0.1674 0.0911 0.7806 0.5591 1mOO 0.8534 

Q,(o) 

- 1.0 0.0 0.0 1.0 0.3068 0.1736 0.9519 O-7572 1.0000 0.8535 
1.0 0.0 0.5 0.5 O-6534 0.5753 0.9759 0.8154 l+XIOO 0.8535 
1.0 0.0 1.0 0.0 1+)000 0.9616 1+)000 0.8658 10XlO 0.8535 

Q:(7.0) 

1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
1.0 0.0 0.5 0.5 0.4163 04437 0.1097 0.1644 0.0 0.0 
1.0 0.0 1.0 0.0 0.8326 0.8704 0.2194 0.3067 0.0 0.0 

Table 2. The heatflux constant Q1 for conservative media 

Q,forc= 1 

Boundary Boundary 
at7=0 at 7 = zO 

= 0.1 = I.0 = 10.0 
El 

PI* Pzd 70 70 70 

e2 

1.0 0.0 0.0 1.0 1.0 0.0 0.0 
1.0 0.0 0.5 0.5 0.4780 0.3562 0.10454 
1 .o 0.0 1.0 0.0 0.9157 0.5534 0.11675 

Table 3. The heatfluxfinctions Q,(O) and Q,*(T,) f or non-conservative media tith a linear fourth-po wr of temperature 

Boundary Boundary 
at7=0 at 7 = to = 70 0.1 70 = 1.0 70 = 10.0 

PId 82 P2d c=o c = 0.5 c=o c = 0.5 c=o c = 0.5 

em 

1.0 0.0 0.0 1.0 0.1527 0.0866 0.3860 0.3351 0.0667 0.0758 

1.0 0.0 0.5 0.5 0.5323 0.5083 04403 0.4337 0.0667 0.0758 

1.0 0.0 1.0 0.0 0.9119 0.9138 0.4945 0.5190 0.0667 0.0758 

Q370) 

1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
1.0 0.0 0.5 0.5 0.4560 0.4658 0.2473 0.278 1 0.0334 0.0409 
1.0 0.0 1.0 0.0 @9119 0.9138 0.4945 0.5190 0.0667 0.0758 
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Table 4. The heatfluxfinction Qt(0) f or non-conservative media with a pure/y specularly reflecting boundary at T = q, 

Boundary Boundary &I(O) 

atr =0 at 5 = *0 

50 =O.l To = 1.0 50 = 10.0 

E, P,’ 82 P2s c = 0.5 c = 05 c = 0.5 

1.0 0.0 0.0 1.0 0.0845 0.3263 0.0758 

1.0 0.0 0.5 0.5 0.5066 0.4285 0.0758 

evaluated from equation (39) by obtaining the 
values of QJO), Q:(O) and Q&-J from Table 1. 

Table 2 gives the values of the heat flux con- 
stant Q1 for use in equation (44) for the special 
case c = 1. 

Table 3 gives the numerical values of the 
functions Q,(O) and Q:(r,) for use in equation 
(45) for diffuse surface reflectivities and emissi- 
vities. 

In Tables 1 and 3 we have included, for the sake 
of completeness, results for the special case of 

c = 0. This case, of course, can be evaluated 
analytically. 

To investigate the effects of specular reflection 
on the radiative heat flux, we have evaluated the 
dimensionless heat-flux function Q,(O) by 
assuming that the boundary surface at r = r0 is 
a purely specular reflector. The results of these 
calculations are presented in Table 4. A com- 
parison of the results given in Tables 3 and 4 
shows that the heat fluxes for specularly reflecting 
and diffuse reflecting cases differ only slightly. 

- 
---- Furs+ order. diffuse 
“““.‘.‘. Second order. Specular 
--- Second order. dlff”SB 

FIG. 2. The accuracy of the first- and second-order approxi- 
mations to predict the heat-flux constant Q, for opaque 

boundaries with c = 1. 
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Figure 1 shows the effects of linearly aniso- 
tropic scattering on the radiative heat-flux 
function Q,(Z) as a function of the optical 
distance in the slab. The net radiative heat flux 
is slightly higher for linearly anisotropic scatter- 
ing with j3 = 0.9 than for isotropic scattering. 
The difference in heat fluxes becomes less for very 
large and very small values of the optical 
thickness zO. 

The accuracy of the analytical approximations 
[i.e. equations (19)-(21) and (32)] to predict the 
net radiative heat flux is investigated by com- 
paring the approximate results with the “exact” 
solutions obtained from the iterated coefficients. 

Figure 2 shows the accuracy of the first-order 
and the second-order approximations to predict 
the net heat-flux constant Q1 for a conservative 
medium (i.e. c = 1) as a function of the optical 
thickness z0 for both specularly and diffusely 
reflecting opaque boundaries. The accuracy of 
the second-order approximation appears to be 
very good even for optical thicknesses as small 
as ~~ = 0.1. The accuracy of the approximations 
is better for purely diffuse reflection than for 
purely specular reflection. 

Figure 3 shows the accuracy of the second- 
order approximation to predict the heat flux 
functions Qo(0) and Ql(0) for a non-conservative 

101 \ - O,(O) 

I \ I 

:~~ 

0.1 I.0 IO-O 

T 

FIG. 3. The accuracy of the second-order approximation to 
predict the function Q,(O) and Ql(0) for diffuse, opaque 

boundaries with c = 05. 

medium for c = 0.5 with diffusely reflecting and 
diffusely emitting opaque boundaries. The 
accuracy of the second-order approximation for 
a non-conservative medium with c = 0.5 is not 
as good as that for the conservative media 
shown in Fig. 2. 
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TRANSFERT PAR RAYONNEMENT AVEC DISPERSION LINEAIRE ANISOTROPE DANS 
DES LAMES CONSERVATIVES OU NON CONSERVATIVES AVEC DES FRONTIERES 

RAYONNANTES 

Resume-On utilise la technique du developpement a mode normal pour obtenir une solution semi- 
analytique pour une distribution angulaire de rayonnement a une distance optique quelconque dam un 
milieu entre deux front&es paralleles refltchissantes. Ce milieu est dispersif lintairement et anisotropique- 
ment, absorbant Bmissif non isotherme et gris. On considbre les cas conservatifs ou non conservatifs. Le 
probleme general est decompose en problbmes plus simples et le flux net de chaleur rayonnt est calcule 
pour plusieurs combinaisons de reflectivites et d’tmissivitb superlicielles. En superposant ces solutions 
fondamentales on peut determiner le llux net thermique rayonne pour une lame absorbante, tmettrice, 
dispersante avec des front&es reflechissantes dans le cas d’une temperature uniforme et de la puissance 
quatrieme variant lintairement dans le milieu. Des expressions analytiques simples de l’intensitt de 
rayonnement sont present&es en utilisant des approximations au premier et au second ordre de la solution 

exacte et la precision de ces approximations est evaluee pour une varibtt de cas. 

TRANSPORT DURCH STRAHLUNG ZWISCHEN LINEAR ANISOTROP STREUENDEN 
KONSERVATIVEN UND NICHTKONSERVATIVEN PLATTEN MIT REFLEKTIERENDEN 

GRENZEN. 

Zusammenfassung-Die Normal-Expansions-Technik wird beniitzt, urn halbanalytische Losungen fiir 
die Winkelverteilung der Strahlung in jeder optischen Entfernung in einem linear anisotrop streuenden, 
absorbierenden, emittierenden, nicht isothermen, grauen Medium zwischen zwei parallelen, reflektieren- 
den Grenzen zu erhalten. Es werden sowohl “konservative” als such “nicht-konservative” FLlle be- 
trachtet. Das allgemeine Problem wird aufeinfachere Probleme zurtickgefiihrt, und der Netto-Wlrmestrom 
wird bei diesen Grundproblemen fiir mehrere reprasentative Kombinationen aus Oberfliichen-Reflektions- 
und Emissionsvermogen mit ausreichender Genauigkeit berechnet. Durch Uberlagerung dieser Elemen- 
tarlosungen kann der Netto-Wgrmestrom ft eine absorbierende, emittierende’ streuende Platte mit 
reflektierenden Grenzen ftir die Falle einer einheitlichen Temperatur im Medium berechnet werden. Es 
werden einfache analytische Ausdrticke ftir die Strahlungsintensitat angegeben, indem die exakten Losun- 
gen 1. und 2. Ordnung approximiert werden. Die Genauigkeit dieser Niiherungen wird ftlr mehrere Fllle 

untersucht. 

PA~MAHHOHHMH TEHJIOOBMEH B JIHHEHHO AHH30TPOIIHbIX- 
PACCEHBAIOIIHIX HOHCEPBATBBHbIX II HEKOHCEPBATHBHbIX 

HJIACTMHAX C OTPA~AIOIIJHMH I’PAHBHAMR 

AIfHOT8qasI-i'iCnOJIb3yeTcR MeTOn pa3JlOFKeHHfl n0 HOpMaJIbHbIM HOJIe6aHEifxM aJIfl TOFO, 

9~06br nonysKTb nonyaHanMTtiqecKoe peineHKe AJIJ~ yrnoBor0 pacnpeAerrerrun pamraunri 
AJrfI nro60tt OnTli4eCKOit AJIIlHbl B JIEiHefiHO aHIl3OTpOnHOlt paCCeKBaIOIlteti, nOl'JIOIUaIOIIlet, 

nany9axo~ei,HeasoTepMa~ecKoicepoti cpene Mext~y~~y~~napannenbHbIMKoTpawtaIonvmn 

l'paHHqaMM. PaCCMaTpHBalOTCH CJlyYalz nO~Bli%HOti H HenOABHWHOfi I'paHUll. 06rrran 3ana’ta 
pa36EiBaeTCn Ha 6onee npOCTbIe, a pe3yJIbTHpyIOWi8 TenJIOBOft nOTOK paCCWTbIBaeTCH CO 

CTaHAapTHOi-8 TOYHOCTbtO AJIFI 3TEIX 3aAaY C pa3JIPiVHbtMK KOM6HHalViHMR 0TpaHtaTeJlbHOi-i El 

H3JIyqaTeJIbHOi CnOC06~0CTli nOBepXHOCTM. nyTeM CynepnO3Hl&KH BTHX OCHOBHblX peIlteHllti 

MOIKHO paCCWTaTb peaynbTHpyIon@ TennoBoi nOTOK AJIH nornomarorrret, nanysaromett a 
pacceusaromett nnacrnrrbr c oTpar-naromnMrr rparnrnamrr Ann cnysaa 0~~0p0~~0B TeMnepa- 

TypbI u nKHeap~aosaHHofiseTBepToi4 cTeneHti.TeMnepaTypn B cpene. IIpeacTasneHbI npocTbIe 

aHansiTugecKne BbIpameHHfl any KHTeHcKBHocTK pannaqnsi, npKMeHRnH npw6nKHteHtis 

nepBor0 II BToporo nopHnKa K T~~HOMY pemeHKIo. OueHeHa TO'4HOCTb 3THX npti6ntiHteHtifi 

nnn qenoro pflpa cnysaee. 


