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Abstract—The normal-mode-expansion technique is used to obtain a semi-analytical solution for the
angular distribution of radiation at any optical distance within a linearly anisotropicscattering, absorbing,
emitting, non-isothermal, gray medium between two parallel reflecting boundaries. Both conservative and
non-conservative cases are considered. The general problem is decomposed into simpler problems, and
the net radiative heat flux is calculated to “bench mark™ accuracy for these basic problems for several
representative combinations of surface reflectivities and emissivities. By the superposition of these basic
solutions, the net radiative heat flux can be determined for an absorbing, emitting, scattering slab with
reflecting boundaries for the cases of uniform temperature and linearly varying fourth power of the
temperature within the medium. Simple analytical expressions are presented for the intensity of radiation
by utilizing first- and second-order approximations to the exact solution, and the accuracy of these approxi-
mations is evaluated for a variety of cases.

1. INTRODUCTION

THE PURPOSE of this paper is to develop a semi-
analytical solution to a general radiative heat
transfer problem in a linearly anisotropic-
scattering, absorbing, emitting, non-isothermal
gray medium confined between two parallel
reflecting boundaries. The analysis is based on
the singular-eigenfunction-expansion technique
developed by Case [1] for treating one-dimen-
sional neutron transport problems. This method
has been applied only recently in the field of
radiative heat transfer. One of the greater
advantages of Case’s method derives from the
fact that analytical approximations obtained
from the rigorous solution are simple yet
accurate. One of the earlier applications of the
normal-mode-expansion technique was made
by McCormick and Mendelson [2] who dis-
cussed the slab-albedo problem; Siewert and
McCormick [3] solved rigorously the problem

of an absorbing, emitting, anisotropically scat-
tering, semi-infinite medium with a linear source
term and a free boundary. Ferziger and Sim-
mons [4] solved the radiative transfer problem
for a conservative medium between heated
black boundaries, and later Simmons and
Ferziger [5] extended this work to the two-
group non-gray model. Ozisik and Siewert [6]
have solved a radiative transfer problem for an
isotropically scattering, absorbing, and emitting
slab with specularly reflecting boundaries, and
recently Siewert and Ozisik [7] reported a
rigorous solution to a line formation problem
based on the interlocked-doublet model. Heaslet
and Warming [8, 9] considered radiative trans-
fer in finite and semi-infinite non-conservative
media. Bowden et al. [10] examined numerical
methods of solving the one-dimensional trans-
port equation with anisotropic scattering in
slab geometry. Here we do not cite the many
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references on radiative heat transfer treated by
classical techniques, but we note that the papers
by Ozisik and Siewert [6] and Heaslet and
Warming [11] contain a more complete litera-
ture survey of work utilizing classical or
numerical methods.

The outline of the paper is as follows: in
Section 2 the problem of radiative heat transfer
is formulated and the analysis basic to the
normal-mode-expansion technique is given for
the non-conservative case (ie. 0 <c¢ < 1). In
addition, various analytical approximations
obtained from the rigorous solution are given,
and the particular solutions of the transport
equation for source terms represented as poly-
nomials are presented. In Section 3 the con-
servative case (¢ = 1) is discussed in a similar
manner. In Section 4 the physical quantities of
interest, such as the incident radiation and the
net radiative heat flux, are expressed explicitly
in terms of the expansion coefficients, and in
Section 5 the method of superposition of simpler
problems to obtain solutions to more general
problems is discussed. Section 6 is devoted to a
presentation of highly accurate numerical results
for the net radiative heat flux pertinent to the
basic problems for a variety of boundary surface
reflectivities. Solutions to the more general cases
are thus readily available by superposition of
these basic solutions. Also, the accuracy of
analytical approximations for several repre-
sentative cases is evaluated, and a discussion of
the various methods used to establish confidence
in our “‘exact” calculations is given.

2. THE NON-CONSERVATIVE CASE
General analysis
We consider the equation of transfer

0
S I,y + Hz. wy= (1 — L[ T(7)]
1
+ 3¢ _,fl (1+ Bup) Iz, py dy, (1)

where 7 is the optical variable, and u is the
direction cosine (as measured from the positive
7 axis) of the propagating radiation. The constant
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c is the ratio of the scattering coefficient to the
extinction coefficient, I,[ T(1)] is the prescribed
frequency-integrated Planck function, and the
constant f is the anisotropy factor.

The boundary surfaces 1 and 2 are positioned
at T = 0 and 7 = 1, respectively and are kept at
uniform temperatures 7, and T,. The surfaces
are diffuse emitters with emissivities ¢, and ¢,,
and the reflectivities are expressed as the sum of
diffuse and specular reflectivity components:
p; = p*+ pS, i =1 or 2. The boundary condi-
tions subject to which equation (1) is to be solved
are written as

g
10, p) = i Tt + 110, — p)

1

+ zp‘i ,(‘;1(09 - l‘,) Oul d#,$ lu 6(09 1)7 (2a)
and
4 4
g, — W) =&, o T; + p3l(to, W)
1
+ 205 [ Iro, )i dp', e (0, 1), (2b)

[o]

where o is the Stefan-Boltzmann constant.
Clearly many special cases existing in the
literature can be obtained from the considered
problem.

For convenience in the analysis, we define

i £ efo/n) TH b2 p} di22pf, i=1and2,

13

S

S®&(1-9LIT@],  (3)

and thus consider the equations

#50— 12, 1)+ Iz, 1) = ()
T
1
+e J (1 + B (5, ) . (@)

KO, ) = a, + b, 10, — y)

1
+d, [ 10, — gy dy, pe(0,1), (5a)
0
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and

I(tg, — 1) = a; + byI(zg, p)

1
+d, _(f) I(ty, ) ' dyt, pe (0,1). (5b)

In equation (4), S(r) represents a prescribed
inhomogeneous source term, which later will be
represented by a polynomial expansion in the
optical variable. The desired solution can be
written as a linear combination of normal modes,
satisfying the homogeneous version of equation
{4), and a particular solution:

I(Ta “) = A(”O) ¢('10a l»l) e—t/'lo

+ A(— no) B(— n,, p) ™

+ ([ A(n) ®(n, We~""dn

1
+ ([ A(— M &(— n, we’"dn + Lt ), (6)

where the normal modes, due to Mika [12]
and collected by Case and Zweifel [13], can be
written as

1
D(+ 1o, 1) = 3¢y ——— R(+ 1o W) (72)

Not+ u

and

P
P(n, 1) = 01 R(n ) g5 T A=, (70)
with
R(+ew=14+p01 - )

E=1no or ne (0,1), (7¢)
and
Mn) = Rnm) (1 — cn tanh™ ! ) — (1 — ¢)*n?;
(7d)

we consider those cases [12] for which there are
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only two discrete zeros, + 7,, of the dispersion
function

A(z)=R(zz) [1 — cz tanh™* (1/2)] — B(1 — )*22.
(7e)

Here P is a mnemonic symbol used to denote
that all ensuing integrals are to be evaluated in
the Cauchy principal-value sense, (x) denotes
the Dirac delta function, and I(z, 4) is the par-
ticular solution to be determined for source
terms of interest. To complete the analysis, the
arbitrary expansion coefficients A(xy,), A(— 1),
A(n) and A(— 1), n€(0, 1) must be determined
by constraining equation (6) to meet the con-
sidered boundary conditions. We thus introduce
equation (6) into equations (5) and rearrange the
resulting expressions to find

fi(p) + [b1A(no) — A(— no)] H(— 14, 1)

+ .fo[blA(n) — A(— )] &(— n, p)dn

= [A(no) — b, A(— 1,)] D110, 1)

+ (f [A(m) — by A(— m)] By, w)dn,

ue (0, 1), ®)

and

L)+ [brA(—np)e™™ — A(ng)e™ "] & —1,, 1)

1
+ (f) [b2A(— n)e™" — A(n)e™""] &(—n, wdn

= [A(=no)e™/™ — by Alno) e~ ™/°] B(r1o, 1)

1
+bf [A(—m)e™™ — b, A(n)e™"/"] &(n, u)dn,
ne(0,1), ©)

where we have introduced the definitions
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ﬁ(ﬂ) 4 a; + bIIp(O9 - )u) - Ip(os ﬂ)
+ d; [Ano) J(— 110) + A(— 110) J(n10)
1
+ .(f)A(~ n) J(n)dn

A ndn+ 100 (100
HkE) B [ BLE, )M d,

E=mno or ne(0,1), (10b)
1O &[0 - wudr, (00

fZ(ﬂ) & a, + bZIp(TO9 ”) - Ip(TO’ - ﬂ)

+ d,[A(n,) g ol J(no) + A(— "Io)"-’«to/"0 J(—1no)

1
+ _(f)A(— n)e® J(— n)dny

+ _(f)A(n)e_"’/" Jm)dn + J(zo)], (11a)

and

1

Jito) & [ Lito W)W dit. (11b)
Equations (8) and (9) are the defining constraints
from which the unknown expansion coefficients
are to be determined. To solve these equations
we make use of the half-range completeness
theorem proved initially by Mika [12] and the
half-range bi-orthogonality relations developed
by McCormick and Ku§Cer [14] and given by
Case and Zweifel [13].

In order to isolate the discrete coefficients
[A(no) — b1A(— no)] on the right-hand side of
equation (8), we multiply that equation by
B(no, w) W(u) and integrate over u from zero
to unity. We then utilize the half-range bi-
orthogonality relations and various normaliza-
tion integrals to obtain

— (eno)® X(no) R(nono) [Alne) — by A(— 1)

R(nono) R(— not)

= F(no) + (%0’70)2 X(— o) R(107)
0
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R
xwawa—m—%n+um&%{%%l
3}

x inx(— MR(—ni) [b;A(n) — A(—n)]dy.  (12)

Similarly, to isolate the factor [A(—n,)e e
— b,A(ng)e ™"] on the right-hand side of
equation (9) we apply the same operation to find

Gene) X(no) R(nono) [b,A(ne) e~/
— A(— ny) ero/no] = Fy(no) — (%0’70)2 X(~ n,)

R(no10) R(— nof)
R(nof)

[A(no) e~

R(nono)

— b, A(— To/me] _ 1.2
2A(= 1) €M) — 2¢%n, R{197)

x ,(()nX(~ n) R(— ni)

x [Aln)e™ ™" — by A(~ n) e dn. (13)

To isolate the continuum coefficient
[A(n) — b;A(— n)] on the right-hand side of
equation (8), we multiply that equation by
d(n', 1) W(u), n €(0, 1), integrate over u from
zero to one and utilize the half-range bi-
orthogonality relations and the normalization
integrals to obtain (after interchanging n and #’)

WD [ ) — b, A(— )]
glc, 1)

= Fy(n) + cnonX(— 1) &(— 10, 7)

9 R(nono) R(— nif)

c
R(noi) R(— 7110) x [b1A(ne) — A(— )] + )

X .(‘;('lo + 1) X(—= )&y, ~n)

x [byA() — A(— 1)1 dn’,

The same operation when applied to equation (9)
yields

ne(0,1). (14)
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W ’ 1
g(c(ﬂ) [A(— n) e — b,A(n) e~ ™" MA(n,) = G + { Bly) A(7) dn, (17a)
, 1) 5 !
an
™) enan X ) A o) M) Atn) = Gon) + Dl Afn)
* Rnof)) R(— 11110) + | Bor' ) Ab) dn', e ©.1) (17b)

where various quantities are defined as

; 2\?
M = e~ Ulny) — M(no) — -7('70) <_>

Mo

X [b2A(= o) /0 — Alne) e™*"]

1
+ en f) (o + 1) X(—n) $(n', —n) )

— ¥V (1), 18
8 X(110) R(no 10) (o) (182)

x [byA(— 7)™ — An)e™ "] dr,

’

ne(0,1). (15 M(é)=‘1b — ‘Zl
—b,e " e'o

Here we have used the expressions [13]

1
FA&) = | fuls) B(E 1) W) A, _|b B
b UO=|", e p oot 1)
o= 1and?2, (16a)
gle,n) = [A*m) + {*n*n® R¥m)] ™', (16b)
(1= 6 (1o — 7) T (180)
&, p) =M p) + %Cﬂf—m;’)—"—, (16¢) (€)= d,J(E)e ™k  dyJ(— £e~=x ’
1 ~
Ve Din) = K,(n) Uty) + 20091y, 18d
O _ %  (ed) (n) 1(m) Un) W (n0), (18d)
§ v dp , N 2 \?
0 B(r') = Koln') UM') + Jino) <—)
) = cp[21 — 91 = §eB) g — k) X(— W] ™7, Mo
4 (16e) x—L ym
an X(no) R(nono) |
Wi = 1o — W () o) FHlofo
Also, X(z) is Case’s X-function for linearly Jn) gle, n)
anisotropic scattering. Equations (12){15) are By’ — n) = K(n' —» n)U(n') + W :
the four basic equations to be considered; they )
are written more compactly in matrix notation: x V(n), (18¢)

£[01 + b,1,(0, — ) — 10, 1) + d,J, (0)] Bn, p) W(n)dp

G2 (i) ! . (18D
cno) X(no)R(noMo)

§ a2+ bal feo. 1) = 1pfro, = 1) + dad f20)] Bo, 1) W(du
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:g[al T by L0, —p) — 1,00, 1) + dyJ, O] (7, 1) W) dp
2 9 , (18g)
G(n) )
ff [ay + byl (vo, 1) — I (To, — 1) + dpJ f10)] B (0, 1) W(p) A
[
Ko & KR g ot X (= o)~ 1o, mg(e; DROIMIR(—1) oy
ol") 1o X(no)R(nf) ’ 1) W ()R (noMR(—11m0) (18h)
, 1 (o + MX(—n)Bn', —mglc, n) .
K(n' — 1) & jen W) ) (18i)
and
J e g”(f, W)W (u)dp' (18j)

Further z, is the Milne-problem extrapolated
end-point [13], and the unknowns have been
written as

A9

A() & , E=noorne(0,1). (18k)

A(=<)

Up to this point our analysis has been mathe-
matically rigorous; however, it is highly un-
likely that analytical solutions to equations (17)
exist. Although these equations are formidable
analytically, they certainly pose no problem for
existing computing facilities. Thus if highly
accurate “‘bench mark” solutions are sought, an
iterative numerical procedure can be used to
solve these equations to any desired degree of
accuracy. The degree of precision with which we
can complete the desired solution will be meas-
ured by how accurately we determine A(z,) and
A(n) from equations (17).

Analytical approximations can also be ob-
tained from equations (17) to yield solutions of
sufficient accuracy. Ferziger and Simmons [4]
obtained two different approximate solutions
to a related problem; they showed that the
lowest-order solution was better than classical

diffusion theory, whereas the second-order
solution was highly accurate.

Approximations

In the present analysis, the lowest-order (or
first-order) solution is obtained by negiecting:
the continuum coefficients entirely; the discrete
solutions are thus readily available from equa-
tion (17);

AV =0 and AV () = M'G,  (19)

where superscripts are used to denote the order
of approximation.

The second-order continuum coefficients
A () are found by neglecting the contribution
from the kernel B(n' — ) in equation (17b) and
by using 4V (y,) in that equation. Finally
A? (n) is substituted into equation (17a) to
yield 4® (n,). Thus

AD () = M~ n) [Gln) + DA™ (ng)]  (20)
and
AP (o) = M1 [G + [ B)A?(p)dn]. 1)

0
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Particular solutions

In order to evaluate the vectors G and G{(#),
the particular solution Iz, ) for the source
term of interest is needed. Several particular
solutions of the equation of radiative transfer
have been reported by Ozisik and Siewert [15].
Here we list the particular solutions for source
terms represented by polynomials in the optical
variable 7. Considering a source term of the type

SO (1) = 7', i=012,..., (22)
we find the first three solutions to be
IO =01-097"  (23)

I (e ) = (1 — o) (1 - ?)
X [‘c (1 - ?) - ﬂ], (23b)
and
PEw=01-0" (1 : ?)

2
X[3(1hc—c_) — 2tpu + 2 (1 - ?) + 2,u{|.(23c)

To determine solutions for higher-order poly-
nomials is a straightforward but tedious task. Of
course, solutions corresponding to sources of
the form S(z) = Y «; S? (7) are obtained by super-
position. Once the particular solution is known,
the evaluation of the G-vectors follows in a
simple manner [6].

Relations between X- and H-functions

In the foregoing analysis our results are given
in terms of Case’s X-function. However, it may
be desirable to express these results in terms of
Chandrasekhar’s [16] well known H-function.
For linearly anisotropic scattering, Case’s X-
function is related to Chandrasekhar’s H-func-
tion by [14]

4
e El ) (1 - ?) ](no + DH(),

(24)
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where the H-function is a solution of

! 1 21 d :
ﬁ(?)=[— Oilf(ﬂ) #:I

1

du
+ J#W(#) H(p) i+ 7 (25a)

with
Y = (c/2) [1 + B - o) p?]. (25b)

To solve equation (25a) iteratively for H(u)
certainly poses no problem for modern com-
puting facilities; however, reasonably accurate
predictions of H(y) follow from Shure and
Natelson’s [17] concise approximation to the
X-function.

3. THE CONSERVATIVE CASE

General analysis

Though the foregoing analysis can be inter-
preted in the limit ¢ — 1 and thus n, —» oo, we
prefer to develop the special forms required
since in some cases the limiting values are
tedious to obtain. This conservative case clearly
corresponds to a purely scattering gray medium
or to a gray medium in radiative equilibrium. We
consider the equation of transfer

a 1
pa ) + Iwp) = 2 [ (1 + Bu)
a

x Izu)dy  (26)

subject to the boundary conditions given by
equations (5).

Since the normal modes of equation (26) are
established [13], the desired solution can be
written as

Iy = A, + A_(z — 337”/3)
+ { Aodtemdn + | A=nd(~np)

x eMdy,  (27)

where A, A_, A(n) and A(- 1) are the expansion
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coefficients to be determined from the boundary
conditions. The continuum normal mode ¢(n,u)

takes the form

d(n, 1) =

We follow a procedure similar to that used
in Section 2 to determine the unknown expansion

H. L. BEACH, M. N. OZISIK and C. E. SIEWERT

P
roL + (1 — ntanh™ ') 8(n — p).

coefficients. The equations obtained from the
substitution of the solution given by equation

(27) into the boundary conditions given by
equations (5) are multiplied successively by

() and ¢(n',u)y(), n'€(0,1), and integrated over

y from zero to unity. Various normalization

(28)

NA =S+ gP(n’)A(n’)dn’,

Nn) A(n) = F(pA + ,COP(n’ - n)A(n')\dry’,

where the various matrices are defined as

3
1 —b, —-4d,/ g__[ Y0 + by) — dy/3]
N &
/ 3 d d
1= b, —dyf2 o [‘“(1+b2)+~;}+10[1 b2~§]
1 —b, a,
N(n) & R ,
_b e"'o/’l to/n a,
3 ng(1, n)
0 ——""(0+5b
350
F(n) & ,
3 ng(1,n)
0 ——(+b
gy A
. 'X(—1n) . X(—1'
dJ(—n) + b, ! 2’7 a0 " 2n)
P(n) &
—n ,X o )
[dzJ(n’) -1 (2 ")] A IEiZJ(—n') + bzﬂ_(zﬂ_)] ero/m
b K(n' — n) —K(n' —n)
Py > n) &

— Ky — n)e ™

b,K(n' — n) e

integrals and orthogonality relations are then
invoked to yield the following equations for the
determination of the expansion -coefficients
Ay, A_, Aln) and A(—n).

(29a)

(29b)

(30a)

(30b)

(30c)

(30d)

(30e)
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A, Alm)
44 and A(n) & (301)
A_ A(—n)
Here we have also defined for the solution of the considered problem.
Once these expansion coefficients have been
3 7 1 evaluated from the relations given in Sections 2
(m &= T (31a) .
=3 X(—n)1—p/3 and 3, the intensity of radiation I(t,u) every-
1 . - . . - » b]e
w a — 071044609 . . 1 where in the medium is immediately availa
' i[ mdp =0 ) iy (315) through equations (6) and (27) for the non-
Ky —n) & ' g(LmX(—n) (31c) conservative and conservative cases respectively.

) A + n'hy(n)
VENE g (£ & mudp, <e(0,1), (31d)

and

! (1 — ntanh™'y)? + (ﬂ>2 (31e)

gLy 2
Case’s X(—n) function can be related to
Chandrasekhar’s H(n}-function by utilizing
equation (24) and noting that as ¢ — 1, n, — 0.
We find

X(—m) = 3 (319

H(n)
Approximations
The lowest-order and second-order approxi-
mations to equations (29) are found in a manner
identical to that used in Section 2; thus

AY(n) =0 and AV = N™1S, (32a)
AP (m) = N~ () A, (32b)

and
AP = N[S + j P(n') AP(n')dn']. (32¢)

4. THE INCIDENT RADIATION AND THE
NET RADIATIVE HEAT FLUX

It is apparent from the analysis given in the
previous sections that the determination of the
expansion coefficients is the most basic step

Other physical quantities of interest, such as
the incident radiation E(t) and the net radiative
heat flux g(z) are evaluated from the definitions

E@)=2n | Ip)dp (33)
and o
glt) = 2n _Il I(z,pudp. (34)

For the non-conservative case, 0 < ¢ < 1, we
find

EI(T) = 27‘[14('10)3_‘1/"0 + A(—ngle™ +

| A(me~"dn + | A(—me“"dn +

0 0
i
[ 1z, w)dpu], ¢ # 1(35)
and -
q(t) = 2n(1 — ¢) [A(no)nee ™" —
A(=no)noe™ + | Almne™""dn
(1]

1 1 1
- [[ A(—nme"dn + —— —1‘ I(t,ppdp].

1—¢
(36)
For the conservative case ¢ = 1 we find
E(r) =2n[24, + 24 1 + ‘ A(n)e~""dn
+ [ A(—n¥"dn], c¢=1, 0 (37)
and0
R
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5. SUPERPOSITION OF ELEMENTARY
SOLUTIONS
The most general problem considered in the
basic analysis of Sections 2 and 3 contains many
parameters and thus clearly includes many
special cases. If some discussion of the numerical
calculations is to be reported in a reasonable
space, it is desirable to present the results in the
form of dimensionless functions independent of

several parameters, such that the solution to the

general problem can be constructed by the super-
position of these elementary functions. Fortu-
nately, the linearity of the governing equations
permits the construction of the solution to the
general problem by the superposition of elemen-
tary solutions independent of the temperature.
We present below the principle of superposition
for the cases of a constant inhomogeneous source
term and a linearly varying inhomogeneous
source term.

(i) When S(1) is a constant it can be shown that
the net radiative heat flux is given by

q(0) = a[T3Qo(v) + T1Q4(1) — T30¥(z, — 1)];
(39

T, and T, are the temperatures at the boundary
surfaces 7 = 0 and © = 1, respectively, and Tj is
the uniform temperature in the medium. The
dimensionless functions Q) have been defined
as

Q1) =2n f v {twudy, i=0o0rl, (40)

where the functions ¥ {t,u) satisfy the following
system

1—-¢
By ) = Soi» i=0o0r1, (41)
Y18
1
Y{0,u) = - €01 + b {0, — )
1
+ dlg VA0, — p)wdy, pe(0,), (42a)
and
Wi('fo,—lﬂ) = blllli(TO,H)
+dy | Ydrowdy, pe(0.1), (42b)

0

H. L. BEACH, M. N. OZISIK and C. E. SIEWERT

where we have defined the operator B as

0
Bftew) & p= firp) + fir) - =
ot 2

1
X_,flf(t,u’)[l + Bupldy. (43)
The function Q¥(z, — 1) is obtained from the
solution of equations defining Q,(r) by inter-
changingtheradiative propertiesat the boundary
surfaces 1 and 2.

For conservative media with opaque boun-
daries equation (39) simplifies to
gty = [T} — T3] Q,forc =1, (44

where the constant @, is a solution of the system
of equations defining Q,(t) with, however, ¢ = 1.

(ii). When the fourth power of the temperature
of the medium varies linearly from the surface
temperature 71 at 7 = 0 to the surface tem-
perature T1 at T = 1, it can be shown that the
net radiative heat flux is given by

9(v) = o[T1Q (1) — T30¥(z, — 7). (45)
The dimensionless function Q,(r) has been
defined as

Q) = 2n j'!/'/(r,u)udﬂ, (46)

where (t,u) satisfies the following problem

By = ¢

T
—(1 —a), (47)

1
FOW = o1+ b0~ +dy | FO.~4)

x pdy, pe(01), (48a)
and
.p(‘c07 —lu) = bzlp(‘to,u)
+dy (o WM, kel (48b)

where B is defined by equation (43).
The function Q*(z, — 1) is obtained from the
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solution of the system defining Q,(r) by inter-
changing the radiative properties at the boundary
surfaces 1 and 2.

6. DISCUSSION OF RESULTS

It is to be emphasized that the most general
calculation to be made is that of the determina-
tion of the expansion coefficients A(y,) and A(n)
ne (0,1). Clearly, once these coefficients are
established, the intensity of radiation, the heat
flux and the incident radiation at any point in the
medium are immediately available.

The integral equations corresponding to the
linear and constant source problems discussed
in Section 5 have been solved for the expansion
coefficients by an iterative process with the
integral terms being evaluated by a 41-point
improved Gaussian quadrature scheme [18].
Starting values for this process were obtained
from the approximations previously discussed,
and the iteration process was terminated when
successive values of the coefficients agreed to at
least ten significant figures. The calculations
were performed on the IBM 360/75 computer in
double-precision arithmetic.

Since we consider our calculations to be highly
accurate, it is appropriate to report here several
checks made on the accuracy of our results. A
check could be made by testing how accurately
the computed expansion coefficients satisfy the
boundary conditions, but since this would in-
volve the evaluation of principal-value integrals
which might introduce errors itself, we preferred
to consider a check on the moments of the
boundary conditions. We multiply equation (5)
by 1 and integrate over u from zero to unity. In
comparing the two sides of the resulting expres-
sion, fora = 0, 1, 2....9, we found agreement to
the order of 1075,

Additional confidence in the calculations re-
ported here is established by noting that doubling
the order of the quadrature scheme (from 41 to
81) did not change the results to the accuracy
presented.

Another check on the accuracy was made by
calculating with the present analysis the radiative
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heat flux for the special case of ¢ = 0, for which
simple analytical solutions can be obtained, and
by comparing the numerical and analytical
results. The agreement was excellent.

The computer program prepared for the
present analysis is capable of calculating thé
expansion coefficients, the intensity of radiation,
the incident radiation and the net radiative heat
flux anywhere in the medium. For most engineer-
ing applications the net radiative heat flux at the
boundary surfaces is of primary interest. For
this reason, and for brevity in the presentation
of results, we have concentrated most of our
attention on the net radiative heat flux at the
boundaries. We present tabulations of the
boundary values of the net radiative heat flux
for several cases of isotropic scattering and
diffusely reflecting boundaries, and report in-
vestigations of the effects of linearly anisotropic
scattering and specular reflection.

og-1 ¢

€
3
--—-g-09
04y 8=0
o3 .
02f 7°'=|o-o—¥ 1
ot ;/”’ T
1 1 i A
o ol o2, 03 04 05

F1G. 1. The effects of linearly anisotropic scattering on the
function Q,(z) for ¢ = 0'5.
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We list in Table 1 the numerical values of the of diffuse surface reflectivities and emissivities
functions Qy(0), Q,(0) and QF(z,) for three for the case of isotropic scattering. The net
optical thicknesses and for several combinations radiative heat flux at the surface © = 0 can be

Table 1. The heat flux functions Qo(0), Q,(0) and Q, *(z,) for non-conservative media at constant temperature

Boundary Boundary
at at 79 = 01 79 = 10 79 = 100
=0 T=1
£ P! €, Pt c=0 c=05 c=0 c=05 c=0 c=05
= 040
1-0 0-0 0-0 10 0-3068 0-1736 0-9519 0-7572 1-0000 0-8535
1-0 00 05 05 0-2371 0-1316 0-8662 0-6510 1-0000 0-8534
1-0 00 1-0 00 0-1674 0-0911 0-7806 0-5591 1-0000 0-8534
2.(0)
10 0-0 0-0 1.0 0-3068 0-1736 09519 0-7572 1-0000 0-8535
1-0 0-0 05 0-5 0-6534 0-5753 0-9759 0-8154 1-0000 0-8535
1-0 0-0 10 0-0 1-0000 0-9616 1-0000 0-8658 1-0000 0-8535
01(z,) B )
1-0 00 0-0 1-0 0-0 00 0-0 0-0 0-0 0-0
1-0 00 05 0-5 04163 04437 0-1097 0-1644 00 0-0
1-0 00 1-0 00 0-8326 0-8704 02194 0-3067 0-0 0-0
Table 2. The heat flux constant Q, for conservative media
Q,forc=1
Boundary Boundary
att =0 atT =1,
7o = 01 1o = 10 1o = 10-0
31 ot €2 ot
1-0 0-0 00 10 1-0 00 00
1-0 0-0 05 05 0-4780 0-3562 0-10454
1-0 00 10 00 09157 0-5534 0-11675

Table 3. The heat flux functions Q,(0) and Q,*(z,) for non-conservative media with a linear fourth-po wer of temperature

Boundary Boundary
att =0 att = 1, T =01 19 = 10 1, = 100
£ o £, Pt c=0 c=05 c=0 c=05 c=0 c=05
0.(0)
10 00 0-0 10 01527 0-0866 0-3860 0-3351 0-0667 0-0758
10 00 05 05 05323 0-5083 0-4403 0-4337 0-0667 00758
1-0 0-0 1-0 00 09119 09138 04945 0-5190 0-0667 0-0758
QT(TO)
1-0 00 00 1-0 0-0 00 0-0 00 00 00
1-0 00 05 05 0-4560 04658 02473 02781 00334 0-0409
1-0 00 10 00 09119 09138 04945 0-5190 0-0667 0-0758
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Table 4. The heat flux function Q,(0) for non-conservative media with a purely specularly reflecting boundary at © = 1,

Boundary Boundary 0,00
att =0 at T = 1,
7 =01 15 = 10 15 = 100
& 04 £, 0 c=05 c=05 c=05
10 00 0-0 10 0-0845 0-3263 0-0758
10 00 05 05 0-5066 0-4285 0-0758

evaluated from equation (39) by obtaining the
values of Qy(0), Q¥(0) and Q¥(z,) from Table 1.

Table 2 gives the values of the heat flux con-
stant Q, for use in equation (44) for the special
case ¢ = 1.

Table 3 gives the numerical values of the
functions §,(0) and Q%(z,) for use in equation
(45) for diffuse surface reflectivities and emissi-
vities.

In Tables 1 and 3 we have included, for the sake
of completeness, results for the special case of

¢ = 0. This case, of course, can be evaluated
analytically.

To investigate the effects of specular reflection
on the radiative heat flux, we have evaluated the
dimensionless heat-flux function Q,(0) by
assuming that the boundary surface at = 1, is
a purely specular reflector. The results of these
calculations are presented in Table 4. A com-
parison of the results given in Tables 3 and 4
shows that the heat fluxes for specularly reflecting
and diffuse reflecting cases differ only slightly.

x 100
»
T

xact

ol
O'Exoc'

First order, specuiar
——=—<= First order, diffuse
"""""" Second order, specular
——==— Second order, diffuse

100

FiG. 2. The accuracy of the first- and second-order approxi-
mations to predict the heat-flux constant Q, for opaque
boundaries with ¢ = 1.
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Figure 1 shows the effects of linearly aniso-
tropic scattering on the radiative heat-flux
function Q,(r) as a function of the optical
distance in the slab. The net radiative heat flux
is slightly higher for linearly anisotropic scatter-
ing with § = 09 than for isotropic scattering.
The difference in heat fluxes becomes less for very
large and very small values of the optical
thickness 7.

The accuracy of the analytical approximations
[i.e. equations (19)-21) and (32)] to predict the
net radiative heat flux is investigated by com-
paring the approximate results with the “exact™
solutions obtained from the iterated coefficients.

Figure 2 shows the accuracy of the first-order
and the second-order approximations to predict
the net heat-flux constant Q, for a conservative
medium (i.e. ¢ = 1) as a function of the optical
thickness 7, for both specularly and diffusely
reflecting opaque boundaries. The accuracy of
the second-order approximation appears to be
very good even for optical thicknesses as small
as 7, = 0-1. The accuracy of the approximations
is better for purely diffuse reflection than for
purely specular reflection.

Figure 3 shows the accuracy of the second-
order approximation to predict the heat flux
functions Q,(0) and Q,(0) for a non-conservative

—— 2,(0) 4
———- @,0)

100

F1G. 3. The accuracy of the second-order approximation to
predict the function Qy0) and Q,(0) for diffuse, opaque
boundaries with ¢ = 0'5.

H. L. BEACH, M. N. OZISIK and C. E. SIEWERT

medium for ¢ = 0-5 with diffusely reflecting and
diffusely emitting opaque boundaries. The
accuracy of the second-order approximation for
a non-conservative medium with ¢ = 0-5 is not
as good as that for the conservative media
shown in Fig. 2.
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TRANSFERT PAR RAYONNEMENT AVEC DISPERSION LINEAIRE ANISOTROPE DANS
DES LAMES CONSERVATIVES OU NON CONSERVATIVES AVEC DES FRONTIERES
RAYONNANTES

Résumé—On utilise la technique du développement 4 mode normal pour obtenir une solution semi-
analytique pour une distribution angulaire de rayonnement 3 une distance optique quelconque dans un
milieu entre deux frontiéres parallgles réfléchissantes. Ce milieu est dispersif linéairement et anisotropique-
ment, absorbant émissif non isotherme et gris. On considére les cas conservatifs ou non conservatifs. Le
probléme général est décomposé en problémes plus simples et le flux net de chaleur rayonné est calculé
pour plusieurs combinaisons de réflectivités et d’émissivités superficielles. En superposant ces solutions
fondamentales on peut déterminer le flux net thermique rayonné pour une lame absorbante, émettrice,
dispersante avec des frontiéres réfléchissantes dans le cas d’une température uniforme et de la puissance
quatriéme variant linéairement dans le milieu. Des expressions analytiques simples de lintensité de
rayonnement sont présentées en utilisant des approximations au premier et au second ordre de la solution
exacte et la précision de ces approximations est évaluée pour une variété de cas.

TRANSPORT DURCH STRAHLUNG ZWISCHEN LINEAR ANISOTROP STREUENDEN
KONSERVATIVEN UND NICHTKONSERVATIVEN PLATTEN MIT REFLEKTIERENDEN
GRENZEN.

Zusammenfassung—Die Normal-Expansions-Technik wird beniitzt, um halbanalytische Losungen fir
die Winkelverteilung der Strahlung in jeder optischen Entfernung in einem linear anisotrop streuenden,
absorbierenden, emittierenden, nicht isothermen, grauen Medium zwischen zwei parallelen, reflektieren-
den Grenzen zu erhalten. Es werden sowohl “konservative” als auch “nicht-konservative” Fille be-
trachtet. Das allgemeine Problem wird auf einfachere Probleme zuriickgefiihrt, und der Netto-Warmestrom
wird bei diesen Grundproblemen fiir mehrere reprisentative Kombinationen aus Oberflichen-Reflektions-
und Emissionsvermdgen mit ausreichender Genauigkeit berechnet. Durch Uberlagerung dieser Elemen-
tarldsungen kann der Netto-Wirmestrom fiir eine absorbierende, emittierende’ streuende Platte mit
reflektierenden Grenzen fiir die Fille einer einheitlichen Temperatur im Medium berechnet werden. Es
werden einfache analytische Ausdriicke fiir die Strahlungsintensitit angegeben, indem die exakten Lésun-
gen 1. und 2. Ordnung approximiert werden. Die Genauigkeit dieser Néherungen wird fiir mehrere Fille
untersucht.

PAJJUAIIMOHHBIN TEIJIOOBMEH B JUHENHO AHU3OTPOIIHbIX-
PACCEUBAIOMNX KOHCEPBATUBHbLIX U HEKOHCEPBATUBHLIX
MJIACTUHAX C OTPAKAIONIMMU TPAHMIJAMHU

Annoranmua—lcronp3yeTcA MeTOJl pPaajloMKeHMA N0 HOPMAJbHHM KOJeGaHMAM IJIA TOTO,
4To6H MOJYYMTH MOJYaHAJIUTHYECKOE peilleHue [iaA YrIOBOro pacnpejielieHud paguanuu
AnA 1000l ONTHYECKOH [JIMHBL B JIMHENHO AaHM3OTPOMHON pacceHBalOLIel, MOrIoIIaoIel,
Uasydalome, HeM30TePMHIECKOH Cepoli cpefie MeKTY ABYMA MapaJIeIbHRIMU OTDAKAIOIMM U
rpanunaMu. PaccMaTpUBAIOTCA CIyuau MOJBUAHON M HETMOABMKHON rpanny. O6was 3afaya
pas6uBaercA Ha Gollee MpOCTHE, a Pe3yNBTUPYIOMMK TEMIOBON NMOTOK PacCYMTHIBAETCA CO
CTAHJAPTHOM! TOYHOCTHIO [JUIA 3THX 3a4aY C PASIMYHHIMM KOMGMHALMAMH OTPa)KATEJNBHON M
M3ITyYaTenbHO! CIOCOGHOCTH MOBepXHOCTH. IlyTeM CymepnosuUMU 3THX OCHOBHHX peureHu#
MOKHO PACCUHTATD Pe3yJIbTUPYIOLMA TENIOBOM MOTOK JJIA NOTJOLIAIONIeR, u3mydaiomen u
paccenBaomelf MIACTHHH ¢ OTPAMKAWIINMHM TPAHHIAME JUIA CIy4Yasd OTHOPORHOM Temmepa-
TYPH M JMHEaPU30BAHHON YeTBePTOi CTeneHy TeMnepaTypH B cpefe. IIpeacrasieHs npocThe
AHATNTHYECKME BHPAMEHHA NIA MHTEHCUBHOCTH pAaJHAlMH, NpPUMeHAAA npubiammenus
NepBOro ¥ BTOPOTO MOPAAKA K TOYHOMY pemieHuio. OIgHeHA TOYHOCTh 3TUX MPUOIHKEHHN
AJIA LeJIOr0 pAja cay4Yaes.



