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Abstract-A half-range orthogonality theorem relevant to the normal modes of a two-vector equation of transfer 
is proved. All appropriate normalization integrals are evaluated so that required expansion coefficients may be 
expressed concisely in terms of inner products. 

I. INTRODUCTION 

ONE OF the principal merits of the singular-eigenfunction-expansion technique, introduced 
initially by CASE(‘) in regard to one-speed neutron transport theory, is the systematic and 
classical manner in which solutions to boundary-value problems in particle transport 
theory are constructed. In general, we first construct a sufficiently general set of solutions, 
denoted as normal modes, to the homogeneous equation of transfer. To a resulting super- 
position (with arbitrary expansion coefficients) we add a particular solution to account for 
any inhomogeneous source term, and we then constrain the complete solution to meet the 
boundary conditions of a specified problem. At this point, a completeness theorem (either 
full or half range) is proved, which in fact ensures that a sufficiently general set of normal 
modes has been obtained. In many cases, (2) the various completeness proofs are actually 
constructive, in that, in addition to proving an expansion theorem, we can construct 
analytical results for the desired expansion coefficients. 

KUSCER et d.‘3’ were the first to observe that the results of the half-range completeness 
theorem related to one-speed theory could be expressed quite naturally in terms of scalar 
products based on the proof of a half-range orthogonality theorem. Though the results 
so expressed were, of course, identical to those patiently deduced from the completeness 
theorem, the use of orthogonality relations provided a significant impetus to a more 
universal appeal of the singular-eigenfunction method. 

We should like to demonstrate here the manner in which an orthogonality theorem in 
two-vector transport theory can be used to codify the results of half-range expansions in 
normal modes. Half-range orthogonality relations related to the generalized picket- 
fence model in radiative transfer, a special case of multi-group neutron transport theory, 

have been reported by SIEWERT and ZWEIFBL. (4) There, because of the rather special struc- 
ture of the picket-fence model, SIEWERT and ZWEIFEL (4) obtained exact closed-form results 
and were able to express the half-range weight matrix solely in terms of scalar X- or H- 
functions.‘5) Here the weight function is written in terms of an H-matrix for which no 
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quadrature expression is available, though existence and uniqueness theorems”’ and 

rapidly convergent computational methods”’ are available. 
We consider the two-vector equation of transfer 

where z is the optical variable, ,U is the direction cosine (as measured from the positive 
z-axis) of the propagating radiation and o E [0, l] is the single-scattering albedo. The super- 
script tilde is used to denote the transpose operation. Though the analysis here is essentially 
independent of the form of the Q-matrix, we are concerned principally with 

Q(P) = 
3(e+2)‘/2 lcP2+$(l -c) (2C)1’2(1 - p2)l 

2(c+2) 1 f(c+2) ’ 0 ’ 

which is appropriate to studies of the scattering of polarized light.@’ 
As previously reported,‘@ seeking solutions to equation (1) of the form 

1,&r, P) = F(<. P) e “<, 

we obtain 

and we thus find the following set of normal modes: for the discrete spectrum, 

where 

(2) 

(3) 

(4) 

(5) 

(6) 

is a null-vector of A(no). Here 

W/oMrlo) = 0. (7) 

where + ‘lo are the two zeros, in the complex plane cut from - 1 to 1 along the real axis, 
of the dispersion function A(z) = det A(z), with 

1 

A(z) = I+z 
i 
ec,,~_~. 

z 
-1 

I denoting the unit matrix, and the characteristic matrix given by 
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For the continuum, r~ E (- 1, l), two linearly independent generalized solutions are avail- 
able :(*) 

F&L P) = + v 
i 

& + GYv)S(V~ - P) 
I 
QWWI?)> v E ( - l,l), a= lor2, (10) 

where AT(q) and At(q) are the two solutions of 

detP(rl) - J*W%)l = 0, (11) 

with 

1 

WI) = I+rl 
s 

P 
‘J’(~)~ dp. (12) 

p-v 
-1 

In addition, the normalization vectors M,(v) follow from 

P-(V) - GWW/)lWvl) = 0. (13) 

With this formalism established, we write our general solutions to equation (1) as 

VT, P) = A(rlO)F(rov PU) e-r’vo+ 4 -v,JF( - ylo, ~1 eriqo 

(14) 

2. HALF-RANGE ORTHOGONALITY 

Relying on a paper by BOND and SIEWERT (9) for proofs of the full-range completeness 
and orthogonality theorems, we consider here a typical half-space problem where we seek 
a solution to a boundary-value constraint of the form 

Here 1(p) is the expansion function and is considered to be given ; it may contain a diverging 
(at infinity) solution of the homogeneous equation of transfer, as for the Milne problem, 
or a particular solution relevant to an inhomogeneous source term and/or a specified 
incident distribution. 

BURNISTON and SIEWERT@) have shown that equation (15) is a valid expansion for arbi- 
trary Holder vectors I(p); we shall now prove an orthogonality theorem that will allow the 
solution to equation (15) to be written in a systematic manner : 

Aho) = &F(vo 7 4, WI 
0 

and 

(164 

(16b) 
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where [X, Y] denotes an appropriate inner product and N(qo) and N,(q) are the normaliza- 
tion factors. 

THEOREM : The eigenjiinctions F(Q,, p), F,(q, p) and F,(q, p), q E (0, l), are orthogonal on 

the half range, p E (0, l), to the related 

sense that 
set G(rl,, cl), G,h, d and Wvl, 1-4 YI E (0,1), in the 

5 # 5’; 5, t’ = r. or E (0, 1). (17) 

and 

WIO 3 P) = Qb4WL)H - %o)Q - ’ W(vo t P) (184 

G&L p) = QWWH - ’ h)Q - ’ W,@L 14 CI = 1 and 2, rl E (0, I). (18b) 

In addition, H(p) is the H-matrix discussed by PAHOR(“) and SCHNATZ and SIEWERT.(’ ‘) 
We note that H(p) exists and is uniquely specified (6) by the singular-integral equation 

and the linear constraint, 

H- ‘(-rloM(rlo) = 0, WW 

where H(z) is defined in the complex plane by 

A( = I + z 5 rI(p)y,,&. 
0 

Alternatively, the non-linear equation 

(20) 

(214 

and the constraint 

H-‘(-~o)M(rlo) = 0 (2Ib) 

uniquely specify H(V); a variation of these equations has proved to have merit for computa- 
tional purposes. (‘) We shall also require here the identity”‘,’ ‘) 

@z)A(z)H( - z) = I, (22) 
an extension of CHANDRASEKHAR’S(“) scalar H-function expression to the case of matrices. 

To prove the theorem, we first multiply equation (4) from the left by c(t’, p). 
The transpose of equation (4) with r -+ 5’ is then multiplied from the right by 
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Q- ‘(@- ‘(~‘)fi(&(~)F({, cl). We now integrate the two resulting equations over p from 
zero to unity and subtract one from the other to obtain 

where 

and 

(23) 

(244 

PW 

Here we consider <,t’ = q. or E (0,l) and note that 

M(5) = I &4F(tv /4 dcl. (25) 
-1 

To complete the proof, we clearly need only to show K,(<‘, 5) = K,(<‘, 5) for all appropriate 
C: and <‘. 

Considering first K,(<‘, t), we note that equation (10) can be pre-multiplied by Q(p) 
to yield, after using equation (13), 

Q(AF(rl, P) = 
( 
V-&VP) + d(~ -PM)) M(V). (26) 

If we now substitute equation (26) into equation (24a) and make use of equation (19a), we 
find immediately 

K 1(5’, 09 = ~(t’)fi - ’ UWrl), ? E: 6.41). (27) 

For < = qo, we enter equation (5) into equation (24a) to find 

which can be simplified, after use is made of the linear constraint equation (19b), rewritten 
as 

to yield 

K,(t’, rlo) = ~(C’)fi - ‘(5’)Wrlo). (30) 



68X C. E. SIEWERT 

In a similar manner, we use equation (5) in equation (24b) to find, after noting equation 
(20). 

K&o 15) = R(rl,)ii-'(rlo)[I-fi('lo)A('lo)lM(~), (31) 
which reduces to 

K,(r, 9 0 = fih,)fi - ‘h,)W5). (32) 

In writing equation (32), we have made use of equation (7) and the fact that A(z) = A(Z). 
Finally we substitute equation (10) into equation (24b) and use equations (19a) and (13) 
to obtain 

K,(r?, 0 = fi(rl)fi- ‘(v)M(<)> rlE(O, 1). (33) 

Having shown that 

KAY, 5) = m(5’)fi - ‘(i”‘)M(O, c( = 1 or2; <, s” = q. or E (0, I), (34) 

we write equation (23) as 

(35) 

which proves the theorem. 

3. NORMALIZATION INTEGRALS 

The half-range orthogonality theorem has been established, and we would therefore 
like to evaluate the necessary normalization integrals, so that all expansion coefficients 
in equation (15) can be expressed concisely and explicitly in terms of integrals of the ex- 
pansion function I(p). First, however, we should like to make several general observations. 

The explicit form of the Q-matrix given by equation (2) was utilized in the previous 
sections only to the extent that we considered the dispersion function A(z) to have only 
two zeros +-r10 in the cut complex plane. Clearly, to include the possibility of more discrete 
solutions would require only a minor modification of the formalism established here. 
Further, since the given proof of half-range orthogonality is essentially independent of the 
order of equation (l), the general analysis reported may be considered applicable to a 
iv-vector version of equation (1). 

Though the representations of the two continuum solutions given by equation (10) 
are convenient for proving completeness and orthogonality theorems, we shall make use 
of more explicit forms for actual applications. In order to develop these explicit forms we 
consider only the Q-matrix given by equation (2). We note that equation (11) is quadratic 
in A*(q), and thus the two solutions AT(n) and AZ(n) required in equation (10) will, in general, 
involve radicals. To avoid these radicals, we shall prefer eventually the linear combinations 

@An, P) = A,,(v)F,(v, P) + &(v)F,(v, P), c( = 1 or 2, (36) 

which yield the tractable solutions 

VW 
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and 

689 

where 

W-4 

J,(V) = (- I)“[1 - 3(1 - wh'l + 3(1 - v12)AI(rl)> c1 = 1 or 2, (31(a) 

A,(q) = 1 - oq tanh- ’ q, W-4 

w(v) = 41 -s2V,(rl)+~2(rl) (394 

and 

q(q) = $((I - c) + 2c( 1 - o)r+. (39b) 

We note that the full-range orthogonality theorem appropriate to the considered 
eigenvectors F(5, P) has been proved by BOND and SIEWERT ;(9) however, since the full- 
range normalization integrals previously evaluated were expressed in terms of the general 
F,(q, P), rather than the more explicit a=(~, p), we shall summarize both cases, full and half 
range. For the full range, we write”’ 

-1 

whereas for the half range 

(35, P) = QWWW - ’ (OQ - ’ WK 4. (41) 

Considering now the continuum normalization, we find 

and 

Here 

(424 

WV 
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or, alternatively, 
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The Kronecker 6,, appearing in each of equations (42) should be noted since it illustrates 
that the general forms given by equation (10) are orthogonal even for q = q’. The explicit 
solutions @i(~+, ,u) and 02(q, ,u) given by equations (37), though more concise than the 
F,(q, p), are not orthogonal for r] = $; however, we can use a Schmidt-type procedure to 
construct suitable adjoint vectors. 

The four elementary integrals 

may be evaluated to yield 

M,,(V) = c2(I -?2)2N(V)+$w2y12(l -v212n21 +2w,h)[cU -12P1h)+~2h)l~ 

MI,(?) = M2Ih) = 41 -12)[m+z~2y12(1 -v2)2n21-2w2(?m -3(I -dv21 

and 

M,,(v) = 2[1-3(1 -o)u212 -t 18(1 -~2)2[A.;(~)+~~2~2rc2]. 

If we now introduce the full-range adjoint vectors 

X1(% P) = ~,,(?P,(rl~ I4 - ~l,(?P,h PL) 

and 

X2(?, CL) = Ml l(VP2h 4 - ~2lhPIbL 47 

and hence the half-range adjoint vectors 

%(Q cc) = QW-WH- ‘WQ- ‘(~c)X,(v, PL) 

and 

@2h PI = QWWH - ’ WQ- 1(~L)X2(v, /4 

the final results for the continuum can be summarized as 

and 

(44) 

(45a) 

(45b) 

(45c) 

(46a) 

(46b) 

(47a) 

(47b) 

(48) 

(49) 

(50) 

Here 

NV) = 641(I -v~)~A+(v)A-(YI), 



Half-range orthogonality 691 

with A’(q) and h-(q) denoting the limiting values of the dispersion function A(z) as the 
branch cut [ - 1, l] is approached from above (+) and below ( -). More explicitly, equation 
(8) can be integrated [for Q(p) given by equation (2)] to yield 

A(Z) = &cA~(z)A~(z)+ [(l -c)+&(l -o)z~]A,(z), (51) 

where 

and 

A,(z) = ( - I)=[ 1 - 3(1- w)z2] + 3( 1 - z2)AO(z) (52) 

We note that 

1 

AO(z) = l+;wz -. 
s 

dp 

_,P-z 
(53) 

AZ(q) = 1 -WV tanh- irk -I-$nioq, V E (- I, I). (54) 

For the discrete spectrum, c = fq,,, we prefer to normalize the general expressions 
given by equation (5) to obtain the solutions 

1 4 4)A,(rlO)+~2(~0) 
@O&J, PL) = ;wtlo--- 

?OTP 02ho) 

The discrete normalization integrals may thus be evaluated to yield 

and 

where 

In addition, the discrete adjoint vectors used here are 

X(krlo, P) = @(kilo, P) 

and 

%o 3 /A = QW-UPW ‘(vo)Q- %4Wvo 3 CL). 

Introducing the normalization vectors 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 



692 C. E. SIEWERT 

and 

U,(v) = s %M’,,h~ cl) dp, cx = 1 or2, 

-1 

and making use of the explicit forms given by equations (37) and (55) we find 

(6fb) 

U(Vj,) = 3(c+2))“” 
2%(rlO) 

(W1’W + 2)MIcl) + %h~l ' 
(62a) 

and 

0 
U,(r/) = 3(c+2))“’ 

i(c + 2)(2c)‘12 
(1 - V2) (62b) 

2 
U,(q) = 3(~+2))“~ 

I I (2c)“2 
(1 -V2). 

The following inner-product integrals may thus be expressed as 

(62~) 

r a(~/,, p)@( -r/o, p)p dp = iwoho)~ - l(rloW l(uloW(~o). (63a) 

and 
1 

s 
8,(rl',p)qb~L)~ dp = ;w'v--- 1 Q,(rl')~~'(rl')H-'(rl)U,(rl), 

$+?I 
0 

where 

and 

VI(V) = ~22(rl)U,(rl)-M12(r)U*(YI) 

V,(v) = M,,(r)U2(rl)-M21(r)U1(Yl). 

I?’ E (0, 11, (f-1 

v E (0, 115 (64a) 

II, ‘I’ E (0, l), (64b) 

Having proved the half-range orthogonality theorem and evaluated all required nor- 
malization integrals, we may express the solution to expansions of the form 

I(P) = A(?,)@(%, P) + 
s 

[A,@Wlh, ,u) + A,(r/)‘D,(r/, p)] dq, P E (0, 1x (66) 

0 
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in a concise manner : 

and 

W-4 

Finally, in order to illustrate the half-range formalism established, we should like to 
solve a typical half-space problem-the Milne problem. We seek a diverging (at infinity) 
solution of equation (1) such that 

(i) lim I(r,p)e-’ = 0 
T’CO 

(ii) I(0, P) = 0, PEEO, 1). 

The solution may be written as 

I@, PL) = A(vo)Wo, P) e-r/rlo + @( - vo, P) er/so 

where the expansion coefficients are to be determined from the free-surface boundary 
condition, that is from 

If we now multiply equation (69) by 
(57) and (63a), we find 

0 

&(qo, P), integrate over p and invoke equations (35), 

In a similar manner, we multiply equation (69) by pa&$, p), integrate over p and use 
equations (35), (49) and (63b) to obtain 

1 1 
A,(q) = -___ - L6 t~)R-‘(?)H-‘(?o)U(rlo), 

N(V) 2W9’lo9+r/o a 
VW 
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