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Abstract-A half-range orthogonality theorem concerning the established elementary solutions of 
the two-group neutron transport equation for isotropic scattering and plane geometry is proved. 
The orthogonality relations are based on a Chandrasekhar-type H-matrix, and all necessary normal- 
ization integrals are evaluated so that the desired expansion coefficients may be expressed concisely 
in terms of inner products. The half-range orthogonality theorem is used to construct tractable 
solutions to typical half-space problems. In addition, the required H-matrix is calculated to bench- 
mark accuracy, and explicit results for several quantities of interest are reported for the Milne, 
albedo and constant-source problems. 

1. INTRODUCTION 

ONE OF the principal merits of the singular-eigenfunction-expansion technique, 
introduced initially by CASE (1960) in regard to one-speed neutron-transport theory, 
is the systematic and classical manner in which solutions to boundary-value problems 
in particle transport theory are constructed. In general, we first construct a suffi- 
ciently general set of solutions, denoted as normal modes, to the homogeneous 
equation of transfer. To a resulting superposition (with arbitrary expansion coeffi- 
cients) we add a particular solution to account for any inhomogeneous source term, 
and we then constrain the complete solution to meet the boundary conditions of a 
specified problem. At this point, a completeness theorem (either full- or half-range) 
is proved, which in fact ensures that a sufficiently general set of normal modes has been 
obtained. In many cases (CASE and ZWEIFEL, 1967) the various completeness proofs 
are actually constructive, in that, in addition to proving an expansion theorem, we 
can construct analytical results for the desired expansion coefficients. 

KUSEER er al. (1964) were the first to observe that the results of the half- 
range completeness theorem related to one-speed theory could be expressed quite 
naturally in terms of scalar products based on the proof of a half-range orthogonality 
theorem. Though the results so expressed were, of course, identical to those patiently 
deduced from the completeness theorem, the use of orthogonality relations provided 
a significant impetus to a more universal appeal of the singular-eigenfunction 
method. 

We should like to demonstrate here the manner in which an orthogonality theorem 
for the two-group model can be used to codify the results of half-range normal-mode 
expansions. Half-range orthogonality relations related to the generalized picket-fence 
model in radiative transfer, a special case of multi-group neutron transport theory, 
have been reported by SIEWERT and ZWEIFEL (1966). There, because of the rather 
special structure of the picket-fence model, SIEWERT and ZWEIFEL (1966) obtained 
exact closed-form results and were able to express the half-range weight matrix solely 
in terms of scalar X- or H-functions (SIEWERT and ~~ZI$IK, 1969). For the general 
two-group model considered here, the weight function is written in terms of an H-matrix 
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for which no quadrature expression is available though existence and unique- 
ness theorems (SIEWERT et al., 1972) and rapidly convergent computational methods 
are available. We note that similar half-range results have been reported (SIEWERT, 
1971) for CHANDRASEKHAR’S (1950) model for the scattering of polarized light. 
Further, PAHOR and SHULTIS (1969), BOWDEN and MCCROSSON (1971) and METCALF 
and ZWEIFEL (1968) have all contributed to the literature on half-space applications 
concerning multi-group neutron-transport theory. For the two-group model, we 
believe the current approach is more satisfactory because: (i) In the classical mathe- 
matical manner, it has been argued (SIEWERT et al., 1972) that the relevant normal 
modes form a complete and orthogonal half-range basis for the expansion of Hblder 
two-vectors. (ii) The appropriate existence and uniqueness theorems required to com- 
plete the analysis of BowDEN and MCCROSSON (1971) have been established (SIEWERT 
et al., 1972) for the H-matrix required here. (iii) Because our final results are ex- 
pressed solely in terms of the H-matrix, which can be computed straightforwardly 
from a very concise regular-integral equation, we need not solve numerically any 
singular-integral equations, as have METCALF and ZWEIFEL (1968). 

We consider the two-group transport equation written as 

(1) 

where the elements of the two-vector 1(x, p) are the group angular fluxes, p is the 
direction cosine of the propagating radiation (as measured from the positive x-axis) 
and x is the optical variable defined (without loss of generality) in terms of the smaller 
of the two total group cross-sections. With the optical variable so defined, the 
C-matrix is given by 

u 0 c= 0 1’ 

[ 1 u > 1, (2) 

where (T denotes the ratio of the two total cross-sections. In addition, the transfer 
matrix, with arbitrary real non-negative elements qas, for isotropic scattering is denoted 
by Q. If we let P be a 2 x 2 matrix with elements pas = (qzcr/qorJ14&B, then clearly 
C = PQP-l is symmetric, and thus equation (1) for 1(x, ,u) = P-lY(x, ,u) can be 
pre-multiplied by P to yield 

/.J -!? ‘3%~ p) + =‘(x, ,u) = C 
8X J 

‘Y(x, $) d/i, (3) 
-1 

the form we prefer since the new transfer matrix C is symmetric. Here we consider 
that the Q-matrix is neither upper nor lower triangular since these two triangular cases 
can be solved in terms of the one-speed theory. We also excluded the case det Q = 0 
which has been solved by SIEWERT and ZWEIFEL (1966). 

Since the elementary solutions of equation (3) have been reported (SIEWERT and 
ZWEIFEL, 1966), we simply summarize the results here in order to establish the required 
formalism and notation. Seeking solutions of equation (3) of the form 

Y&x, p) = F(t, p)e-“* (4) 
yields 

(EZ - PINE, PC> = KM(O, (5) 
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where I is the unit matrix and 

M(E) = lF(F, /J) dp. 
s -1 

Regarding the discrete spectrum, 5 = *vi $ (-1, l), we note that 

F(k~~, P) = ~iD(vi, ~,+M(Y,), 

where fvi are the zeros of the dispersion function A(z) = det A(z), with 

A(z) = I + z s + z ) 

where the characteristic matrix is 

with 0(p) = 1, ,u E (-l/b, l/o) and 0(p) = 0, otherwise. In addition 

and 

R(vJM(vJ = 0. 

SIEWERT and SHIEH (1967) have summarized the number 
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(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

and types of zeros of the 
dispersion function; we note that there is either one pair &vl, or two pairs &vr 
and &v2; here vi denotes a discrete eigenvalue with a positive real (imaginary) part. 
We use K to denote the number of pairs of discrete eigenvalues. Equation (8) may be 
expanded to yield a more explicit form of the dispersion function: 

A(z) = 1 - 2CllZT 1 (cz) - 2C,,ZT(j + 4Czar(;)+), (12) 

where we have introduced the abbreviations C = det C and T(X) = tanh-l X. In 
the limit lzl -+ co, equation (12) yields 

A(c0) = 1 - 2 $1 - 2c,, + 4 c. (13) 
U CT 

For the continuum l = v E (-1, l), we write the solution to equation (5) as 

F(v, P) = [NV, 1~) + m(v) s(v, ,4ICW% (14) 
where 

0 
K(v, 1~) = 1 and S(v, p) = Nav - P) 0 

0 &v I4 1 ' - 0 

(15) 
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where the distribution Pu(l/x) denotes that ensuing integrals are to be evaluated in the 
Cauchy principal-value sense, and 6(x) is the Dirac delta distribution. Equation 
(14) when integrated over ,u from -1 to 1 yields 

P(v) - 4NWW) = 0, (16) 
and therefore the parameter o(v) is to be determined from the requirement 

det [h(v) - o(v)+(v)] = 0, (17) 
where 

If we now let 

h(v) = I + vp (18) 

Region a*vE 

Region @ 3 v E 

then equation (17) yields two solutions nil) and c$)(v) for v E 0 and one solution 
I for v E 0. We thus find 

F:‘(v, P) = [vK(v, P) + m:‘(v) S(v, ,u)ICM:)(Y), VEQ, a = 1,2, (19) 

and 

Ft2’(y, p) = [vK(v, /A) + cd”‘(v) S(v, /A)]CM(~)(Y), YE@. (20) 
In Section 3 where all necessary normalization integrals are evaluated, we summar- 

ize the explicit forms of the normal modes reported by SIEWERT and ZWEIFEL (1966). 
Here we note only that our general solution to equation (3) can be written as 

Y(x,,u) =ig [A(vi)F(vi,,u)e-“‘Y~ + A(-vJF(-vi,p)e”“i] 

+ 
s 

OIA~l’(~)F~l)(v, ,u) + &)(v)Fp)(v, p)]e-“” dv + 
s 

~~(2)(,)Fc2)(,,~)e-r’v dv, 

(21) 
where At&vi), Al’)(v), A&n(v) and At2)(v) are the expansion coefficients to be deter- 
mined once a specific problem is considered and the resulting boundary conditions 
specified. 

2. HALF-RANGE ORTHOGONALITY 

Relying on a paper by SIEWERT and ZWEIFEL (1966) for the full-range completeness 
and orthogonality theorems, we consider here a typical half-space problem where we 
seek a solution to a boundary-value constraint of the form 

+ &)(v)F~)(v, p)] dv +~;~A~2’(v)F’a,(v, p) dv, P E (0, 1). (22) 
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Here e@) is the expansion function and is considered to be given; it may contain a 
diverging (at infinity) solution of the transport equation, as for the Mime problem, 
or a particular solution relevant to an inhomogeneous source term and/or a specified 
incident distribution. 

SIEWERT et al. (1972) have argued that equation (22) is a valid expansion for arbi- 
trary Holder vectors a&) for all of the considered values of G and C except when the 
two conditions C < 0 and h(co) > 0 are simultaneously imposed. It is likely that 
this special case may be included, but to date a definitive proof is not available. 
We now wish to prove an orthogonality theorem that will allow the solution to 
equation (22) to be written in a concise manner: 

GW 

A:)(v) = & [F%, A, *WI, a = 1 and 2, (23b) 

A(2)(v) = j& [F’2’(v> 1~1, W41, v E (f , 1)) (23~) 

where [X, r] is an appropriate inner product and N(vJ and N(“)(V) are the normalin- 
tion factors. 

Theorem: The eigenvectors F(Y~, ,u), F$“(v, ,u), F&‘)(v, ,u) and F’~)(v, ,u), v E (0, I), 
are orthogonal on the half-range, ,u E (0, l), to the related set G(v~, ,u), Gil)(v, ,uu), 
Gi”(v, ,u) and G’2’(v, p), v E (0, l), in the sense that 

s 
‘@(5’, p)W, p)p dp = 0, 6 # 6’; t, t’ = Vi or E (0, 1). (24) 
0 

Here 

6’ = vi or E (0, l), (25) 

where, in general, we write 

0 
W, p) = 1 + 45) w, pu>. 

0 

In addition H(z) is the H-matrix, and h(z) is defined by 

(26) 

(27) 

where H&z) is used to denote the elements of H(z). The superscript tilde is used to 
denote the transpose operation. 

Though CHANDRASEKHAR’S (1950) invariance principles may be used in the manner 
of PAHOR (1966) to develop the equations 

(28a) 

(28b) 
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and 

[ s 
I + pi O1ii(~)+(~) dv]M(,J = 0, i = 1, 2, . . . , K, WC) 

v - vi 

sufficient to specify the H-matrix for use with the invariance principles, such a pro- 
cedure is by necessity limited to non-multiplying media. However, since SIEWERT 
et al. (1972) have proved that equations (28) yield a unique solution for all considered 
values of Q and the transfer matrix C, except the non-multiplying case with C < 0, 
and since equation (22) is mathematically a valid expansion even for multiplying 
media, we choose to use equations (28) to specify our H-matrix for all considered 
cases, both non-multiplying and multiplying. This view is considered quite natural 
since, as we shall show, equations (28) yield an H-matrix which can be used in our 
orthogonality theorem to yield a valid solution to equation (22) for all cases considered. 
We also use the definition of SIEWERT et al. (1972) for extending the H-matrix to the 
complex plane and thus write 

or 

&YW) = I+ z s l_ dp Wd’W - 
0 P-Z 

(294 

H(z) = I + zH(z)C 
s 

o1ti(,, @(p)* 
Pcl+Z 

(29b) 

and the subsequent identity 

H(z)&-z)A(z) = C, (30) 

which allows equation (28~) to be written as 

H-l(-vYi)CM(vJ = 0, i = 1, 2, . . . , K. (31) 

We now proceed to establish a proof of our half-range orthogonality theorem. 

Equation (5) can be pre-multiplied by l/&E’, ,u), where from equation (25) we 
conclude that 

E(f’, p) = ~(5’)C~-l(5’)i;(~)E(5’, p), 5’ = vi or E (0, l), (32) 

and integrated over ,B from O-l to yield 

= @E’)C+(E’) j-i&W% pu)E(E, ,4 dpC - s ll-&.NP, P) dcl 

We can now post-multipi equation (32) by p/E’ F(~~,LA), ’ 
1 CM(t). (33) 

integrate over (u from O-l 
and subtract the resulting equation from equation (33) to obtain 

k(F, p)F(5, ,u)~ dp = $E’)C+(P)[Y(~) - W’WW), (34) 

after some partial-fraction analysis. In equation (34) we have introduced the matrix 

Y(E) = s k,WE, ,4 dpu, 
0 

(35) 
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change of the integration variable can be expressed as 

Y(t) =S,lfi&) %+‘u(&) + w(E) 6(( - /J)] dp. 
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(36) 

Equations (28) which define the H-matrix along with the subsequent equations (29), 
(30) and (31) can now be used with equations (ll), (16) and (36) to show for all 6 
and 5’ = vi or E (0, 1) that the right-hand side of equation (34) vanishes identically. 
Thus 

1 1 

( )s 
r&: p)F(5, P)P diu = 0; 

i-r 0 
5, t’ = vi or E(0, l), (37) 

which proves the theorem. We note that a similar proof has been reported in more 
detail by SIEWERT (1971) for a model of the scattering of polarized light. 

3. NORMALIZATION INTEGRALS 

The half-range orthogonality theorem has been established, and we would there- 
fore like to evaluate the necessary normalization integrals, so that all expansion co- 
efficients appearing in equation (22) can be expressed concisely in terms of integrals of 
the expansion function a(p). 

Though the full-range orthogonality relations have been reported by SIEWERT 
and SHIEH (1967) we would like to summarize both full-range and half-range cases 
here in terms of the general forms of F(5, p) given by equations (7), (19) and (20). 
For the full-range, we write 

s 

1, 
F(Y, lu)F(E, P)P d,u = 0, E # [‘; t, E’ = *vi or ~(-1, l), (38a) 

-1 

whereas for the half-range 

s 
&, ~c)F(t, P)P dp = 0, !! # 6’; E, 5’ = vi or E (0, 1). (38b) 
0 

Here F(E, ,u) is any solution of equation (5) and 

G(E, P) = E(L ,G(p)H-‘(6) Z - ; I F(5, P). 
( 1 

(39) 

Considering the full-range normalization integrals, we find 

s 

1_ 
F(+i, ~)F(&vi, P)P dp = iS(Q i = 1, 2, . . . , K, W4 

-1 

s 

1 

$)(I$ ,u)F;)(v, ,u)/A d,u = S:)(Y) 8(v - v’) 6,,; a,B = L2, 
-1 

and 
(40b) 

j+)(v', ,u)F’~‘(v, /J)/J d,u = S”‘(v) B(v - v’); v,v’E(-l, - $)U($, l), (4Oc) 
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whereas for the half-range we conclude that 

s 

1_ 
C(vi, P)F(y+ P)P dP = S(yJ, i = 1, 2, . . . , K, (W 

0 

s 
ok;l'(Vf, p)Fr’(v, p)p d,u = S?)(Y) B(Y - y’) 4,; 

1 
v, V’E 0, - ) 

( 1 
a, B = 1,2, 

(T 

and 
(4lb) 

s 
01$2)(v’, p)Ff2’(v, p)p d,u = St2’(v) B(v - v’); v, v’ E - ) 

( 1 
ll. (41c) fJ 

Here 

S(vJ = V~~(Vl)C ; R(z) M(vA (42a) z=vi 

and 
S:)(v) = v[o;)(v)o~)(v) + ~~~v”]~~)(v)~(v)+(v)M~)(v), (42b) 

S”)(v) = v[~(~)(v)u(‘)(v) + ~“v”]~~~‘(v)~(v)+(v)M(2)0. (42~) 
We note again, for emphasis, that here C is considered symmetric. 

Though the representations of the two eigenvectors given by equation (19) for 
v E Region Q are convenient for proving completeness and orthogonality theorems, 
we prefer for actual applications the linear combinations 

*:)(V, ,4 = L(VF:% PU> + T,2(VP%)(V, pu> 

which yield the explicit forms developed by SIEWERT and ZWEIFEL (1966) : 

(43) 

and 

For the additional eigenvectors, we normalize equations (7) and (20) to obtain 

where 

(4% 
and A(v) = det h(v): 

(45b) 

(45c) 



and also 

c12vi 

qt% l-4 = 

I 1 (Jvi F P ) 
bi) vif 

i = 1, 2, . . . , K. (454 

vi ‘f P 
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The solutions given by equations (44), though more concise than the Fi’)(v, ,u) 
given by equation (19), are not orthogonal for v = v’; however, as discussed by 
SIEWERT and ZWEIFEL (1966), a Schmidt-type procedure can be used to construct 
suitable adjoint vectors. We should now like to summarize our final results regarding 
the orthogonality relations : 

s 
’ f&t’, H’O, ,4p dp = 0, 5 # 5’; 5‘, E’ = &vi or E (-1, l), (46a) 
-1 

s 

1 

@(t',p)W,p)pdp = 0, t# t'; t, E' = vt or E(O, 0, W) 
0 

and 

s 

1, 
X( fyi, /J)@(fVi, p)p dp = ASINN( i = 1,2, . . . ) K, 

-1 

s 

1 

_liil"(v: p)+;)(v, p)p dp = N”‘(v) B(v - v’) 6,,; 

s 

1 
_lfi(2)(v’, ,u)~‘~‘(v, ,u)p d,u = NC2’(v) d(v - v’); 

and 

(W 

(47c) 

s 

1, 
@(Vi, /@(Vi, P)/J dp = N(VJ, i = 1, 2, . . . ) K, (484 

0 

s 

1, 

O;)(v’, ,u)@;)(v, ,u),u dp = N”‘(v) B(v - Y’) 6,,; (48b) 

0 

s 

016’“‘(vr, /A)@~‘(,, p),u d,u = N’2’(v) B(v - v’); (48c) 

Here 

JCt%, P) = %tYi, P) 

P(v, P) = ~22(w:‘(v, i-4 - ~12(M%, r) 

xi% P) = ~dv)w(~, cl) - ~21(+w(v, p) 

XC2’(v, p) = #2)(v, p), 

and for 5 = vi or E (0, 1) 

(49a) 

(49b) 

(4W 

(494 

@(t, P) = E@, &h(p)H-‘(5) k - “s I) X0, P). (50) 
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Ni,(V) = Ci,[4CllY2T2(bY) + ‘k22Y2~2(Y) - 2YT(bV)--2YT(V) 

+ ~2y2(CIl + C22)1, i#j, (51b) 
and 

&s(Y) = 1 - 4c&‘+‘) + 4v2[c2a2T2(Y) + cracsrT2(c9] + r2Y2(C222 + C,$&. 

(51c) 
Finally, the normalization factors are given (for both full-range and half-range cases) 
bY 

cvi -T(&)]+ [c~2p2c%T(~)]2[&-T(~)])~ (uvi)a - 1 

(W 

P(v)= YA+(v)A-(v), Wb) 

Nt2)(v) = vA+(Y)A-(v), VE (-l+J(~,l), (52~) 

where A*(v) denotes the limiting values as the branch cut of A(z) is approached 
from above (+) and below (-). 

For the explicit forms given by equations (44) and (45), we have evaluated 

to find 

(53) 

-&2(4 
U(fvi) = A,,(,,) 

[ 1 -&2(v) 
' u'2'(y) = _hll(v) 

[ 1 3 

U:"(V) = ; [I 
G%W 

Wc,d) 

In regard to eventual applications, we would like to list the following inner- 
product integrals : 

s 14 
WY,, p)*(-yi, PIP dP = YrYi ~~(Y,)&-‘(Y,)C-‘H-~(~~)CU(~~) (W 

0 vj + vi 

s 1, 
f$)(v, @(-vi, ,u)p dp = vvi ~$~)&-‘(Y)C-‘H-‘(~I)CU(~~) (55b) 

0 v + vj 

s 

1 

o 6'"'(v,p)@(-vi,p)p dp = 2 ~?“‘(Y)&-‘(~)C-‘H-~(~$XJ(~~) (55c) 
I 

s 

1, 
@(vi, /.+I$‘( - v, p)p dp = i y ;‘v, ~?(YJ&-‘(~~)C-‘H-‘(Y)CU~)(~) Wd) 

0 I 
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s 
01@)(Y), @Z$‘(-Y, ,v)/A dy = --$ ‘G.(Y’)cii-‘(Y’)c-lH1(Y)cuI:)(Y) 

s 

1, 

0 

o”)($, /~)a;)( -y, ,L+ d,u = %, ~?‘“‘(Y’)C~~-‘(Y’)C-‘H-~(Y)CU~~(~) 

s 

1, 

@(vi, ,u)d2’(--y, p)p dp = z 
0 

y “;I y. ~(Y~)C~-‘(Y,)C-‘H-~(~)CU(~)(V) 
t 

s 

1, 

0 

@;)(y’, /,J)~‘~‘(-_Y, ,I& d,u = $ ?&‘)C~~-‘(Y’)C-‘H-~(~)CU(~)(Y) 

s 

1, 

0 

oc2)($, /@‘)(-y, /.J)/_A dp = 2, ~c2’(~‘)C~-‘(~‘)C-1H-1(v)CU(2’(v), 

where y and v’ are both non-negative. In addition 

V,(v) = N22(v)U3Y) - N&)U:)(v) 
and 

(55e) 

(550 

(55g) 

(55h) 

(55i) 

(56a) 

V,(Y) = N&)u:)(v) - N2&)U:1)(v). (56b) 

Having proved the half-range orthogonality theorem and evaluated all required 
normalization integrals, we may express the solution to expansions of the form 

q4 = 2 44@(% pu> + s l/a 
[A:‘)(v)@,:l)(v, p) + A~)(v)‘Z$)(v, /A)] dv 

i=l 0 

as 

+ 
s 
’ A’2’(v)@‘2’(~, p) dv, P E (0, 0, (57) 
1/U 

and 

A:)(v) = L 
s 
‘i@‘(v, ,u)u)o(p)p dp, 

N(‘)(v) o 
(58b) 

A(~)(V) = 1 
s 
k’)(v, ,u)9(,u)p dp. 

Nt2)(v) o 
(58~) 

We note that should the right-hand side of equation (57) be formally extended to 
negative ,LL, then the resulting left-hand side 0*(-p), ,u E (0, l), can be obtained from 

o*(-/A)=r ;:/A, 
( 1 

p E (0, u, (594 

where 

Cr(y) = $ 
s 

olS(~b, ~‘)@(/@*(a : p’) d/-4, p E (0, 0, Wb) 

with 

S(Pu, P’) = X H(,u)CiE($). 
Put- P’ 

(59c) 
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Here we have introduced the notation 

F(u: ,/A) = (60) 

wheref,(p) andf&) are the elements of an arbitrary two-vector F(,u). 
Equations (59) are, of course, related to the work of PAHOR and SHULTIS (1969) 

which was based on CHANDRASEKHAR’S (1950) invariance principles. We believe 
equations (59) are more convenient, however, since S(,U, p’) can be expressed simply 
in terms of the H-matrix, without the need for PAHOR and SHULTIS’ (1969) special 
matrix product. Should no additional information be required, equations (59) may 
be used in the manner of CHANDIUSEKHAR (1950) to deduce the exit distribution for 
typical half-space problems. 

4. THE H-MATRIX 
It is clear from the foregoing analysis that proper evaluation of the H-matrix is of 

primary importance to any half-space problems defined by the considered two-group 
transport equation. As we will demonstrate in Section 5, the solutions to typical 
half-space problems can be expressed concisely in terms of established quantities and 
the H-matrix. We would like therefore to report the procedure used here to compute 
the H-matrix and to list our numerical results for a few selected cases. 

SIEWERT et al. (1972) proved the existence of a unique solution to the defining 
equations (28) for the considered cases and subsequently that the non-linear H- 
equation along with the linear constraints also uniquely specifies H(,u). We prefer the 
non-linear form for computations, and thus we seek a numerical solution to 

W --]M(vJ = 0, 
p’ - vi 

i-l,2 ,..., K. (61b) 

Since equation (61a) is not sufficient to specify H(,u), ,U E [0, 11, we would like, 
in the manner of PArroR (1968) and KRIESE and SIEWERT (197 1) , to develop a non-linear 
equation which in fact incorporates the constraints, equation (61b). For the sake of 
brevity, we report here our preferred method for computing H(,u) only for the case 
K = 1. 

If we introduce 

and 

B(z) = (62) 
y. = [I @fl(Vl) + C12M%) --M&ll 

Cl%W(Vl) + C,&dVl) 1 W(Vl) ’ (63) 

where the elements of M(vJ are normalized such that det T = 1, then we can substitute 
H(z) = TB(z)L(z)T-l, K= 1, (64) 

into equations (61) to obtain 

(65) 
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Here the matrix R(p) is given by 

R(p) = B(,u)%(p)TB(-p), and n = i E . F 1 (66) 
We note that equation (65) is sufficient to define L&u) and that the resulting H(p) 
computed from equation (64) will inherently satisfy the constraint, equation (61b), 
as well as equation (61a). 

We have solved equation (65) iteratively by employing the improved Gaussian- 
quadrature scheme of KRONROD (1965) to represent the integration process. The 
computations were performed in double-precision arithmetic on an IBM 360/75 
machine, and numerous checks were incorporated in the calculation. Since a dis- 
cussion of the various checks used for a similar calculation of the H-matrix for the 
scattering of polarized light has recently been given (SCHNATZ and SIEWERT, 1971), 
we note only that we have used all of the analogous checking procedures here, and 
the indication of the accuracy of the computed H-matrix was, for the cases considered, 
comparable to that of SCHNATZ and SIEWERT (1971). 

The H-matrix, of course, satisfies several identities that are useful for computa- 
tional and/or analytical purposes. For example, we note that 

[H, - I]C[ii, - I] = CA(co), (67) 
where 

I%, = 1fi(~)9(~) dp. 
s (68) 

0 

Also, the analytical results 

H(z) = [A( ~0)]-(“~) s exp [ - L farg n+(p) *I, 

and 
1 n 0 P+Z 

K = 1, (W 

H(z) = [A( oo)]-(“2) tvl F zif’; z) exp [ - 1 J’arg n+(p) “1, K = 2, 
2 37 0 Pu+Z 

are available for H(z) = det H(z). We note further that H(,u) satisfies the non-linear 
equation 

NPl = 1 + Pw4 

where the characteristic function is 

(704 

plus the linear constraints 

1 + vi i = 1, 2, . . . , K. (7Oc) 

For the purpose of reporting sample calculations of the H-matrix, we consider 
the data sets used by METCALF and ZWEIFEL (1968) to describe light-water media; 
the data sets are listed in Table 1. We note that the parameters required in equations 
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TABLE I.-TWO-GROVP DATA SETS* 

Case u1 0% 011 012 Gal C88 

I 4.8822 3.2343 3.8180 0.3524 1.0326 2.8669 
II 4,9270 3.1686 3.1953 0.3239 I.0345 2.8005 

III 5.0914 3.0707 3.7659 0.2705 1.0454 2.6828 
IV 5.3220 2.9138 3.6906 0.2164 1.0481 2.5341 

* METCALF and ZWEIFEL (1968). 

TABLE %---THE H-MATRIX FOR SELECTED DATA SETS 

0.0 1~00000 0.0 0.0 1 ~oooao 
0.1 1.19747 0.080405 0.059095 1.19430 
0.2 1.32793 0.15980 0.11189 1.34372 
0.3 1.43538 0.24050 0.16299 1.47926 
0.4 1.52868 0.32178 0.21280 I.60629 

I 0.5 1.61198 0.40305 0.26146 1.72705 
0.6 1.68173 0.48388 0.30898 1.84276 
0.7 1.75149 0.56398 0.35542 1.95419 
0.8 1.82236 0.64312 0.40079 2.06183 
0.9 1.88315 0.72116 0.44512 2.16607 
1.0 I.94045 0.79801 0.48843 2.26718 

0.0 1~00000 0.0 0.0 1~00000 
0.1 1.19295 0.073071 0.053261 1.18675 
0.2 1.31650 0.14311 0.099096 1.32661 
0.3 1.41580 0.21273 0.14231 1.45087 
0.4 I.50009 0.28145 0.18348 1.56510 

II 0.5 1.51375 0.34888 0.22286 1.67173 
0.6 1.63937 0.41477 0.26059 1.77215 
0.7 1.69863 0.47896 0.29619 1.86723 
0,8 1.75271 0.54136 0.33154 1.95763 
0.9 I.80247 0.60196 0.36494 2.04381 
1.0 1.84855 0.66074 0.39706 2.12617 

0.0 1~00000 0.0 0.0 1~00000 
0.1 1.18422 0.061846 0.043981 1.17519 
0.2 1.29573 0.11834 0.079423 1.30140 
0.3 1.38173 0.17255 0.11141 I.41029 
0.4 1.45212 0.22445 0.14079 1.50177 

III 0.5 1.51164 0.27399 0.16800 1.59654 
0.6 1.56301 0.32118 0.19333 1.67823 
0.7 1.60822 0.36608 0.21700 1.75393 
0.8 1.64834 0.40879 0.23917 1.82442 
0.9 1.68434 044942 0.26001 1.89035 
1.0 1.71691 0.48807 0.27963 1.95219 

0.0 1~00000 0.0 0.0 1~00000 
0.1 1.17225 0.050886 0.035120 1.16236 
0.2 1.27010 0.094941 0.061357 I.27500 
0.3 1.34238 0.13569 0.083932 1.36955 
0.4 1.39945 0.17353 0.10390 1.45218 

IV 0.5 144621 0.20869 0.12181 1.52585 
0.6 1.48550 0.24141 0.13802 1.59233 
0.7 1.51912 0.27188 0.15280 1.65283 
0.8 1.54833 0.30032 0.16634 1.70825 
0.9 1.57398 0.32690 0.17882 1 .I5929 
1.0 1.59675 0.35178 0.19035 1.80648 
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(1) and (3) can be obtained from the data sets of Table 1 in the following manner : 

where 

aa, qii = $ aij and C = PQP-‘, (7Ww) 
g2 2 

p = (~21/412Y 

[ 
0 

0 1 1 * (72) 

The data sets of Table 1 have been used to compute the corresponding C-matrices, 
and our numerical values of the resulting H-matrix are listed in Table 2. As previously 
mentioned, we believe the various checking procedures we have used are sufficient to 
suggest that the results given in Table 2 are accurate to within the usual round-off 
convention. 

5. HALF-SPACE APPLICATIONS 
Having established the necessary analytical formalism and having computed the 

required H-matrix, we would now like to solve the typical half-space problems. 
Since the data sets listed in Table 1 all correspond to K = 1 and A(co) > 0, we will 
abbreviate our solutions here to reflect these conditions. More discussion of the case 
K = 2 will be given elsewhere (ISHIGURO, 1972). 

For the Milne problem, we seek a diverging (as x + co) solution to 

lu ; 1(x, /J) + =(x, p) = Q s ‘1(x, $1 dp’ 
-1 

(73) 

subject to the boundary conditions 

lim 1(x, p)e-’ = 0, and I(0, ,u) = 0, p E (0, 1). 
B’ms 

(74a,b) 

We write the solution IH(x, ,u) as 

1,(x, iu) = p-‘Y,(x, p), 

where Y,(x, p) is the diverging (as x --f co) solution of equation (3); 

lim Y&x, p)e-” = 0 and Y,(O, ,u) = 0, E” E (0, 1). 
3c-+m 

(75) 

(76a,b) 

It follows that 

Y,(x, p) = A(vl)*(vl, p)e-“‘vl + *(-_yl, ~)e2”’ 

s 

1/a 
+ [A?)(v)@)il)(v, ,u) + &)(v)*f)(v, ,u)]e-“” dv 

0 

+ 
s 
l~~~'2'(~)~12'(~,p)e-z'y dv, K = 1, (77) 

where the arbitrary normalization ,4(-v& = 1 has been imposed. The eigenvectors 
*(fvl, p), *,I”(v, p), @P)(v, p) and af2)(v, ,D), o course, are given explicitly by f 
equations (44) and (45). The solution given by equation (77) clearly satisfies equation 
(3) and the condition at infinity. Constraining equation (77) to meet the free-surface 
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condition, equation (76b), yields 

--rp(-~1, /A = A(Y@‘(% P) +/lhlAf’(r)*:“(y. P) + A%@&, ,@I dv 
0 

+ 
s 
l;0A~21(v)~(2)(~,p) dv, P E (0, 1). (78) 

The half-range expansion theory discussed by SIEWERT et al. (1972) ensures that equa- 

tion (78) is solvable. We therefore multiply equation (78) by @(or, p) and integrate 
over p from O-l to find, after invoking our half-range orthogonality theorem and 
equations (48a) and (55a), 

A(%$) = -BY1 - & ~(Y,)C~~-‘(Y,)C-‘H-I(~~)CU(V~). (79a) 

In a similar manner, we find 

A;)@) = - yy1 -?- ~&)&-‘(Y)C-~H-‘(Y~)CU(~~), 
Y + Yr P’(V) 

and 

/Q2’(y) = _ vyl 1 - - ~‘2’(~)Ci-ji-‘(~)C-‘H-1(~1)CU(yl), 
Y + Yr P’(Y) 

which completes the solution. 

a = 1, 2, (79b) 

For x = 0, equation (77) can be simplified, or the S-matrix along with equations 
(59) and (78) can be used, to yield the exit distribution for the Milne problem. We 
find 

YJAO, -cl) = E(v1, ,+(p)H-Vyr)CU(yJ, 

or, after equation (75) is invoked, 

(80a) 

I,(O, -P) = P-lE(~,, p)h(p)H-l(v&U(rr). (80b) 

The Milne-problem extrapolated end-point is defined by 

s 

1 

s 

1 

_l~Mas~--zo~~) dcl = P-' _l~Mas~-~o~r)d~ = '4 (81) 

where Y Mas,,(~, ,Q) is the asymptotic solution obtained by neglecting the continuum 
contribution to Y&r, p) in equation (77). We find 

z. = - By1 ln [--A(41, (82) 
where A is given by equation (79a). In Table 3 we list our calculated values of the 
discrete eigenvalue y1 and the Milne-problem extrapolated end-point, along with those 
obtained by METCALF and ZWEIFEL (1968) by solving numerically the system of sing- 
ular-integral equations defining the Milne problem. Our results were obtained 
directly from the non-linear, but regular, H-equation. In Table 4 we report the exit 
distribution for the Milne problem, as given by equation (80b). We note that our 
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TABLE 3.-THE DISCRETE EIGENVALUE AND THE MILNE-PROBLEM 
EXTRAPOLATED END-POINT 

Case Vl Vl * 20 20 * 

I 7.190978 7.1869 0.665826 0.6658 
II 4.179546 4.1793 0.678359 0.6783 

III 2.595565 2.5958 0.712132 0.7121 
IV 1.936041 1.9361 0.761386 0.7613 

* METCALF and ZWEIFEL (1968). 

entries in Tables 3 and 4 are in exact agreement with REITH (1971) who used a method 
basedion a scaler, but not very tractable, Fredholm equation. 

For the half-space albedo problem we seek a bounded (as x -+ co) solution to 
equation (3) such that 

Y(O, P) = S(P - /G, P? PO E (0, I), (83) 

where F is a given constant vector. The solution Y, (x, ,u) can be written as 

s l/a 

Y&p) = A(Y~)@(Y~,&-"'~' + wY+w(%P) 
0 

s 1 

i- &)(v)@~')(v, p)]e-z'v dv + A’2’(y)Q(2)(~, p)e-fllv dv, K = 1, (84) 
l/U 

TABLE J.-THE MILNE-PROBLEM EXIT DISTRIBUTION IH(O, -p) 

Case I 
II@, -PI 

Case 11 Case III Case IV 

0.05 0.004841 0.007121 0.008512 0.008193 
0.10 0.005277 0.007755 0.009249 0.008873 
0.20 0.006066 0.008905 0.010587 0.010106 
0.30 0.006803 0.009982 0.011848 0.011273 
0.40 0.007515 0.011026 0.013079 0.012419 
0.50 OGO8210 0.012051 0~014300 0.013568 
0.60 0.008896 0.013068 0.015526 0.014736 
0.70 0.009574 0.014082 0.016767 0.015935 
0.80 0.010249 0.015098 0.018032 0.017177 
0.90 0.010921 0.016121 0.019329 0.018473 
1.00 0.011592 0.017152 0.020664 0.019835 

P Case I Case II 
Zz(O, -/J) 

Case III Case IV 

0.05 0.017021 0.028432 0.045837 0.064905 
0.10 0.018736 0.031288 0.050399 0.071267 
0.20 0.021900 0.036585 0.058965 0.083413 
0.30 0.024920 0.041686 0.067391 0.095692 
0.40 0.027879 0.046740 0.075964 0.108614 
0.50 0.030813 0.051818 0.084855 0.122564 
0.60 0.033739 0.056965 0.094205 0.137934 
0.70 0.036672 0.062216 0.104154 0.155190 
0.80 0.039620 0,067601 0.114855 0.174927 
0.90 0.042590 0.073151 0.126485 0.197947 
1.00 0.045588 0.078894 0.139257 0.225375 
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where the expansion coefficients must satisfy 

K/A - /A,)F = A(Q%, 1~) +~‘k%)*:“(V, ;) 

+ &)(v)@~)(v, /AU)] dv + i;64’2’(v)@‘“‘(v, ,u) dv, 
s 

/A PO E (0,1). (85) 

If we multiply equation (85) by ,&(vl, ,u) and integrate over p from O-l, we find 

(86) 

In a similar manner, we find the continuum expansion coefficients to be 

&(y) s J3.L 
N”‘(v) 

i;,(v)CH-‘(v)~(~o)E(v, POW> a = 1,2, (87) 

and 

A”‘(v) = &) i32’(~)CG~‘(v)ii(po)E(~, po)F, v E 1 , 1 , 
( 1 

(88) 
(T 

which completes the solution, which is restricted, of course, to non-multiplying media. 
We now consider a constant-source problem and thus wish to construct Y&X, ,u), 

a solution (bounded as x + co) to 

a Y(x, P) + CY(x, /A) = 
%x 

C 
s 
jh p') dp' + S, (89) 

where S is a given constant, subject to 

Y,(O, P) = 0, (u E (0, 1). (90) 

We consider here non-conservative media, A(co) > 0, and thus we write 

s 

l/a 
Y,(x, p) = A(vJ*(vr, &+” + [A~)(v)@~)(v, ,u) + Ap)(v)*F)(v, ,u)]e-“’ dv 

0 

where 

+ 

s 
’ A’2’(v)@‘2’(v, ,u)e+‘” dv + Yt(& lu>, 

l/a 
K = 1, (91) 

YD(X, /A) = [C - 2C]-1s (92) 
is the required particular solution to equation (89). Entering equation (91) into equa- 
tion (90), we obtain 

-YJO, p) = A(v@(Y~, p) +~l’u[A:l’(v)#%, p) + &)(v)*%v, j-41 dv 
0 

+ 

s 
1~,A(z)(v)@‘2’(~, p) dv, (93) 

and thus for this case we find 

A(vJ = v1 L 
N(C) 

i$#ii-‘(v,)C-‘(Ho - I)-%, (94) 

A;‘)(v) = v -!-- 
N”‘(v) 

~~(v)C~~-~(V)C-~(H~ - I)-%, (95) 
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and 

’ k2’(v) = v - 
Nt2’(v) 

$“‘(y)Ciri-‘(,)C-‘(H,, - I)-%. 

Since the expansion coefficients for all considered cases have been expressed 
in terms of the calculated H-matrix, further numerical results, though available 
(ISHIGURO, 1972), are not given here. 
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