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Abstract-The system of singular-integral equations and linear constraints which define mathe- 
matically the H-matrix relevant to a class of two-group neutron-transport problems is shown to 
possess a unique solution. The analysis is based on a matrix version of the Riemann problem 
appropriate to which a discussion of a class of canonical solutions is given. 

1. INTRODUCTION 

WE ARE concerned here with the steady-state, one-dimensional, two-group neutron- 
transport equation written conveniently as 

P ; Yb, P> + =‘(x, ,4 = C s j’(x, p’) dp’, (1) 

where the elements of the two-vector Y(x, ,u) are the group angular fluxes, p is the 
directional cosine of the propagating radiation (as measured from the positive x-axis) 
and x is the optical variable defined in terms of the smaller of the two total cross- 
sections. With the optical variable so defined, the C-matrix is given by 

c7 0 x= 0 1’ 

[ 1 o> 1, 

where (T is the ratio of the two total cross-sections. In addition, the transfer matrix, 
with arbitrary real positive elements cii, for isotropic scattering is denoted by C. 
We shall, however, without loss of generality consider C to be symmetric since a 
general two-group model with isotropic scattering can be transformed by elementary 
methods to a form with a symmetric C-matrix. 

We note that a general solution to equation (1) may be written as 

Y(x, p) = $[A(+(v,, ~)e-““‘+ A(-v~)@(--vi, p)e “‘(1 

+ 
s 

o [&)(v)@~)(v, p)e-“” + &)(v)@F)(v, p)eP”] dv 

+ 
f 
~A(z)(v)@‘2’(v, ,u)e-“‘” dv, 

where A&vi), Ail)(v) and N2)(v) are the expansion coefficients to be determined once 
the boundary conditions, subject to which the solution is to be constrained, are 
specified. In order to display the elementary solutions used in equation (3), we note 
(SIEWERT and ZWEIFEL, 1966) that v E Q j v E (-(l/o), l/c)) and that 

+ d(av - ,~)[l - 2cllv tanh-’ GV] 

1 

(da) 
+ d(v - ,u)[-2c2,v tanh-l v] 
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+ 6(ov - p)[--2c,,v tanh-l ov] 1 , (4b) 
+ 8(v - ,~)[l - 2cZ2v tanh-’ v] 

whereas v IS@=> v E (-1, -l/u)U(l/a, l), and thus 

where 

and 

W"'(vJ4) = 

I ’ 

(5) 

f(v) = c22 - 2Cv tanh-l i 
0 

@a) 

1 
A(v) = 1 - 2ca2v tanh-l v - 2cllv tanh-’ - 

0 
+ 4Cv2tanh% tanh-’ -!- - (6b) 

0-V 0 UV 

Here we have introduced the notation C = det C. In addition, Pv(l/x) and 6(x) 
denote the Cauchy principal-value distribution and the Dirac delta distribution, 
respectively. 

The discrete eigenvectors are given by 

*wo P) = (7) 

where the discrete eigenvalues &vi, i = 1, 2, . . . , K, are the zeros in the cut plane of 
the dispersion function 

A(z) = det A(z), (8) 
where 

A(z) = I + z 
s 

lY(p) * (9) 
-1 P -z' 

with I denoting the unit matrix and the characteristic matrix Y(p), not to be confused 
with the angular flux Y(x, ,u), given by 

Y(P) = Q(P)C, (10) 
where 

O(u) = 0, otherwise. (11) 
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SIEWERT and SHIEH (1967) have summarized the number and types of zeros of the 
dispersion function; we note that equation (8) has either one pair -fyl or two pairs 
-& and &:yz of zeros in the complex plane cut from -1 to 1 along the real axis. 
Without loss of generality, we consider the real (imaginary) part of v. to be 
positive. 

All of the formalism necessary for problems defined by full-range boundary condi- 
tions has been reported (SIEWERT and SHIEH, 1967). However for the considerably 
more meaningful problems defined by half-range boundary conditions, only the special 
case det C = 0 has been resolved definitively (SIEWERT and ZWEIFEL, 1966). Of 
course there are two simple special cases, viz. 0 = 1 or an upper or lower triangular 
C-matrix, which can be solved analytically. In this and a related paper (SIEWERT 
and ISHIGURO, 1972) we develop the theory required to ensure that the extension of 
CASE’S (1960) method of singular eigenfunction expansions yields rigorous results for 
more general (det C # 0) two-group models. 

Basic to the use of the elementary solutions to equation (1) to solve half-space 
problems in two-group transport theory is the so-called half-range completeness 
theorem. Alternatively, some authors (e.g. PAHOR, 1968; PAHOR and SHULTIS, 
1969) have made use of the invariance principles developed by CHANDRASEKHAR 
(1950) to express the solutions to half-space problems in terms of an S-matrix, which 
in turn can be expressed in terms of an H-matrix. Although the use of CHANDRASEK- 
HAR’S (1950) invariance principles or the method proposed by BOWDEN and MCCROS- 
SON (1971) appears at first to avoid the difficulties normally encountered in proving a 
half-range expansion (or completeness) theorem, closer examination of these two 
methods reveals that this is not the case. In fact, to prove the existence of a unique 
solution to the equations defining the H-matrix is equivalent to demonstrating that 
the eigenvectors are half-range complete. 

We proceed therefore to prove that a unique solution of the equations which de- 
fine the H-matrix appropriate to equation (1) exists. The crux of our existence proof 
is an argument that a certain Riemann problem yields a canonical matrix with non- 
negative partial indices. The importance of these partial indices, with regard to 
half-range completeness theorems in multi-group theory, has recently been reviewed 
by BURNISTON, SIEWJZRT, SILVENNOINEN and ZWEIFEL (1971) and will be apparent in 
our discussions. The method used here to prove that the partial indices are non- 
negative requires proof that a certain polynomial P,,(z) is not identically zero. We 
give in Appendix A definitive proof that PII # 0 for all cases for which det C > 0 
and for those cases of det C < 0 for which &vl are imaginary [A(co) < 01; we note 
that for det C < 0, equation (8) has only two zeros -&. The remaining case, since 
the theory for det C = 0 has been established (SIEWERT and ZWEIFEL, 1966), of det 
C < 0 with &vl real [A(a) > 0] has not been satisfactorily resolved in general; 
however the analysis given in Appendix A is sufficient to show that at least a subset of 
these elusive cases can be included in our existence and uniqueness theorem. 

2. BASIC ANALYSIS 

Since a recent paper (SIEWERT and ISHIGURO, 1972) is devoted entirely to the use of 
the H-matrix for solving typical half-space problems in two-group neutron-transport 
theory, we focus our attention here on the required existence and uniqueness theorem. 
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We are able to prove the following result: 

Theorem. The equations 

(124 

~(P>W~M(%U) = I+ ,uP olIjI(y)Y(v) -&] M’2~(~), 
c s 

,u E (; , I) , Wb) 

and 

[ s 
I + vi O1ti(~)Y(~) +-]M(v~) = 0, i = 1, 2, . . . ) K, K = 1 or 2, (12~) 

V - Vi 

possess a unique solution in the class of continuousfunctions %[O, l] for which det C > 0 
andfor all det C < 0 cases for which R(m) I; 0. 

In equations (12) we have used the superscript tilde to denote the transpose 
operation and have introduced the quantities 

M(‘)(p) = :l@‘z’(p, ,u’) d,u’ 
s 

and M(q) =ll@(vi, p’) d$, (13) 

which can be evaluated immediately from equations (5) and (7). In addition note that 
as z approaches, in a non-tangential manner, the branch cut (- 1,l) from above (+) 
and below (-) the resulting boundary values of the dispersion matrix A(z) satisfy 

A+(P) + A-(p) = 2X4 (14a) 
and 

A+(P) - A-(,4 = 257$4’(,$, (14b) 
where 

Vp) = I + (UP ;lY(v) * . 
s V-P 

(15) 

In addition, 

A(co) = 1 - 2 Cl1 - 2c22 + $ c. (16) 
0 

We note that equations (12) are quite similar to the equations which define the 
H-matrix for a problem in the scattering of polarized light (SIEWERT and BURNISTON, 
1972); however, the fact that here the characteristic matrix Y(p) is singular for 
,u E (l/o, 1) does require special attention. Since Y(p) is singular for p E (l/o, 1) we 
conclude from equations (12) that all of the elements of H(p) for ,U E [0, l] are not 
involved in these equations. In fact, the presence of Mc2)&) in equation (12b) is a 
consequence of Y(p) being singular for ,U E (l/a, 1). If we denote the elements of 
H(,u) by Hi@), we observe that only H,,(,u) and H,,(U), ,u E (0, l/a), and H,,(U) and 
H.&u), ,,x E (0, l), are required in equations (12), and thus our theorem concerns only 
@(#X4, P E (0, 1). 

Though, for the sake of brevity, we will not give an explicit derivation of equations 
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(12) here, we would like to make several comments on these defining equations. 
The technique reported by PAHOR (1968) and PAHOR and SHULTIS (1969), though 
restricted to non-multiplying media and inherently based on the proposition that the 
non-diverging normal modes are half-range complete (as discussed in our Appendix 
B), can be used to derive equations (12) for non-multiplying media. Our derivation 
of equations (12) may be viewed in a manner which allows for an obvious extension 
to the case of multiplying media. We find that equations (12) are sufficient conditions 
for the half-range basis set to be orthogonal, as described by SIEWERT and ISHIGURO 
(1972). Since this property of the H-matrix is useful for finite-slab problems as well as 
half-space problems, it is clearly desirable for H(u) to be defined by equations (12) for 
both multiplying and non-multiplying media. 

To prove the theorem we make use of the equivalence of the given singular-integral 
equations to a certain matrix version of the classical Riemann problem. Therefore, 
in the manner of MUSKHELISHVILI (1953), introduce the sectionally analytic matrix 

N(z) = ki +)Y(v) -&- , 
s 

(17) Y-Z 

which vanishes at least as fast as l/z as IzI tends to infinity. Invoking the Plemelj 
formulae (MUSKHELISHVILI, 1953), we note that the boundary values of N(z) satisfy 

and 

n-i[N+(,u) + N-(p)] = P 
s 

‘J!$y);y(v) dv (18) 
0 V-P 

N+(P) - N-(,4 = &~WP>- (19) 
If we now make use of equations (14) and (17) we find equations (12a) and (12b) can 
be reduced to the equivalent inhomogeneous Riemann problem 

N+(p) = c(lu)fi-(p) + +bwwl~ P E a 0, (20) 
where 

G(p) = ~+(~)[~-(ru)l-~. (21) 
Even though A+&) and A-&) are unbounded at ,D = l/u and p = 1, the G- 

matrix can be defined to be continuous (though not Holder continuous) for p E [0, 11. 
With G(0) = G(1) = I, the analysis of MAND~AVIDZE and HVEDELIDZE (1958) 
is sufficient to ensure the existence of a canonical solution O(z) to the homogeneous 
problem 

a+(/~) = G(/@‘-(lu), 
Equation (20) thus can be solved to yield 

p E [O, 11. (22) 

ti(z> = & Q(z) U 
1 
K(v) 

?r 0 
fi + a(4 

1 
3 

where 8(z) is a matrix of polynomials and 

(23) 

K(v) = [*+(v)]-‘!@(v)[ii-(v)]-? (24) 
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The matrix N(z) given by equation (23) is a solution of equation (20) but is not unique. 
We now want to show that imposing the condition that zN(z) is bounded as lzl tends 
to infinity so limits the number of arbitrary constants in 8(z) that they are uniquely 
determined by equation (12~). Our approach will be to analyze the behavior of the 
canonical solution as lzl tends to infinity. This then introduces the so-called partial 
indices K~ and K~ and the total index K = K1 + Kg. We note that the total index K for 
the Riemann problem defined by equation (22) is either K = 1 or K = 2 depending on 
o and C (SIEWERT and SHIEH, 1967). 

Now since the matrix 

x(z) = CA(z)&,-l( - z), (25) 

analytic in the complex plane cut from zero to one along the real axis, is also a solution 
to equation (22), we can write (MAND~AVIDZE and HVEDELIDZE, 1958) 

x(z) = @(z)P(z), (26) 
where P(z) is a matrix of polynomials. The factorization of the dispersion matrix is 
therefore established : 

CA(Z) = @(z)P(z)di(-z). (27) 

It is observed that G-l&) = G(,u) and consequently that SIEWERT and BURN- 
ISTON’S (1972) Theorem 2 is applicable here: there exists a canonical solution al(z), of 
ordered normal form at infinity, to equation (22) such that 

al(Z) = *l(z). (28) 

Since G-l(,u) = G(,u), it is clear that if Q(z) is aAcanonical tolution of equation (22) 
then e) is a solution, and thus a-) = @(z)P(z), with P(z) being a polynomial 
matrix. We can now argue that there exists a canonical solution Q,(z) such that the 
resulting i(z) = I, which proves equation (28). It follows that &(z) is real on the 
entire axis complementary to (0, 1] and 

where A, is real, A, = det A, is non-zero and K~ 2 K~, K~ + K~ = K. If we now let 
Q(z) = al(z) and W(z) =‘CA(z), then equation (27) can be solved for PU(z), the 
polynomial in the 1 l-position of the resulting P(z): 

pll(z) = l#l(z);l(-z) [w,l(z)~l~,(z)~l~~(--z) + K,<z>dll2<z>~llz<-4 

- w,&)4&)4,1k-4 - ~z(z)~112(z)~123(-z)I, (30) 

where +i,&z) denotes the element in the a/l-position of al(z) and #r(z) = det a,(z). 
From equation (30) it follows, after use is made of equation (29), that 
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We conclude from equation (31) that either the polynomial P,,(z) = 0 or, if Pu(z) $ 0, 
that K1 2 0. In Appendix A we show (for the considered cases) that Prr(z) $ 0, and 
thus it follows that K~ 2 0. Since the partial indices have, without loss of generality, 
been ordered such that KZ 2 K1, it is clear that both partial indices are non-negative. 

For the case of K = 1 the partial indices are K1 = 0 and KS = 1; however, for the 
case K = 2 we consider the two possibilities K1 = 0, KZ = 2 and K1 = K2 = 1. Note 
(SIEWERT and SHIEH, 1967) that det C < 0 * K = 1. 

Equation (17) yields the fact that zN(z) must be bounded as lzl tends to infinity: 

lim zN(z) k N, (32) 
121’03 

whereas for a(z) = Q,(z) equation (23) yields, after use is made of equation (29), 

Since A,-% is bounded, it follows that 

(33) 

(34) 

where a, b, c and d are constants and d3,, is the Kronecker delta. A variation of 
SIEWERT and BURNISTON’S (1972) Theorem 3 is available here: if a(z) is a canonical 
solution of ordered normal form at infinity to the Riemann problem defined by equa- 
tion (22), then so is 

Wz) II 1 q 61.q 
r + SZ(~ - SL,,) + tz2 82.~~ m 1 ' 

lm - qr &c, # 0, (35) 

where I, m, q, r, s and t are constants. We observe, in fact, that a canonical matrix of 
ordered normal form at infinity is unique to within a post-multiplication of the form 
given above. It can thus be concluded that l%(z) as given by equation (23) with 8(z) 
given by equation (34) is unique to within the two (four) degrees of freedom corre- 
sponding to the arbitrary constants c and d (a, b, c and d> for K = l(K = 2). 

The constraints given by equation (12~) and written, after use is made of equation 
(17), as 

[I + 2&iN(ri)]M(ri) = 0, i = 1,2, . . . , K, (36) 
can now be used to specify uniquely the constants in the B-matrix. We find therefore 
a unique solution for N(z) and since H&) follows from equation (19) the proof of the 
theorem is established. 

3. CANONICAL SOLUTIONS AND THE H-MATRIX 
Having proved the required existence and uniqueness theorem concerning the 

H-matrix for the two-group model, we now relate, in the manner of SIEWERT and 
BURNISTON (1972), the H-matrix to a certain canonical solution of the Riemann 
problem defined by equation (22). In addition to providing a derivation, alternative 
to that available from pursuit of CHANDRASEKHAR’S (1950) invariance principles (at 
least for non-multiplying media), of several useful H-matrix identities and equations 
convenient for computational purposes, we note that the ensuing analysis reveals the 



476 C. E. SIEWERT, E. E. BURNISTON and J. T. KRIESE 

basic character of the H-matrix with regard to real or complex values. The need to 
know for which cases and in what manner the H-matrix becomes complex is, of 
course, basic to any efficient method for computing H(U), ,u E [0, 11. 

Consider first the case K = 1 and a subsequent factorization of A(z): 

CA(z) = Q,(z)P(z)@?,,(-z), (37) 
where Gjl(z) = m is a canonical solution of ordered normal form at infinity, 

*dz) 
ZKl 0 

[ 1 
o ZKa -+ Al as I4 -+ ~0, (38) 

and 

P(z) = pIxrz B + YZ ,j + Ez2 9 1 Kl =o, K2 = 1 

Here the constants u, /I, y, 6 and E are real, since P(z) = &$, and 

(ad - 83 + (ae + y2)z2 = y ($ _ z3* 

If we now introduce 

i 

lu11’2 
*o(z) = W) y(p _ yz) IaCl"' O 

1 y uwa1'2 ’ 
K1 = 0, 

1 

then equation (37) can be written as 

(39 

(40) 

K2 = 1, (41) 

CA(z) = ; *o(z) 
a C l O 0 P ICI- ~~2]wm-4; Cl/2 pc(“/“]~“(-z~, 

where 
K1 = 0, K2=1, (42) 

D(z) = ’ y1 ” z [ 1 3 Kl= 0, K2 = 1. (43) 
0 

Vl 

Note that Q,(z) is also a canonical solution of ordered normal form at infinity and 
that e,(z) = a&@), so that Qi&z) is real on the entire real axis complementary to 

(0, 11. 
We now let 

H(z) = C#,‘(-Z)D-~(-Z)#~(O)C-~, K1 = 0, K2 = 1, (44) 
so that equation (42) can be written as 

A(z) = I+( - z)C-lH-‘(z)C. (45) 
Equation (44) is an extension to the complex plane of 

@(,u)Ho1> = Q(,L+&-‘( -p)D-l( -/&,(O)C-‘, 

lu E LO, 11, K1 = 0, K2=1, (46) 
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which is the unique solution to equations (12). We note that equation (46) can be 
obtained from equation (19), with N(z) as given by equation (23). Since a,(--_lu), 
,u E [0, 11, is real for all cases, equation (46) for y1 real clearly yields a real H(,u). 
For y1 imaginary, however, the matrix D(-,LJ) is complex and thus the H-matrix 
resulting from equation (46) is also complex. 

Further, equations (17), (42) and (44) can be used in the Cauchy representation 

Q,(z) = Q,(a) + ki s O1[*O+o - *o-b41 * (47) 
ru-= 

to yield 

H(z) = I + zH(z)C 
s 

O1ti(,u)@~) * 
p+z’ 

(48) 

or 

H@) = I + pH@)C OII&‘)@(,u’) * 
s !J+c1 

p E [O, 11, (49) 

the non-linear H-matrix equation useful for computational purposes (SIEWERT and 
ISHIGURO, 1972) when used in conjunction with the constraint, equation (12~). 

For the case K = 2, a slight modification of the foregoing procedure is required 
SiIICe we wish to include both possibilities K~ = 0, K3 = 2 and K~ = K3 = 1. In general 
we observe from equation (37) that, since CA(co) is bounded and R(z) = A(-z), 

P(z) = 
[ 

Pz&) P,(z) 
PA---z) 1 L(z) ’ (50) 

where the subscripts explicitly denote the degrees of the polynomial entries. It follows 
for the case K1 = 0, K3 = 2, since P(z) =w) and e(z) = P(-z), that P(z) is of the 
form 

p(z) = - YoZi% - YlZ) 
(Al + WWl + Y14 

6 + &Z2 + (z” 1 ’ 
K1 = 0, Ka = 2. (51) 

We note that equation (37) can be evaluated at z = 0 to show that a > 0, and thus 
we can use 

*o(z) = @1(z) 

C 

& 0 

+-- (A - Yo%% - YG) A f w2[w~w2 ’ 
1 I 

K1 = 0, Kz = 2, (52) 
and equation (51) in equation (37) to obtain 

CA(z) = @O(z)D(z)D(-z)@&,(-z), K1 = 0, K3 = 2, (53) 

(% - zk, - z) 

VlV2 
1 , K1 = 0, K2 = 2. (54) 

where 

D(z) = 

3 
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We therefore find that the definition 

H(z) = C&,-l(-z)D-l(-z)+&,(0)C-l, K1 = 0, Kz = 2, (55) 

along with the definitions given by equations (52) and (54), renders equations (45), 
(48) and (49) valid also for the case K~ = 0, K~ = 2. For real v1 and us, equation (55) 
clearly yields a real H-matrix on the real axis complementary to (0, 11, since aO(z) = 

*I#). 
For the case ~~ = ~~ = 1, we note that equation (35) allows us to specify explicitly, 

at any point in the cut plane, the value of a canonical matrix with ordered normal form 
at infinity. We thus let 

where 
*o(z) = *dz>*?FOQ, Kl = K2 = 1, (56) 

Q = -_!- J’ ‘12 
J(czz) 0 c22 ’ c=Qci [ 1 

and therefore write equation (37) as 

(57) 

CA(z) = cpXz)P(z)&,(-z). (58) 

Equation (50), along with the facts that a,,(z) = @&), P(z) = p(z) and P(z) = P( -z), 
can now be used to deduce the form of P(z): 

0 1 
P(z)=I+y _-l o z-rz2, 

[ 1 K1 = K2 = 1, 

where y is real and I’ = e is real. Equation (58) yields 

r = &-lCA(co)A,l 
where 

A, = lim z*,(z). 
lal*a 

Note that A, is real. 

(5% 

(60) 

(61) 

It can be shown that equation (59) can be factored in the form 

P(z) = A(z)& - z), Kl = K2 = 1, (62) 

where 

A(z) = I - zs, K1 = K2 = 1. (63) 

We have also concluded that there exists a unique constant matrix 6, the solution to 

si=I’ and s”---S=y _y i, [ 1 (64) 

such that 

detb(vJ = 0, CL = 1 and 2, (65) 

where for and &ye are the zeros of det P(z). We maintain here the convention that 
va denotes an eigenvalue with a positive real (imaginary) part. It follows that 

CA(z) = @,(z) b(z) A(-z&(-z), K1 = K2 = 1. (66) 
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For this case we can show that the unique H-matrix is given by 

H(z)= c~,,-l(-Z)&-l(-Z)#,,(o)c-l, K1 = K2 = 1, Wa) 

or 

H(p) = C’&,-‘( -/A)&-‘( -_iu)Qr,(O)C-‘, P E LO, 11, K1 = K2 = 1. (67b) 

Since a,-l(-,u), p E [0, 11, is real, the real or complex nature of H@) is determined 
by equations (64), (65) and (67b). When y1 and Ye are both real, we have proved that 
the s-matrix is real and subsequently that H(p), ,U E [0, 11, is real. 

Finally we find that equations (63) and (67a) can be used to show that equations 
(45), (48) and (49) are valid also for this case, K~ = K$ = 1. Equations (45), (48) and 
(49) are therefore independent of the partial indices. 

In Section 2 we established proof of the existence of a unique solution to equations 
(12) and subsequently developed equation (49) specifically to be used with equation 
(12~) for computational purposes. It thus follows that we must show that equations 
(49) and (12~) possess a unique solution. Since equations (12) possess a unique solu- 
tion, we need simply show that any solution of equations (49) and (12~) is also a 
solution of equations (12). 

We first write equation (49) as 

or, alternatively, 

*]I@) = I, 
P”’ $11 

lu E LO, 11. 

(684 

(68b) 

If we now multiply the transpose of equation (68b) from the right by 

I + @J 
s 

OIH@.)Y($) -?JL 
P’-P’ 

do some partial-fraction analysis and invoke equations (15) and (68), then we find 

which proves that all solutions of equation (49) are also solutions of equations (12a) 
and (12b) and thus that the solution of equations (49) and (12~) is unique. 
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APPENDIX A 
Partial indices 

As discussed in Section 2, our proof that the partial indices of the canonical solution e(z) are non- 
negative requires proof that the polynomial P,,(z) given by equation (3Ov>fs not identically zero. A 
similar proof is required in the discussion of partial indices given by KUSCER (1967). 

The case det C > 0 can be resolved immediately by setting z = 0 in equation (30) and recalling 
that since 

Q),(O) is real: 
%Z) = @r(z) (A.1) 

or alternatively 

(A.3) 

Thus for det C > 0, PI,(O) > 0. 
We consider now the case det C < 0. For Q(z) = a*(z), equation (27) can be written as 

CA(z) = cp,(z) P(z) i,< -z), (A.4) 

where, since 

A(z) = A(-z), CA(z) = &z)C and A(z) = Ax, (A.5) 
we conclude that - 

P(z) = P(-z) and P(z) = P(z). 64.6) 
Further, since 

det P(z) a (via - z*), (A.7) 

the proposition that PII E 0 implies that P(z) is the form 

P(z) = 
[ 

a lbz 
a + bz 

P**(z) 1 w4 
where (a/b)* = vf. Sinw the constants a and b must, in view of the fact that PQ = P(z), be real, 
the conclusion that (a/b)’ = vIs is obviously a contradiction if v1 is imaginary. It follows that PII 
cannot be identically zero for det C < 0 and vI imaginary [A(a) < 01. 

Seeking a contradiction to the form of P(z) given by equation (A.8) has not led to conclusive 
results for the remaining case det C < 0 and A(a) > 0; however, for at least a subset of the elusive 
cases, the proposition that PII = 0 can be shown to lead to a contradiction. If we denote the second 
column of O,(z) by 4,*(z), then by Cauchy’s theorem we can write 

tA.9) 

If we now make use of equations (21), (22), (A.8) and (A.4) then equation (A.9) for ZE [-1, 0] 
yields the integral equation 

(A.10) 
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for 
Fb) = C-‘Q1l*( -11). 

Here 0&) is given by equation (11) and 

1 

(A.ll) 

f@) = (*VI + V)X(-_y)K ’ (A.12) 

where 

X(-V) = i--& exp i I : arg A+(u) & (A.13) 

and K2 = -CA(co). Equation (A.10) can be uncoupled to yield two scalar equations for the com- 
ponents Fl&) and FaQ of F(u): 

F&) = 1; MP’)&(P’ --f Y) d$, CL E 10, 11, (A.14a) 

and 

F*O = j;‘* F*(P%OL’ + ,o) dp’, P E 10, V-71, (A.14b) 

where 

and 

(A.15a) 

KzW + PC) = -C*Nj-C/-O/; (,, + ;$; + p) dv. (A.15b) 

It is clear that if we could show that either of equations (A.14) yielded only the trivial solution 
then we would have the contradiction, through equation (AlO), required to prove PSI(z) + 0. It is 
also a parent that the homogeneous equation (A.14b) would yield only trivial solutions if the La 
norm IKz[j of K&d --* p) were less than unity: P 

llK* I/* = 1: j.;” K*(rcl’ -+ Ma&’ -* P) d$ d,n. (A.16) 

We have not been able to resolve the (&) sign appearing explicitly in equation (A.12); thus to seek 
an upper bound to llKn[l we consider the worst possibility-the minus sign in equation (A.12). We 
find 

IlKa II* < h*tmj d -5 A LMJ, 4 + J*(o, VI) + J*@, VI% (A.17) 

where 

Jr@, ~1) = (VI+ l)* (In&)* ($ [m ] 
u*v,* - 1 

+3 +lnr 
1 

- ;I [l + 3vfl tar&l-* ;j , (‘4.18) 

v,+ 1 
J&, 4 = 2 d In v _ 1 + ln (1 + a) [v tanh-t -& + & In Gl 

+ (u* - l)(l + a) 3 1 
2u(u*v,* - 1) - 20 1 -- 

2vr (A.19) 

and 

J*(u, VJ = &in (1 + a)]* [(1 - v2;;;*+ 3v1*) tanh-’ $ + ; + 2v;j;u*-~~l)] . (A.20) 
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Though equation (A.17) is unbounded in the limit as both v1 - 1 and (r + 1, it is apparent that 
equation (A.17) can in fact be used to show that II&II < 1 for some values of u and C for which 
det C < 0 end h(a) > 0. Unfortunately this procedure does not ensure that Pzl(z) $ 0 for all 
the cases for which det C < 0 and A(w) > 0, but equation (A.17) can be used to test particular cases 
of this class and thus to prove for particular cases the desired result: Pll(z) f 0. We have evaluated 
equations (A.lS), (A.19) and (A.20) for selected data sets and have established numerically for these 
cases that jjK,II < 1. 

APPENDIX B 
The half-range expansion theorem 

Since the proof of the following theorem is essentially equivalent to the proof of the existence of a 
unique solution to equations (12), we shall only outline the salient points of the proof: 

Theorem. For det C 2 0 andfor all det C < 0 cases for which A( Q)) 5 0, the eigenvectors F(v,, p), 
i=1,2... K, K = 1 or 2, F$l)(v, ~0, F$ (v, p) andF’*)(v, p), v E (0, l), form a complete basis for the 
expansion of continuous two-vectors F&) in the sense that 

UP) = $ M’dWi, P) + i$l j+;‘O A~l’(v)F$l)(v, ,4 dv + s:, A’a’(W”‘(v, /4 dv, 

If we let 
PE (0, 1). 03.1) 

dv 
VA(V) - , v-z (B.2) 

where 

A(v) = ]&‘(v)M:l’(v) + A:‘)(v)M:l’(v)]tI(v) + A’*‘(v)M’~‘(v)[l - e(v)], 03.3) 
with, in general, 

M(t) = /it F(f, p) dp, 

then equation (B.l) can be expressed in the form 

j&F”G) = .n+&)L+&) - A-(&L-Q, p E (0, l), 
where 

W.4 = WP) 

and 

($4) 

(B.5) 

(B.6) 

F’W = W.4 - i: N’3Fhr /4. 
i=l 

We can now write the solution to equation (B.5) as 

L(z) = i-l(r) 
1 

Fz f P,(Z)] , 

(B.7) 

(B.8) 

where a(z) is a canonical solution of equation (22) and P,(z) is a matrix of polynomials. Now since, 
as shown in Appendix A, the partial indices associated with m(z) are non-negative, and since from 
ecjuation (B.2) zL(z) must be bounded as ]z] -+ cc, we conclude that P+(z) E 0 and, further, that 
F (,u) must be restricted such that 

/.k+(,u)[A+gl)l-‘Wp)[l + ,44 dp < 00. (B.9) 

It can be shown that by choosing correctly the discrete expansion coefficients A@,) in equation 
(B.6) that equation (B.9) can be satisfied for all continuous FQ, for any of the possible pairs of 
partial indices. Of course, for the case K = 2, one must show that the two simultaneous equations 
for A(v3 and A@,) are solvable, which can, in fact, be done. 


