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EXACT ANALYTICAL SOLUTIONS OF THE TRANSCENDENTAL
EQUATION z sin { { *

E. E. BURNISTON’ AND C. E. SIEWERT:I:

Abstract. Complex analysis is used to derive exact solutions of the transcendental equation
a sin ( (, where o is an arbitrarily assigned complex number. The method involves the use of canon-
ical solutions to suitably posed Riemann problems, and the explicit results are expressed in terms of
elementary quadratures.

1. Introduction. Transcendental equations are, of course, encountered in
many areas of analysis basic to mathematical physics or mechanics. Here we
consider the equation

(1.1)
which is particularly important in studies of plane biharmonic functions in in-
finite or semi-infinite strips, as, for example, in the determination of the stress
field in a thin plate in either plane strain or flexure [1], [2], [3]. In this case, (1.1)
serves to define the required eigenvalues, and, although the roots of (1.1) can be
computed by iteration, it appears that analytical solutions have not been reported
in the literature. To our knowledge, the only significant analytical information
available are asymptotic expressions [4], as, for example,

(1.2) (, (4n + 1) + i(-ln + In (4n + 1)g), > 1.

Our purpose here is to develop exact closed-form solutions of equation
(1.1), for general 0. Our first step is to make the substitution

(1.3) z g/(,

and subsequently to consider the equivalent problem of seeking the zeros of

(1.4) A(z) 1
1
-z sin- --,

z

in an appropriately cut plane. The branches of the arc sin function in the plane
cut from 1 to 1, along the real axis, can be conveniently enumerated as

(1.5) sin--zl kzt + (- 1)k[ ilog[f(z)+lI k O, _+ 1, _+2, ...,

with log z denoting the principal branch of the log function, and

(1.6) f(z) /1/z2 1 and f() i.
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Consequently, the zeros in the cut plane of the functions

k 0,__1,_+2,..-

will yield, on using (1.3), the roots of (1.1).

2. Basic analysis. Our previously reported procedure [5], [6], [7], [8] for
solving a class of transcendental equations is based on the proposition that if an
appropriate Riemann problem can be formulated, then the solution(s) of the
considered transcendental equation can be expressed in terms of a canonical
solution of that Riemann problem. From (1.7) we find the boundary values of
Ak(Z as z approaches the cut [- 1, 1] along a nontangential path from above (+)
and below (-) to be

(2.1) A(t) 1 rtA(k) (- 1)k Itl +_ i(- 1)ktC(t)

where

(2.2) A(k) k + (-1)k

and

(2.3) C(t) In If(t) + Itl-x].
Our procedure will now be to use (2.1) to formulate an appropriate Riemann

problem(s). As will be evident from the ensuing analysis, there are three cases,
arising in a natural manner, which we consider in turn.

Case (i). k 1. The choice k 1 in (1.5) yields the principal branch of the
arc sin function and can be treated in an especially simple manner. We first seek
to establish the number of zeros of A l(z and thus employ the argument principle
[9] in a domain bounded externally by a large circle of radius R, centered at the
origin, and internally by a contour encircling [- 1, 1], which we shrink onto the
cut. Since AI( 1 -1, we find that the change in argument of Al(z on the
large circle tends to zero as R (of course for 1, ml() 0), whereas the
change on the contour encircling the cut is 0 for R]) and 4t for R]2), where
R]2) and R]) are the bounded and unbounded regions respectively, determined
by the curve Aid(t) 0, [- 1, 1], as shown in Fig. 1. Consequently, Al(z has
no zeros for R]) and two zeros for RI2). We now consider the Riemann
problem defined by

(2.4) X + (t)X-(t) 6 (0 1)(t) G

R(,

0

FIG. 1. The locus ofA (t) 0 in the e-plane
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where

(2.5) GI(/) A-(t)/AT(t)
is the Riemann coefficient and X(t) denote the boundary values of a sectionally
analytic function X (z) which is nonvanishing in the finite plane. As A (Z) A z)
it is a straightforward matter to show that A(z)X - 1(_ z) is also a solution of the
Riemann problem defined by (2.4) and thus [10] can be expressed in terms of the
canonical solution X l(Z) as

(2.6) ml(Z)X - X(-z) Xl(z)Pl(z),

where Pl(Z) is a polynomial. On making use of the result for the endpoint behavior
10] of Cauchy-type integrals, namely

1 ( dt log G(c)
2rci Ja log G(t)-- T log (z c) + F(z)

z 2ri

with the upper sign for c a and the lower sign for c b, F(z) being bounded at
both ends, we deduce, since arg Gl(t increases by 2re on [0, 1], that the canonical
solution for RI2) is given by

0 e2),(2.7) X(z)
1 z

log G(t)
z

where we have chosen arg G1(0) 0. It thus follows that (2.6) can be written as

(2.8) A(z)--- Xl(Z)Xl(-Z)[Z z2](1 -0-1), ( R(12),

where clearly z are the desired zeros of Al(Z). As will be discussed in 3, (2.8)
can be evaluated at some suitable value of z to yield explicit results for +__ z

Case (ii). k odd, k 4: 1. The simplicity of the preceding case of k 1 was due
to the fact that A l(Z) A1 (-z), which was essential in the development of (2.8),
the factorization of A l(Z). It is evident from (1.7) that Ak(z), k - 1, is not an even
function, and consequently we need to introduce an auxiliary function that can
be factored in the manner of (2.8). A convenient choice is

(2.9) fk(z) A(z)A(- z).

We note from (1.7) that, with k odd,

(2.10) A(-z) Az_(z), k 3,5,7,..-,

and thus we can write

(2.11) f(z) A(z)Az_(z), k 3,5,7, ...,
which means that determining the zeros off(z), k 3, 5, 7, ..., will simultaneously
yield the zeros of both A(z) and Az_t(z). Clearly, if z, is a zero of Ak(z), then
-z,, is a zero of Az_k(z). If we now apply the argument principle, in the same
domain as before, to f(z), k 3, 5, 7, ..., we find that for Rk), f(z) has no

R(4). /(z) has four zeros inR2). k(z) has two zeros, whereas for kzeros, for k

the cut plane. For k 3, 5, 7, ..., the regions Rk), Rtk2), and Rk4) are defined in the
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cz-plane by Fig. 2. Proceeding as for the case k 1, we now consider the Riemann
problems defined by

(2.12) X;(t) Gk(t)X;(t), t6(0, 1),

FIG. 2. The locus offf2(t) 0, k 3,5, 7, ..., in the a-plane

with

(2.13) Gk(t ;(t)/; (t).

Now for 0 R2), there is no change of arg Gk(t on [0, 1], and with arg Gk(0 0,
we can write a canonical solution to (2.12) as

(2.14) Xk(Z exp log Gk(t 0 R2)

Z
It follows that ’)k(Z) can now be written as

(2.15) fk(z)
(k- 1)err2

2 Xk(Z)Xk(- Z)[z Z23, 0 e Rk2)

Now for Rtk), arg Gk(t increases by 2re on [0, 1], and thus, again with
arg Gk(O 0, a canonical solution to (2.12) can be written as

(2.16) Xk(z) 1---- log Gk(t cz R4)

Z
It follows that Dk(z) can now be factored as

(2.17) Dk(z
(k -021)2zr2Xk(z)Xk(-z)[z’l z2] [z2, 2 z2], R4),

where _+ zk, and + zk,2 are the desired zeros of Dk(z) for k 3, 5, 7, .-., R’).
Case (iii). k even. As previously, we can now apply the argument principle

to

(2.18) Dk(z) Ak(z)Ak(- z), k 0, 2,4, ...,
where from (1.7) we have

(2.19) Ak(-- z) A_ k_ 2(z), k 0, 2, 4, ...,
so that the zeros of "k(Z) will simultaneously yield the zeros of Ak(Z and A_ k- 2(Z)
k 0, 2, 4,-... We find that for Rtk), fk(Z) has no zeros, for Rig2), fk(Z) has
two zeros, and for e e Rig’), fk(Z) has four zeros in the cut plane. The only difference
here is that the regions Rig), Rtk2), and Rig’) are defined somewhat differentl.y (see
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Fig. 3). We find here, for k 0, 2, 4, ..-, that ’k(Z) can be factored as

(k + 1)
(2.20) fk(z) 2 z2Xk(z)Xa(- z)[z z2], aR2),

-Tr(k+) T1(k+-)

FIG. 3. The locus offal(t) 0, k 0,2, 4, ..., in the a-plane

and

(k + 1)2
(2.21) f(z) 2 rzx(z)X(-z)[z2, z2J[z2,2 z23, e R4,

where the required canonical solutions are given by (2.14) and (2.16).

3. Explicit solutions. Having developed the required formalism, we are now
able to solve (1.1) almost immediately. All that is required is to insert any con-
venient value(s) of z into the various factorization equations.

For the case k 1, we can set z 0 in (2.8) to obtain

(3.1) z __+(1 -1)- 1/2 exp -/ log Gl(t e R]2),

while the procedure of letting ]zl tend to infinity yields

i6e_5 lf(3.2) zl -+ 6(e 1) rci
log Gl(t dt e ff R(2).

Finally then, from (1.3) we find corresponding to (3.1),

(3.3a) 1 _+(1 1)1/2 exp [2-/f log Gl(t R]2),

or, from (3.2),

[6-5 lff I -1/2
(3.3b) 1 --+e

6(e 1) rci
log Gl(t dt o R].

In a similar manner, we can set z 0, or let Iz] tend to infinity in (2.15) and
(2.20) to obtain

(3.4a) + A(k)rc exp log G(t) e e Rz),

or

(3.4b) ___eA(k)rc [e + (- 1)k]2 + iA2(k)r log G(t) dt e R2),
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which apply for k 3, 5, 7, ..., and k 0, 2, 4, it must be recalled, however,
that the regions Rtk2) are different for even or odd values of k (see Figs. 2 and 3).

The determination of Zk, and zk,2 from (2.17), for k 3, 5, 7,..., or (2.21),
for k 0, 2, 4, -.., necessitates the evaluation of each of those two factorization
equations at two distinct points, which for convenience we choose to be z 0
and z i. Each of the two sets of resulting equations can be solved simultaneously
to yield, after (1.3) is invoked,

(3.5) k,a -----[Pk Qk + (--1)a[(Pk Qk)2 2Qk31/23 1/2,

aR’0 fl= lor2

where we have defined

1 V 2k(i) ](3.6) Pk -LA2(k)rCXk(_ i)
1

and
2

(3.7) Ok 2A2(k)t2X(0)
A solution alternative to (3.5) can be obtained by setting z ar and z br, with
a and b real, in (2.17) or (2.21) and subsequently letting ]r] tend to infinity to yield,
fork 3,5,7,...,andk 0,2,4, ...,

(3.8) k,a --+x[Bk + (-- 1)a[B + 4Ck]1/2] 1/2, a m R4), fl 1 or 2,

where

nt- (-- 1)k 2

(3.9) Bk- 1--Ikl -at-
A(k)rc

(3.10)

and

2Ck Ikl Ikl Ik3 q-
3A2(k)rt2

d- (-- 1)k] 2

+ (Ikl 1) ,( -_]

Ika --rci log Gk(t)dt

R(4). for which (3.5) and (3.8) are valid, are different for even orAgain, the regions k

odd values of k, as shown in Figs. 2 and 3.
Equations (3.3), (3.4), (3.5) and (3.8) are our final solutions of(1.1). A Gaussian

quadrature scheme has been used to evaluate our explicit solutions for numerous
real and complex values of the parameter e, and solutions accurate to six significant
figures were obtained quite straightforwardly.

Acknowledgment. The authors wish to express their appreciation to Y.
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yield known results.
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