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Abstract. The theory of complex variables is used to establish exact analytical solutions to a class of
two-body problems. In view of Lambert’s theorem, two points on the conic, the chord-distance be-
tween the two points, and the time interval are considered given, and subsequently the solutions for the
semi-major axis required to define the orbit are developed and expressed ultimately in terms of elemen-
tary quadratures.

1. Introduction

In this work we consider the determination of conic orbits for a class of two-body
problems. In the manner of Lambert’s theorem (Wintner, 1947), we take two points
on the orbit and the resulting chord-distance and time-difference between the two
points as given, and thus we seek an exact analytical solution for the semi-major axis
required to define the orbit. In addition to the basic mathematical appeal of closed-
form solutions, we believe that our established results may be of interest computational-
ly in that they can be evaluated without recourse to iteration. In reference to Figure 1,
we note that the points P; and P, are located respectively at distances r; and r, from
the focus S and that c is the chord-length. As discussed by Wintner (1947), the problem
is not well posed until it is specified as to whether or not the shaded area A4 in Figure 1
contains, in general, the focus S or, for elliptic orbits S and/or the empty focus S*.

N

S

Fig. 1. The reference configuration.
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226 E.E.BURNISTON AND C.E.SIEWERT

We wish to report here our exact solutions for the following cases: (i) hyperbolic or
parabolic orbits with S ¢ A4, (ii) elliptic orbits with S ¢ 4 and S *¢ A, and (iii) elliptic
orbits with S €4 and S*e A. We shall also include the possibility that the body, being
first observed at P, has made k specified revolutions before being observed at P,,
again with the proviso that either S and S*¢ A or S and S*eA.

2. Preliminary Analysis

We consider first the hyperbolic and parabolic cases such that S¢A4 and those elliptic
orbits with S ¢ A and S*¢ 4. For these classical cases, the problem is defined (Wintner,
1947) by

(rit+ra+c)/2

1 -1/2
M = —+h] dx, S¢d, or S and S*¢A. (1)
X
(ri+ra—c)/2

Here r,, r,, and c are the distances so denoted in Figure 1, and

M=/2(t,—t,) (2)

is the time-difference (in appropriate units). Thus with the requirement here that S ¢ 4
or that S and S*¢ 4 and with M, r,, r,, and ¢ given, we seek the energy constant 4 or,
equivalently, the semi-major axis

a=—1/2h. &)

The method of solution we use here is based on the theory of complex variables and
is similar to that used to solve Kepler’s equation (Siewert and Burniston, 1972).
We prefer first to change the integration variable in Equation (1) and to introduce

8
1 dt¢
A(z)=M—J\/T_7)?, @
where ’
a=2(ri+r,+c) ", (5a)
.3=2(7'1+7‘2_C)_1, (5b)
and
z=—~h. (6)

We shall now restrict ourselves to the principal branch of \/ (t—z), so that —n<
<arg(t—z)<m, and thus observe that A (z) is analytic in the complex plane cut from
o to infinity, along the positive real axis. It therefore follows that the desired solutions
will be given (except for a change of algebraic sign) by the real zeros of A(z), in the
plane with the cut [a, o).

We require here the limiting values of A(z) as z approaches the branch cut [a, o)
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from above (+) and below (—); these limiting values, we find, can be expressed as

dr
Y]

B x
£ (y) = S

and

B
Ty 1 de
A (x)_M_i_lJ‘\/(x—-t)tz’ x=p. (7b)

If we now compute the change in the argument of 4 (z) as the contour C, as given by
Figure 2, (with R— oo and & — 0) is traversed, then the argument principle (Ahlfors,
1953) reveals that A (z) has no zeros in the cut plane if

B
1 dt
M>|——<— 8
j Ji—a 7 ®
and precisely one zero if
B
1 dt
M<|———. 9
J Ji-—a) 7 ®
y )
R
e i .
0] o X

Fig. 2. The contour C.
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228 E.E.BURNISTON AND C.E.SIEWERT

Further, it is evident from continuity considerations that the one zero is real and can be
negative only if 4(0)<0, i.e. if

M <332 = g3, (10)

which is the hyperbolic time criterion. It thus follows from inequalities (9) and (10)
that to have an elliptic orbit, with S and S*¢ 4, we must have

2 (0732 3/2)<M<ﬁ\/a[\/<é—1>+§tan_1\/<§—1>]- (11)

Note that for elliptic orbits the constraint

g6t )

is simply a statement that S*¢ 4.

If we now allow the possibility that the body upon being observed initially at
position P, subsequently makes & complete revolutions before being observed at posi-
tion P,, again such that S and S*¢ A, then the desired energy constant z follows,
after a change of sign, from the zero (in the cut plane) of

B
kn 1 dt
A M — —— >, S d S*¢A. 13
k(z) Z\/Z ‘[\/(t—Z) tz an ¢ ( )

Here, in addition to the previous choice for a branch of /(¢ —z), we take the principal
branch of /z, so that A,(z) is analytic in the complex plane cut from — oo to 0 and
from o to co. Again we can make use of the argument principle to show that 4, (z) has
precisely one zero in the cut plane if and only if 4, («)>0, i.e. if

k=1,2,3,.... (14)

i 1 dt
+J;\/(t—oc)F’

Further it is apparent that this zero is real and consequently must be contained in the
interval (0, o).
The function 4, (z), k> 1, will have two zeros if 4, () <0, but they will be complex
if |A, ()| is sufficiently large. This point will be made more explicit in Section 3.
We now wish to consider the case of elliptic orbits such that both S and S*eA.
For this situation (Wintner, 1947) Equation (1) must be replaced by

(ri+ratc)/2

1 -1/2
J [—+h] dx, Sed and S*ed. (15
X

(ritra—c)/2

T

T (=T
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Consequently, after the substitution A= —z, we seek a zero of
]
A =M—" [ Y5 and s*es (16)
z)=M — — —_— =, an €A,
zjz ) J(t—2)¢

where the branches of \/ (t—z)and \/ z are as specified in regard to Equation (13). We
note that A (z) is analytic in the plane cut from — oo to 0 and & to o; also, A (z) has
exactly one zero in the cut plane if and only if 4 («)>0, i.e. if

M I h 1 ds (7
wa“J«z—@?' 4

In a similar manner we find that if the orbit has been described k times between
observations at P; and P,, such that SeA4, and S*e€A4, then

B

k+1)=x 1 dt S 4 S*ed 12
2z +J¢(z—z>?’ and Sted, ()

has exactly one zero in the plane cut from —oo to 0 and « to oo if and only if
A, (@)>0, ie. if

]
(k+1)n 1 dr
M > f\/(t—a)7' (19)

A (z2)=M —

/o B

We shall now construct our analytical solutions for the zeros of 4 (z), A (2), 4,(2),
and ;lk (2), k=1, 2, 3,..., and subsequently establish closed-form expressions for the
semi-major axis a. It is evident that in as far as the analysis is concerned we may
combine the cases A (z) and A, (z), k=1,2,3,..., into one case, namely A, (2),
k=0,1,2,....

3. Basic Analysis

As we have previously reported (Burniston and Siewert, 1972), a class of trans-
cendental equations can be solved by appealing to an appropriately posed Riemann
problem and subsequently factoring a given analytic function in terms of a canon-
ical solution to the Riemann problem. In respect to the present considerations,
we prefer to develop the desired solution in a manner similar to that used by Leonard
(1968) to solve a problem in kinetic theory. On first considering Equation (4), we note
that A (z) is analytic in the plane cut from « to oo, along the real axis, and has, in the
cut plane, only one zero, say z,, when inequality (9) is satisfied. It therefore follows
that

F(2) = A(2)/(z- 1) (20)

is analytic and non-vanishing in the same finite cut plane. If we now evaluate, from
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230 E.E.BURNISTON AND C.E.SIEWERT
Equation (20), the limiting values of F (z), it is apparent that

_A' ()
A ()

F* (x) F~(x), xe(a, ), (21)

since A (x)#0, x€[«, 00). Clearly then F (z) is a canonical solution (Muskhelishvili,
1953) of the Riemann problem

FT'(x)=G(x)F™ (x), xe(a, ), (22)
where the Riemann coefficient is

G(x)=A"(x)/4" (x). (23)

In the manner of Muskhelishvili (1953), we find it straightforward to solve Equation
(22) to obtain

[e]

M | d
F(z)=Z_aexp|i;jArgA+(t) i:l, (24)

a

after imposing a normalization consistent with Equation (20). Equation (24) can now
be entered into Equation (20) to yield

o]

3 A(z) (z—a) 1 N ds
zo—z—Texp[—;JArgA (1) z‘——z:I’ (25)

a

where z can be assigned any convenient value. Note that 4 (z) has been formulated
such that ArgA™ (¢) varies continuously for 7 €[e, 00), with ArgA™ («)=—n, and
that Equation (25) clearly is valid only when inequality (9) is satisfied. On using
Equations (3) and (6), we can now write
-1
D

S¢A or S,S*¢A. (26)

e}

a=1iM (Mz —A(z) (z —a) exp[—iJ-ArgA+ (®)

a

dt

t

Though the choice of z in Equation (26) can alter the computational merits of that
solution, we can take z=0 to yield the concise result

o]

M 1 dt
a=—[M—-%(>?*-B73*)] Texp [—J‘ArgA+ (2) —],
2a T t

S¢A, or S,S%¢A. (27

For computational purposes, we view it expedient to transform the improper integral
in Equation (27) to a more convenient form. The variable change t=1/¢ allows
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Equation (27) to be written as
1/

R B I
_% 1 tan ™" (MI i)(f)> dt], Séd, or S,S*¢A, (28)
where
O N N ESEE | -
I, (x) =137 [\/(L;T_—l) +tan~ ' /(Br — 1)], (29b)
nd
a I (1) =I,(z) — ¢ [*/(1& ) s (%)J (29¢)

We would now like to discuss the situation when, for elliptic motion, the body has
made k complete revolutions in addition to traversing the arc P, P,. Further, we consid-
er that only those values of k that satisfy inequality (14) are allowed and that S and
S*¢ A. Here we can write

A4, (2)=(z—z) Fi(2), k=1,2,3,..., (30)
where F(z) is the properly normalized canonical solution of the Riemann problem
Ff (x) = Gy (x) Fy (x), xe(—00,0)U(a,0), (31)
with
Gy (x) = A (x)/ A5 (x). (32)
Noting that ArgA, (& 00)=0, we can write the solution to Equation (31) as
0 ©
1 dt 1 dt
F.(z)=M exp[— f Arg A (1) —— + - J Arg A, (1) —:l, (33)
T t—z = t—z

and thus obtain from Equation (30) the explicit result

z=z[1 — A, (2)|F(2)], S,S*¢A4, (34)
or

I PERIC) 35

e el R .

This time we elect to evaluate the explicit solution at z=o, so that Equation (35)
yields, after some elementary variable changes,

1 [1 A4 ®

= 2 Fy(2)

-1
] , S,S%¢A, k=1,2,3,.... (36)
20
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232 E.E.BURNISTON AND C.E.SIEWERT

f tan <[1—alr|¥’2h£w/2—l4(r)]>dr

—1/a

Here

SIS

Fk(a)=Mexp[_

1/

B
i d
_1 tan” ! L) 3/2> ‘ -
T J M — knt®* (1 — ar)
0

1/a

1 I (7) dr 37
R M—Iz(r)—kmz’ﬂ)r(l——ar):l 37
1
and !
Ak(a)=M—a‘3/2[kn+f\/E—1+tan—1\/g—1], (38)
BN «a o

where I; (t), I,(z), and I5(z) are given by Equations (29), and

I“(T)on@%r_u[l VT (=) m]+1[ I MT/Z x

<[ Ji:ZIZD @iiﬁi:ﬁilﬁhﬁ:ii:})l%

Since the desired results for the cases such that S and S*eA follow in a manner
similar to the foregoing, we simply list

1 Zk(a)__l E3
G,= (1= , s S*e4, k=0,1,2,..., (40)
20 F (o) ]
where
/Aik(d)=M+a_3’2(—(k+1)n+% /§—1+tan“1 5—1],
k=0,1,2,..., 41
and

L 1 (k+1) mle*? de
Fla)=M CXP[— - L tan- ([1 —alt PP [M + 1, (r)]>
1/

B
) tan”™" (M - (_kI+3 (f)) n‘c3/2) r(1d—r )
(

1
T

1/a

1
T

—s —1I,(7) dr
M+Iz('c)—(k+1)m3/2>'c(1—oc1:)]' (42)

1/p
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Naturally, the solutions given by Equation (40) are valid only for those values of k
which satisfy inequality (19).

We finally consider the multivalued case for 4, (z), S, S*€A4, k>1. Here, as 4, (¢) <
<0, it follows that A, (z) has two zeros in the cut plane, say z;, and z;4, so that we may
write

z(z — &) A (2) = (2 = z0) (2 — 2zi1) Fic (2), (43)
where F, (z) is given by Equation (33). Thus on setting

K (z)=z(z — a) 4, (2) F; ' (2), (44)
we have

Zwo=—B(v,n)— \/Bz (v,n) — C(v,1n), (45a)
and

Ziu=—B(,n)+ \/BZ (v,n) — C(v, 1), (45b)
where

B(V,?])=£|:Kk(V)_Kk(n)_v +rl:|’ (468.)

2 v—rn

and

Clom) =K (n) = &) +vn (v ). (46b)

vV—h
with v and 5 being two convenient points off the cut, for example 0<v, n<a, to
evaluate Equation (44). Consequently, these two zeros will lead, via Equations (3) and
(6) to appropriate semi-major axes @, and a, say, if z;, and z;, are real. Clearly the
limiting case will be when the two zeros coincide at x, say. As this will be a double
zero of A, (z) we may determine it explicitly in terms of k, « and f by considering the
zeros of A;(z). From Equation (13) we find that

B
, 3kn 1 dt
A"(Z)zzz—m_ij(z——z—w (472)

which, after some elementary manipulation, can be written as

oy 1 13 A o
(2 _225/2+ﬁ2\/(ﬁ—2)—ocz\/(oc——z) ;Zj‘\/(t—z)tz. (476)

Now on applying the argument principle to 4;(z) in the plane cut from —co to 0 and
from o to + oo along the real axis, employing Equation (47a) for x <0 and Equation
(47b) for x>a, we deduce that A, (z) has three zeros in the finite plane of which only
one will be real, namely x,. The other two, which are not of interest here will be
complex conjugates which we denote by z; and Z;. We may thus write

(z-x)(z-2z)(z-%)

22(z—a) /(B —z)

43(2) =

Hy(z), (48)
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where

2\a n

Hk(z)=1<1_l>exp{1 j (Argw(z)”)%ﬂL

B
B o
+ 1J\ArgA,’c+ () jt— +lj(ArgA,’c+ (1) — §> —d—t} (49)
T t—z =m 2/ t—z
a B
On setting
Li(z)=z°(z — a) /(B — 2) 4 (2) H.'(2), (50)

we find, on assigning z three convenient values A, u and v off the cut, for example
0<4, u, v<a, that

(A—=x) (A= z) (A~ %) = L (A), (51a)

(=) (1= z) (0= Z) = L (), (51b)
and

(v=x) (v—z) (v = 2) =L (v), (51¢)

lead to a cubic equation for the three roots x;, z; and 2. Solving the cubic equation in
the usual way for the real root x, will yield the semi-major axis a,:

ap=%4[A4,+ B, —1P.]""', S,S*¢4, k=1,2,3,..., (52)
where

A =[U, + (UZ + VO)'?T'P, (53a)

B, =[U, — (UZ + V2)'*1'7, (53b)
with

Uc=1% [Pka - 3Rk] - [’15ij3 s (53¢)
and

Vi =340, — [3P.J. (53d)

In addition
—Py=A+p+v+T{L) (n—v)+ L () v — 1) + L, (v) (4 — )},
(54a)
Qu=7p+ pv +vA+ T{L, (1) (1> —v?) + L, (n) ("* = 2*) +
+ L, (v) (A2 —p?)},  (54b)
— Ry =2y + T {L(A) pv (1 — v) + Ly (W) vA (v — 1) +

+ L) @A —p}, (540
and

T =[(h— k) (=) (v = )] . (55)

The value of M at this point x;, which we will denote by M, can easily be derived from
Equation (47b) and is given by

M= {w(al— it e )} o)
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Consequently the condition for two real roots in this case will be, on taking inequality
(14) into account

2 { 1 1 } krn LN y
- _ <M -

3 la(e=x) BJ(B—x) wax .3\/0‘

{ E—1+—tan \/~—1} S,S*¢Ad, k=1,2,3,.... (57)
o

A Gaussian quadrature scheme has been used to evaluate Equations (28), (36), (40),
(45), and (52) numerically, for numerous cases, and accuracy to six significant figures
was obtained rather straightforwardly.
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