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1. Introduction 

In a recent series of papers [1-4], Siewert and Burniston have made use of the 
theory of complex variables to solve a class of transcendental equations basic to 
several areas of mathematical physics. The method of solution is based on the con- 
struction, by the methods of Muskhelishvili [5], of canonical solutions to appro- 
priately posed Riemann problems [5] and yields ultimately closed-form results for 
the desired solution. 

Here we wish to use the method to solve explicitly the equation 

~=tanh �89 z~ + h) (1) 

that is of interest in the molecular field theory of ferromagnetism. Since equation (1) 
has been well discussed in the literature, for example by Weiss [6] and Heisenberg [7], 
we note simply that the reduced magnetization denotes 

2M 
- Ng/~ '  (2) 

where M is the magnetization of a sample of spin �89 magnetic atoms, with density N 
atoms/cm 3,/~ denotes the Bohr magneton and g is the Land6 factor. Further, the 
parameters j and h are given by 

J /~H 
j = ~ - ~  and h -  g k T ' (3) 

where k is Boltzmann's constant, T is the absolute temperature, H is the external 
field, and the exchange integral J characterizes the interaction between z nearest 
neighbors in the molecular field approximation. We consider the parameters j, z, 
and h to be given and thus note that equation (1) is transcendental in ~. 

t) Permanent address: Nuclear Engineering Department, North Carolina State University, Raleigh, 
North Carolina 27607, USA. 
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2. Analysis 

To solve equation (1) we find it convenient to introduce the variables 

1 a=�89 b=�89 and ~ :~- -  (4) 

and consider the equivalent problem of seeking the zeros of 

1 
A (~) = a + b ~ - ~ arctanh - - .  (5) 

Though the parameters a and b are positive for the posed problem, we wish to allow 
all non-zero real values of a and b, for the sake of other possible applications. We 
dismiss the possibility that a = 0 since equation (1) would then not be transcendental; 
the special case b = 0 is of interest in neutron-transport theory and has been discus- 
sed [1]. Further, we seek here only the real solutions of equation (1), although for 
a>0 ,  we will in fact, for some values of a and b, obtain two of the complex solutions. 
The fact that equation (1) can have either one or three real solutions, depending 
on a and b, can be deduced straightforwardly from graphical considerations. We 
note that our analysis yields all of the real solutions. 

We note that A (~), as a function of a complex variable and as given by equation (5), 
is multivalued; however, the representation 

1 d v  
A(~)=a+b~+�89 ~ (6) 

-1 V--~  

is clearly,analytic in the complex plane cut along the real axis from - 1  to 1. It is 
also evident that any zero 4, of A(4) will yield a solution of equation (1). We now 
seek all zeros of A (4), as defined by equation (6). 

If in equation (6) we let ~ approach the branch cut from above (+)  and below 
( - ) ,  we find that the resulting boundary values can be expressed as 

A+-(t)=a+bt-tarctanht+i�89 t ~ ( -  1, 1). (7) 

Note that the boundary values A+(t) cannot vanish on the cut. The argument prin- 
ciple [8] can now be used to compute the number of zeros of A(~) in the cut plane. 
By computing the change in the argument of A(4) about two enclosing contours (one 
of which is a large circle, centered at the origin, which we allow to tend to infinity, and 
another that just encloses the cut, which we allow to shrink onto the cut) we find 
there to be two cases: 

(1) a < 0 :  A(~) has 1 zero, say 4o. 
(2) a > 0 :  A(~) has 3 zeros, say r ~1, and 42. 

We first consider a < 0 and thus note that 

A(~) 
F({) = 4 -  4o ' a < 0, (8) 



Vol. 24, 1973 Molecular Field Equation 283 

is analytic and nonvanishing in the finite cut plane. We therefore conclude, on letting 
approach the branch cut from above and below, that F(0  is a canonical solution 

of the Riemann problem [5] 

q~+(t)=G(t) ~ -  (t), t ~ ( -  1, 1), (9) 

where 

.. A+(t) G(t) = ~ =  exp [i 2 arg A+(t)] 
/1 ttJ 

(10) 

is the Riemann coefficient. The work of Muskhelishvili [5] and Simonenko [9] 
allows us to write a canonical solution to this Riemann problem as 

~(r \ ~ Z T !  exp -,~ 01( 0 ~ , a<0 ,  (11) 

where 

01(t)=tan-l [ 2(a+bt ~_-tt-arctanht) ] (12) 

is taken to be continuous and such that O,( - 1)= O,(1)= n. Since canonical solutions 
of the Riemann problem can only differ by a multiplicative constant, we deduce, 
from the form o f F ( 0  and ~ (0  as 141 ~ ~ ,  that 

F (O=b  q~(~), a<0,  (13) 

and subsequently, on using equations (8) and (11), we find the desired solution: 

or  

A(0 
~~ b ~b(~) ' a<0 ,  (14) 

1 [ 1 ;  dt] 
~ o - 3  b ~ - ~  exp ---n - 1 O a ( t ) ~  , a<0 .  (15) 

Equation (15) constitutes our general solution for case (1). We observe that equation 
(15) is, in fact, an identity in the ~ plane and thus ~ can be assigned any convenient 
(for example, in regard to computations) value; the choice h ~ l~  ~ yields the concise 
result 

1 1 - a  1 1 
--=~o 24 b ~ -l~ 01(t)dt' a<0.  (16) 
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Now considering a > 0, we observe that 

A(~) 
F(4)= (~-r  (~-~i )  (~-4z)  ' a>0 ,  (17) 

is a canonical solution of the Riemann problem defined by equations (9) and (10), 
which can be solved for a > 0 to yield 

4(4) = 42_1  exp -~- ~ O2(t ) , a > 0 ,  (18) 
--1 

where 

[ ] 
O 2 ( t )  = tan-  1 2 (a + b t -  t arctanh t) ' (19) 

with O2(t ) being continuous and such that 02(--1)= - n  and O2(1)=n. Note that 
we have defined the argument of A +(t) differently for the two cases a < 0 and a > 0. 
Again since 4(4) and F(4) can differ by no more than a multiplicative constant, we 
can write 

A(~) 
(~-- ~0) (4-- ~1) (~-- 42) b4(~) ' a > 0 .  (20) 

If we,now evaluate equation (20) at three distinct points, say ~ = e, 4 =fl  and 4 = 7, 
with ~, fl, and 7 real but ~ [ - 1, 1], then we can eliminate between the resulting three 
equations to obtain 

A(4) _ 43 + A2 (a, fl, 7) 42 +Al(g, fl, 7) 4 +Ao(~, fl, 7), (21) 
b4(4) 

where 

Ao(~, fi, 7) = -afl7+flT(fl-?) TO(~)+7 ~(7-~)  ro(fl)+~fl(a-fl) r~2(j, (22a) 

Al (a, fi, j = ~  fl + flT + 7a-(f12- 72) ro(~)-(TZ-~E) TO(fi)-(~2- f12) T~2(j, (22b) 

A2(a, fl, 7)= - a - f l - ? + ( f l - 7 )  rY2(a)+(7-a) TY2(fl)+(a-fl) rY2(j, (22c) 

A (4) and T=  [(~ - fl) ( f i -  7) (7 - ~)] -1 (23) (2(4) = b 4(4) '  

It is thus clear that the three desired solutions G0, ~1, and (2 are the three roots of the 
cubic equation 

A0 (a, fl, 7) (3 + Al(a, fl, 7) (2 + A2 (a, fl, 7) ( + 1 = 0, (24) 

which can, of course, be solved analytically. The coefficients Ai(~, fl, 7) are defined 
constants; however, we note that the accuracy of a computational scheme based on 
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equations (22) depends on the particular choices of ~, fl, and 7. To find solutions 
similar to equation (16) we can let ~, fl, and ~ all tend to infinity, or alternatively we 
can note the form of equation (21) as ~ tends to infinity, to obtain special expressions 
for the coefficients: 

and 

Ao - 2 - 3 a  a - 1  1 2 ~- ~ (I 1 + ~ I 0) + I 2 -- I o + I o 11 + ~ I03 (25 a) 
3b 

(25b) 

a - 1  I A 2 = ~ +  o, (25c) 

where 

1 1 
I~ - - -  ~ 6) 2 (t) t ~ dr .  (26) 

--7C -1 

In conclusion we note that (o is always a real solution of equation (1); however, 
for a > 0, ~1 and (z can be real or complex. Further, it is clear that we have found all 
of the zeros of A(O, as defined by equation (6), and that these zeros yield the desired 
real solutions, as well as two of the complex solutions for some values of a and b, 
of equation (1). On the other hand, should all of the complex solutions and/or complex 
a and b be of interest, then the analysis reported here could, no doubt, readily be 
generalized, in the manner discussed by Burniston and Siewert [2], to yield the 
required results. Finally a Gaussian integration procedure has been used to evaluate 
numerically our explicit solutions, for numerous cases, and accuracy to within eight 
significant figures was achieved quite straightforwardly. 
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Abstract 

The theory of complex variables is used to develop an exact closed-form solution of a transcendental 
equation basic to the molecular field theory of ferromagnetism. The analysis yields analytical expressions, 
in terms of elementary quadratures, for the reduced magnetization ff as it depends on the temperature and 
magnetic field. 

Zusammenfassung 

Im Rahmen der Theorie komplexer Variabler wird fiir eine, der Molekularfeldtheorie des Ferro- 
magnetismus' zugrunde liegenden transzendenten Gleichung, eine exakte L6sung in geschlossener Form 
entwickelt. Die Rechnung liefert analytische Ausdriicke, in Form elementarer Quadraturen, welche die 
reduzierte Magnetisierung als Funktion der Temperatur und des Magnetfeldes beschreiben. 

(Received: September 2, 1972; revised: December 5, 1972) 


