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Abstract-The use of an extrapolated-endpoint boundary condition in criticality calculations is 
discussed from the point of view of two-group neutron-transport theory. The use of a single Milne- 
problem extrapolated endpoint is justified, from the lowest-order approximation to the transport- 
theory result, only for certain values of the material properties of a bare multiplying slab. 

1. INTRODUCTION 

THE use of the Milne-problem extrapolated endpoint to define a boundary condition 
for one-speed diffusion-theory criticality calculations is common practice and can, in 
fact, be well justified from the lowest-order approximation to the corresponding 
transport-theory result, as discussed by MITSIS (1963). We wish to discuss here the 
analogous situation for the two-group model and to show that the use of a single 
Milne-problem extrapolated endpoint is justifiable for a subset of the physical param- 
eters of interest. 

The analysis here is based on the two-group neutron-transport equation which can 
be written as 

P A Y(x, P) + =‘(x, P) = C 
ax s 

‘Y(x, P’) d$, (1) 
-1 

where the angular-flux vector has elements wI(x, ,LJ) and v2(x, ,x), 

z= O- O 
[ 1 0 1’ 

U’= 5, 1, 
c2 

and, without loss of generality, the group transfer matrix C, with positive elements 
cij, is considered symmetric. With regard to equation (I), we measure distances in 
terms of the optical variable x, and a, and g2 are the two total cross-sections. As have 
KRIESE, SIEWERT and YENER (1973), hereafter referred to as KSY, we let 

k 
1 

BMS = (r c11 + c22 + [(~c11+c22~-~detC]I’2 

and consider multiplying media to be defined by kB&Is > 1. We thus seek, for kBMs > 
1, that value of the slab half-thickness x0 that permits a nontrivial solution of 
equation (1) subject to the conditions 

Y(-x, -P) = Y(x, P) and Y(x,, -,u) = 0, ,u E (0, 1). (4) 

As discussed by SIEWERT and SHIEH (1967), on seeking solutions of equation (1) 
of the form 

Y(x, p) = *(Y, p)e-“I”, (5) 

* Permanent address : Nuclear Engineering Department, North Carolina State University, 
Raleigh, North Carolina 27607, U.S.A. 

553 



554 C. E, SIEWERT 

we find that two distinct cases must be considered: (i) K = 1, which corresponds to 
one pair of discrete eigenvalues +~r and (ii) K = 2, which corresponds to two pairs of 
discrete eigenvalues -& and &rz. We note that K = 2 when the condition 

cz2 I 2 det C arctanh A (6) 
a 

is satisfied. Further, we note that for K = 1 and k,,, > 1 the eigenvalues are 
imaginary f i [ ~~1; however, for K = 2 and k BMS > 1 we can have either (a) an 
imaginary pair fi 1~~1 and a real pair 5~~ or (b) two imaginary pairs fi 1~~1 and 
fi lrs[. For the sake of convenience, let us label the various possibilities as follows: 

Case (1): K = 1 and eigenvalues i-i Ivlj, for k,,, > 1, 

Case (2a): K = 2 and eigenvalues fi ~Y~I and -&, y2 > 0, for kBMs > 1, 

Case (2b): K = 2 and eigenvalues fi IYJ and fi 1~~1, for kBMS > 1. 

2. ANALYSIS 

We shall be concerned here principally with cases (2a) and (2b) since the critical 
problem for case (1) was recently discussed in KSY; however, the proof that a single 
endpoint is sufficient, for case (l), will be given. It was shown in KSY that the lowest- 
order transport-theory solutions, basic to a slab of half-thickness x, and a sphere of 
radius roe, for the two-group flux vectors were 

@B(x) = U(Y,) cos 
7rx 

woo + 20) ’ 
case (l), 

and 
1 

Q?(r) = U(Q) - sin (rOOy zo)y case (l), r 

where U(Y,) is a null-vector of A: 

NGJ(%) = 0, 
with 

(7a) 

(7b) 

(8) 

and S(,u) = 1, p E (-l/a, l/a), and 6(u) = 0, otherwise. In addition, the lowest- 
order critical conditions are 

x 00 = Bn IYII - 20 and r, = TT lvll - z,, (11) 

where z, is the extrapolated endpoint: 

zo = - : Log --& U(,)Cfi-‘(~r)C-‘H-‘(Y3cu(,3]. (12) 
1 

In equation (12) the superscript tilde denotes the transpose operation, Log is used 
to denote the principal branch of the log function, and H(z) is the H matrix discussed 
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by SIEWERT, BURNISTON and KRIESE (1972), hereafter referred to as SBK. Naturally 
equations (7) and (11) are reasonable approximations only if equation (12) yields a 
real value of z,, and since H(Y~) is complex, k BMs > 1, it is not at all obvious that 
equation (12) will, in fact, yield a real value of z,,. We can, however, give the required 
proof by showing that 

a,.= _I?&__ - 2 N(Y ) ~(Y,)CNH-*(~~)C-~H-‘(~~)CU(Y~) 
1 

has unit modulus. 
To develop the proof we first note that 

(13) 

d 
N(Q) = Y1V(YJC -A(z) 

dz I 
U(Q) 

Z=Y1 

and that the H matrix can be expressed in terms of a certain canonical solution 
a,,(z) of a matrix Riemann problem. As discussed in SBK, we can write 

where 
H(z) = C&,‘(-z)D-‘(-z)~o(0)C-l, K = 1, (15) 

1 0 
D(z) = 

[ 1 VI-z ’ 
K = 1. (16) 

O- 
Vl 

We note that *,,(z) has the very important property that 

@‘o(z) = *i,(z), (17) 

where the bar is used to denote complex conjugation. We can now enter equations 
(14) and (15) into equation (13) to deduce [after using equation (42) of SBK] that 

and thus we conclude, regardless of the (f) uncertainty in equation (18) that 
IA,,1 = 1, since U(Y,) is real and cP,(-+,) = aO(vl). It thus follows that equations (7) 
are valid approximations (K = I), and that they can be characterized by a single real 
extrapolated endpoint. 

We now wish to consider that class of critical problems for which K = 2, i.e., 
cases (2a) and (2b). Since the elementary solutions of equation (1) were reported by 
SIEWERT and ZWEIFEL (1966), we can first write the desired solution Y(x, p) as a 
superposition of these elementary solutions. After then invoking the necessary 
restrictions, as given by equation (4), on Y(x, ,u) we obtain a system of singular 
integral equations for the expansion coefficients, B(Y& and the two-vector B(Y), 
v E (0, I), required to complete the solution. Subsequently the two-group, half- 
range orthogonality relations reported by SIEWERT and ISHIGURO (1972) can be used 
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to regularize the singular equations to obtain the following nonsingular equations: 

i 1 -A,, exp 123 (’ ,v,,)] exp (-iz) + Ar,exp (-2:)%) 

= 
s 
‘K(x,; vl, v')B(v') dv’, (19a) 
0 

$A,, exp i2 xg exp ( ,,,) (-i$) + [l -A~~exp (-2z)]B(vz) 

and 

= 
s 

‘K(x,; v2, v’)B(v’) dv’, (19b) 
0 

B(v) = Co; ~1, ~2, v) + 
where 

s 
‘&x0; v’ -+ v)B(v’) dv’, v E (0, l), (19c) 
0 

Aas = (- ‘)“-’ v,v8 - 
mz) v, + vi3 

u(v,)ciir-‘(v,)c-lH1(v~)cu(v~), cI, /3 = 1 or 2. (20) 

Since we shall not require here the explicit expressions for F(x,; vl, v2, v), K(x,; vl, v), 
K(x,; yz, v) and K(x,; v’ --+ v) they will not be listed; we note, however, that these 
quantities are regular and that they can be expressed in terms of the H matrix and 
other known functions, and thus are considered known. 

Before discussing further the solution of equations (19), we observe that here the 
flux vector, 

a’(x) = ‘Yx, ,4 dp 
takes the form 

s -1 

@(x) = cos i U(Q) + 2B(v,)e- zO’Vz cash x_ U(v,) + 
V2 

2 
s 

lB(v)e-‘“‘v cash x_ dv, (21) 
0 V 

where v2 > 0 for case (2a) and v2 = i lvsl for case (2b). Should we now wish to 
proceed rigorously, we would have to prove the existence of a unique solution to 
equations (19) and subsequently develop, say iteratively, the required numerical 
results. Our goal here, however, is to investigate the manner in which approximate 
solutions to equations (19) can be established and subsequently to develop boundary 
conditions that can be used with some degree of confidence in the considerably simpler 
P-l or diffusion theory approximation of equation (1). If, by analogy with typical 
one-speed approximations in finite media, we ignore the contribution due to the 
continuous spectrum, by taking B(v) = 0, v E (0, l), then equations (19) reduce to 

i 1 -A,, exp 12x0 (. ,,,,)I exp (-is) + A,,exP (--Zz)%) = 0 (22a) 

and 

$A2,exp (i2$) exp (-iz) + [l -A2,exp (--2z)]B(v,) = 0. (22b) 
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The principal point of this work is now to prove for case (2a) that equations (22)) 
and the resulting flux vector, can be further approximated. On the other hand, for 
case (2b) we have not been able to justify further approximation of equations (22); 
in fact, though we have no proof that such further approximation can or cannot be 
justified, numerical computations (ISHIGURO, 1973) suggest that equations (22) cannot 
be further approximated for case (2b). 

Let us first consider case (2a) and further approximate equations (22) by ignoring 
equation (22b) and taking B(YJ = 0 in equation (22a). We thus conclude that 

*(x) = U(Q) cos 
TZ 

2(&w + Zll) ’ 
case (2a), (23) 

where the critical condition is 

x00 = $n IYll - zo, (24) 

and z, is again given by equation (12). As for case (i), we must now argue for case 
(2a) that equation (12) yields a real value for the extrapolated endpoint, or alterna- 
tively we must again show that [All1 = 1. As discussed in SBK, the relationship 
between H(z) and so(z), for K = 2, is not the same as that given by equation (15). 
In fact to express H(z) in terms of O,(z), for K = 2, we must know the so-called 
partial indices, which for K = 2 could perhaps be either K~ = 0 and K~ = 2 or 
K1 = K2 = 1. However, for case (2a) we have been able to prove, on considering both 
possibilities for the partial indices, that IA,,1 = 1. The proof follows in a manner 
analogous to that discussed for K = 1 and thus will not be given here. It now follows 
that equation (12) yields a real z, for case (2a) and thus that equations (23) and (24) 
are valid approximations for this case. 

Considering now case (2b), we note that here we can show that K~ = KS = 1, and 
thus we must use equation (67a) of SBK to relate H(z) to a,,(z). However, we have 
been unable to prove that IA,,1 = 1, or IA& = 1, and thus we cannot argue, for case 
(2b), that equations (22) can be further approximated, as they can for case (2a). In 
fact, numerical calculations (ISHIGURO, 1973) have indicated that IA,,1 f 1 and 
lA,J # 1, for case (2b), and therefore we have some evidence, though admittedly not 
proof, that further approximation of equations (22), in the manner considered, is not 
appropriate here. Though a proof is lacking, we conclude from numerical considera- 
tions that equation (12) yields a complex z,, and thus that, for case (2b), a single 
extrapolated endpoint cannot be justified. Subsequently we take, for case (2b), 
equations (22) to be our lowest-order approximation and deduce, for this approxima- 
tion, that the flux-vector can be written as 

e’(x) = cos 6 U(Q) + 5 cos fi U(Y,), case (2b), (25) 

where 

E = kL exp [ixoo(& - $1 -Ix, [-ixoo($ + $)]I. (26) 

In addition, the critical condition here is the transcendental equation 

AI1 ew [N~oo/l~II)l + AZ2 exp [2i(~~~/l~~l)] - A exp 2ix [ oo($ + &)] = 1, (27) 
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where 
A = A,,&, - A&21. (28) 

In conclusion we note that BARAN (1968) has made, based on numerical work, 
several comments on extrapolated endpoints for nonmultiplying media, k,,, < 1. 
Here, however, we have considered the multiplying case, k BMs > 1, and have shown 
for cases (1) and (2a) that a single z,,, as given by equation (12), can be used with 
confidence to define the lowest-order transport-theory solutions to two-group critical 
problems for slabs (or spheres). On the other hand, we have concluded that a single 
extrapolated endpoint is not sufficient for case (2b), but rather we believe that 
equation (27) should be considered the lowest-order approximation of the critical 
condition. 

In KSY the lowest-order approximation was shown, for several practical cases, to 
be quite accurate for case (l), and ISHIGURO (1973) has deduced similar conclusions 
from calculations based on equation (24) for case (2a) and equation (27) for case (2b). 
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