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By means of the theory of complex variables, the solutions of z exp z = a, 
where a is in general complex, are established analytically, and thereby reduced 
to elementary quadratures. 

I. INTRODUCTION 

As discussed, for example, by Wright [I] and Bellman and Cooke [2], the 
transcendental equation 

zez = a, a complex, (1) 

is basic to the analysis of a class of differential-difference equations and, more 
recently [3], has been found essential to certain studies in the theory of 
population growth. As an application of our reported procedure [4] for solving 
a class of transcendental equations, we wish to develop here the analysis 
required to reduce the solutions of equation (1) to elementary quadratures. 

II. ANALYSIS 

It is immediately apparent that the solutions zk of equation (I) are given 
by the zeros of the functions 

A,(z) = a - z - log z + 2&G, k = 0, rt 1, + 2 )..., (2) 
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where 

a = log a, a # 0, (3) 

and, here, log z denotes the principal branch of the log-function. We note 
therefore that A,(z) is analytic in the complex plane cut along the negative 
real axis. In addition, the limiting values of A,(z) as z approaches the negative 
real axis from above (+) and below (-) can be computed at once from equa- 
tion (2): 

fl,+(t)=a----lnIt/+(2k-1)7ri, tE(- CQO), (4a) 

and 

A,-(t) = a - t - In j t 1 + (2k + 1) 7ri, tE(- m,O). (4b) 

It is clear from equations (3) and (4) that neither A,+(t) nor /J-(t) can vanish 
on the cut t E (- co, 0) except for the two special cases 

(i) a~(- l/e,O) and k=O 

and 

(ii) a E (- l/e, 0) and k = - 1. 

Since, for the special cases (i) and (ii), equations (4) yield 

n,+(t) = A,(t), aE(-+,O), (5) 

the desired solutions are the roots of 

In 1 a 1 = x + In 1 x 1, ..(- f,O), XE(-a,O). (6) 

Elementary considerations are sufficient to show that equation (6) has only 
two solutions x,, and x-i and further that x-i < - 1 < x,, < 0. Of course, 
for a = - e-l the two solutions of equation (6) coalesce at - 1; whereas 
for a = 0, the solutions x0 = 0 and x-i = - co can be obtained by a limiting 
process. 

We shall discuss the special cases (i) and (ii) separately and first consider all 
values of a and k such that 

(a, k} E D * k = 0, f 1, f 2, f 3 ,..., if u$[-f,o] 

or 

{a,k)ED*k=l,f2,f3,f4 ,..., if +$,o,. 
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The argument principle [5] can now be used to show, for {a, K} E D, that 
A,(z) has precisely one zero, say zk , in the cut plane. If therefore follows that 

F,(z) = mii.I@. , 
Zk - x 

{a, k} ED, 

is analytic and nonvanishing in the same cut plane. Now since 

F,(a) = 1, {a, kl E D, (8) 

we conclude that F,(z) is a canonical solution of the Riemann problem [6, 71 

Ffi+(t) = G&) F,-(t), te(- co,O), {u,k}ED, (9) 

where 

t&(t) = n7c+(t) /fk-o’ {a, k) E D, 

is the Riemann coefficient. Equation (9) is, naturally, an immediate conse- 
quence of equation (7). 

If we now define G,( - co) = G(0) = 1, then it is apparent that Gk(t) 
is continuous on the negative real axis, but fails to be Hijlder continuous at 
t = 0. It therefore follows from the work of Simonenko [7] that the canonical 
solution 

F~(z) = exp [ - & Iam log Gk( - t) $---I , ia, 4 E D, (11) 

will satisfy equation (9) pointwise. Note that log GK(- t) is continuous 
t E (0, co), and such that log Gk(- co) = log Gk(0) = 0. 

With F,(z) given by equation (1 l), we can now solve equation (7) imme- 
diately to obtain the explicit closed-form result 

z,=a+(logu-z-loga+2kti)exp[&~m 
0 

log Gd- 4 &] 3 

{a, k} E D. (12) 

We note that our solutions given by equation (12) contain a free parameter a 
which can be assigned any convenient value in the complex plane. The choice 
of z in equation (12) can alter the computational merit of the resulting 
expression; however, we can set x = 1 in equation (12) to obtain the concise 
solutions 

1 
xk = 1 + (log a - 1 + 2kA) exp X 

[ s 
m log GA- 4 +] t 

0 

{a, k} E D. (13) 
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Of course, the improper integrals appearing in equations (12) and (13) can 
be avoided by introducing the integration variable T = t(1 + t)-’ to obtain 

Zk = z + (log a - z - log z + 2k7ri) 

x exp [& jol 1% Gk (5) 7(’ - T) $1 - .,2] ’ (14) 

OK 

z,=l +(loga- 1 +2kai)exp[&/s’logG,(~)&-], 

{a, k} E D. (15) 

In the event that a E (- co, - l/e), and thus 01 = In 1 a 1 + ?n’, we note 
that since 

log G-r-,(- t) = - log GK(- t), a E - co, - $) , 
( 

k = 0, f 1, f 2, f 3 ,..., (16) 

it follows at once from equation (12) that 

Z-1-k = z? ) ( 1 
aE --co,---, 

e ) 
k = 0, 1, 2, 3 ,...) (17) 

and thus the desired solutions occur in conjugate pairs Z~ and G, 
k = 0, 1, 2, 3 ,.... In a similar manner, we also find that 

- 
z-1-k = zk , aE(--f,O), k=l,2,3 ,..., (18) 

so that the solutions corresponding to {a, k} E D are zk and G, k = 1,2,3,.... 
Having now resolved all of the cases for which {a, k> E D, we wish to consider 
the two special cases (i) and (ii) corresponding to a E (- l/e, 0), k = 0 and 
k = 1. As previously mentioned, for a E (- l/e, 0), the solutions deriving 
from all other values of k are given by zk and G, k = 1, 2, 3,.... Since the 
final two solutions are the roots of equation (6), we consider the function 

Q(z) = In 1 a 1 + rri - z - log z, uq-f,o), (19) 

where by log .z we now denote that branch of the log-function in the plane 
cut along the positive real axis, such that 0 < arg z < 2~. With the log- 
function so defined, it follows that Q(s) is analytic in the plane cut along the 
positive real axis and that the limiting values take the forms 

Q+(t) = In 1 a 1 - t - In t + rri, t E (0, GQ), aE(-f,O), (20a) 
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and 

Q-(t) = In 1 a 1 - t - In t - 7ri, t 6 (0, a), +f,O). (20b) 

The argument principle [5] can now be used to show that Q(x) has exactly 
two zeros, say x,, and xwl , in the cut plane, and thus 

@) = - (xo - $y1 - z) ’ +f,o,, (21) 

is analytic and nonvanishing in the finite cut plane. We conclude, therefore, 
that E(z) is a canonical solution of the Riemann problem 

E+(t) = G(t) E-(t), t E (0, a), +f,o,, (22) 

where the Riemann coefficient is 

Q+(t) 
G(t) = J-J-@) - = exp[2i arg Q+(t)]. (23) 

We can now solve the Riemann problem defined by equations (22) and (23) 
to obtain the (appropriately normalized) canonical solution 

E(z) = $ exp [+ /am [arg Q+(t) - 7r] A] , a E (- +- , 0) , (24) 

which can be entered into equation (21) to yield 

(x0 - x) (xml - z) = - zQ(x) exp [ - h Isa [arg Q+(t) - WI&] . (25) 

If we evaluate equation (25) at two convenient points, say x = /3 and z = y, 
then the two resulting equations can be solved simultaneously to yield 

x0 = - q/R Y) + dq19, Y) - CM Y), a~(--$,O) (26a) 

and 

x-1 = - qp, r) - 0(/t Y) - w, Y), +$,O), (26b) 

where 

(274 
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and 

C(A Y> = [ /WY) - Ym9 + FYBr(B - Y> 
S-Y I- (27b) 

In addition, we have introduced 

K(z) = - &(z) exp [ - +- 10rn [arg Q+(t) - V] +J---] , (28) 

which, after changing the integration variable to 7 = t(1 + t)-l, we can 
write as 

K(z) = - z[ln ] a ] + 57i - z - log z] 

x exp [- +jy [argQ+ (j+-J - r] T(l - 7) “‘,(I _ .,a] - 
(29) 

The solutions given by equations (26) clearly contain two free parameters p 
and y, which can perhaps be used to computational advantage; if we take 
/3 = - 1 and y = - 2, then 

KC- 1) = (ln I a I + 1) exp [ - + jol [arg Q+ (&) - T] &--I (30a) 

and 

K(- 2) = 2(ln I a I + 2 - In 2) 

x exp [- +jsl [argQ+ (j&J) -r] (1 42 _ J (30b) 

can be used with 

and 
B(- 1, - 2) = +JK(- 1) - K(- 2) + 31 (31a) 

C(- 1, - 2) = 2K(- 1) - K(- 2) + 2 (31b) 

to yield the explicit solutions 

xg = - &[K(- 1) - K(- 2) + 31 

+ &[[K(- 1) - q- 2)]2 + 1 - 2[K(- 1) + K(- 2)]]““, 

ue(--+-,O), (32a) 



632 SIEWJXRT AND BURNISTON 

and 

xml = - $[K(- 1) - K(- 2) + 31 

- 4[[K(-- 1) - q- qy + 1 - 2[K(- 1) + K(- 2)]]““, 

+$,O). (32b) 

Some elementary considerations can now be used to show that x0 and xpl 
as given by equations (32), are both real and negative. 
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