On Double Zeros of $x-\tanh (a x+b)$

By C.E. Siewert and A.R. Burkart, Nuclear Engineering Dept., North Carolina State University, Raleigh, North Carolina, U.S.A.

I. Introduction

In a recent paper, Siewert and Essig [1] reported closed-form solutions of the transcendental equation

$$
\begin{equation*}
x=\tanh (a x+b) \tag{1}
\end{equation*}
$$

for nonzero real values of a and b, that is of interest in the molecular field theory of ferromagnetism. It can be concluded, say from elementary graphical considerations, that equation (1) can, for a given value of b, have a real repeated solution only for a particular value of $a>0$. Here we wish to report an exact analytical expression for that value of a.

If equation (1) is to have a repeated solution, then clearly equation (1) and

$$
\begin{equation*}
a=\frac{1}{1-x^{2}} \tag{2}
\end{equation*}
$$

must be solved simultaneously. We note therefore that the analogous problem of finding b, for a given value of a, such that equation (1) has a repeated solution, does not require the solution to a transcendental equation. However, for the considered problem we can enter equation (2) into equation (1) to obtain

$$
\begin{equation*}
x=\left(x^{2}-1\right)\left(b-\tanh ^{-1} x\right), \tag{3}
\end{equation*}
$$

and thus we wish to consider b to be given, solve equation (3) analytically, and subsequently enter that result into equation (2) to obtain the desired result.

II. Analysis

If we now let $x \xi=1$, we can write equation (2) as

$$
\begin{equation*}
a_{\alpha}=\frac{\zeta_{\alpha}^{2}}{\xi_{\alpha}^{2}-1} \tag{4}
\end{equation*}
$$

where ξ_{α} is a zero of the sectionally analytic function

$$
\begin{equation*}
\Omega(\xi)=\xi+\left(\xi^{2}-1\right)\left[b+\frac{1}{2} \int_{-1}^{1} \frac{d \mu}{\mu-\xi}\right] \tag{5}
\end{equation*}
$$

Note that we have used the principal branch of $\operatorname{arctanh} z$ to define $\Omega(\xi)$. It is now a straightforward matter to show that the limiting values $\Omega^{ \pm}(t)$ of $\Omega(\xi)$ as ξ approaches the cut $[-1,1]$ from above $(+)$ and below (-) cannot vanish. Further, it is clear that $\Omega(\xi)$ has three zeros, ξ_{0}, ξ_{1} and ξ_{2}, in the cut plane, that $\Omega(\xi)$ cannot have a purely imaginary zero, that $\Omega(\xi)$ has only one real zero, say ξ_{0}, and that ξ_{1} and ξ_{2} are a complex-conjugate pair. We conclude therefore that equation (1) can have a real repeated solution only for

$$
\begin{equation*}
a=a_{0}=\frac{\xi_{0}^{2}}{\xi_{0}^{2}-1}, \tag{6}
\end{equation*}
$$

and thus we now wish to develop an explicit expression for ξ_{0}.
Since we shall require the limiting values of $\Omega(\xi)$ as ξ approaches the cut, we can use the Plemelj formulae [2] to obtain, from equation (5),

$$
\begin{equation*}
\Omega^{ \pm}(t)=t+\left(t^{2}-1\right)\left[b-\tanh ^{-1} t \pm \frac{1}{2} \pi i\right], \quad t \in(-1,1) . \tag{7}
\end{equation*}
$$

It thus follows that

$$
\begin{equation*}
F(\xi)=\frac{\Omega(\xi)}{\left(\xi-\xi_{0}\right)\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right)} \tag{8}
\end{equation*}
$$

is a canonical solution of the Riemann problem [2] defined by

$$
\begin{equation*}
\Phi^{+}(t)=G(t) \Phi^{-}(t), \quad t \in(-1,1), \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
G(t)=\frac{\Omega^{+}(t)}{\Omega^{-}(t)}=e^{2 \operatorname{iarg} \Omega^{+}(t)} \tag{10}
\end{equation*}
$$

In other words, $F(\xi)$ is analytic in the cut plane, is nonvanishing in the finite plane, and satisfies equation (9). If we now let

$$
\begin{equation*}
\Theta(t)=\arg \Omega^{+}(t)=\tan ^{-1}\left[\frac{\pi\left(t^{2}-1\right)}{2\left[t+\left(t^{2}-1\right)\left(b-\tanh ^{-1} t\right)\right]}\right], \tag{11}
\end{equation*}
$$

with $\Theta(-1)=-\pi$, then a canonical solution of equation (9) can be written as [2]

$$
\begin{equation*}
\Phi(\xi)=\frac{1}{\xi+1} \exp \left[\frac{1}{\pi} \int_{-1}^{1} \Theta(t) \frac{d t}{t-\xi}\right] . \tag{12}
\end{equation*}
$$

Now since canonical solutions can differ only by a multiplicative constant, we conclude, from considerations at infinity, that

$$
\begin{equation*}
F(\xi)=b \Phi(\xi) \tag{13}
\end{equation*}
$$

and thus we can enter equation (13) into equation (8) to obtain

$$
\begin{equation*}
\left(\xi-\xi_{0}\right)\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right)=P(\xi) \tag{14}
\end{equation*}
$$

where $P(\xi)$ is a known function:

$$
\begin{equation*}
P(\xi)=\frac{1}{b} \Omega(\xi)(\xi+1) \exp \left[-\frac{1}{\pi} \int_{-1}^{1} \Theta(t) \frac{d t}{t-\xi}\right] . \tag{15}
\end{equation*}
$$

Equation (14) is, of course, an identity in the ξ plane, and thus we can evaluate that equation at three convenient points, say $\xi=\alpha, \beta$ and γ, and solve the resulting three equations simultaneously to obtain ξ_{0}, ξ_{1}, and ξ_{2}. We list here the explicit results which follow from taking $\xi=\alpha t, \xi=\beta t$, and $\xi=\gamma t$ and subsequently observing the limit as $t \rightarrow \infty$:

$$
\begin{equation*}
a=\frac{\xi_{0}^{2}}{\xi_{0}^{2}-1}, \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
& \xi_{0}=S_{1}+S_{2}-\frac{1}{3} A_{2}, \tag{17}\\
& S_{j}=\left[R-(-1)^{i}\left[R^{2}+Q^{3}\right]^{\frac{1}{2}}\right]^{\frac{3}{3}}, \tag{18}\\
& R=\frac{1}{6}\left[A_{1} A_{2}-3 A_{0}\right]-\frac{1}{27} A_{2}^{3}, \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
Q=\frac{1}{3} A_{1}-\frac{1}{9} A_{2}^{2} . \tag{20}
\end{equation*}
$$

In addition

$$
\begin{align*}
& A_{0}=\frac{2-3 b}{3 b}+J_{1}+\frac{1}{2} J_{0}^{2}+J_{2}-J_{0}+J_{0} J_{1}+\frac{1}{6} J_{0}^{3}, \tag{21}\\
& A_{1}=-1+J_{0}+J_{1}+\frac{1}{2} J_{0}^{2} \tag{22}\\
& \text { and } \\
& A_{2}=1+J_{0}, \tag{23}
\end{align*}
$$

where

$$
\begin{equation*}
J_{\alpha}=\frac{1}{\pi} \int_{-1}^{1} \Theta(t) t^{\alpha} d t \tag{24}
\end{equation*}
$$

We have used a Gaussian integration procedure to evaluate our explicit solutions, and accuracy to eight significant figures was achieved quite straightforwardly.

Acknowledgment

The authors are grateful to a reviewer for suggesting this problem.

References

[1] C.E. Siewert and C.J. Essig, Z. angew. Math. Phys. 24, 281 (1973).
[2] N.I. Muskhelishvili, Singular Integral Equations (Nordhoff, Groningen, The Netherlands) 1953.

Abstract

The theory of complex variables is used to develop an exact closed-form expression, in terms of elementary quadratures, for that value of a, for a given value of b, for which the function $F(x)=x-\tanh (a x+b)$ has a real double zero.

Zusammenfassung

Mit Hilfe der Theorie der komplexen Veränderlichen wurde ein exakter geschlossener Ausdruck gefunden, der durch Quadraturen den Wert von a gibt, für einen gegebenen Wert von b, für welche die Funktion

$$
F(x)=x-\tanh (a x+b)
$$

eine reelle doppelte Nullstelle besitzt.
(Received: November 3, 1972)

