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Abstract-The theory of complex variables is used to solve explicitly a transcendental equation 
essential to the intermediate-resonancs-absorption theory for neutrons. The closed-form solutions 
are expressed ultimately in terms of elementary quadratures. 

I. INTRODUCTION 
IN A classic paper on the theory of neutron resonance absorption, GOLDSTEIN and 
COHEN (1962), introduced the I-method for analysing absorption intermediate to 
the usual narrow and wide resonance approximations. GOLDSTEIN and COHEN (1962) 
used a successive approximations method and a variational approach to develop 
two techniques for computing intermediate resonance integrals; they reported, how- 
ever, that the solutions, though concise, were difficult to use because the solutions 
to certain transcendental equations were required in the final results. 

Here we shall make use of the method recently reported by SIEWERT and BURNISTON 
(1972, 1973) to solve explicitly the transcendental equation basic to GOLDSTEIN and 
COHEN’S (1962) successive approximations method for computing intermediate 
resonance integrals. 

To establish the notation, we start with the basic equations developed by GOLD- 
STEIN and COHEN (1962); we first seek a solution PI to the transcendental equation 

where 

1=1- 
arctan xI1 

3 (1) 
x11 

2E,(l - CC) 

x1a = WI + 83 ’ 
(2) 

I 

and 

and once /I1 is established, the desired il. follows immediately from equation (4). 
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Since the characteristic parameters, E,., CI, I’, lTr, I’,, oo, s and op, have been 
defined by GOLDSTEIN and COHEN (1962), further comments about these parameters 
are not required here; we note, however, that equation (1) is applicable only for 
the principal branch of the arctangent function. 

If we introduce 
r 

U= 
2E,(l - a) 

and 

and let 

gu o=- 
s + u, 

(5b) 

z, = ia(B1 + Bn), 

then equation (1) can be expressed as 

(6) 

where 

and 

z, - iU - c0(zm2 - iUz, + V) tanh-l 1. = 0, 
z, 

u = 2o#I, 

(7) 

(Sa) 

(8b) 

We consider equation (7) the transcendental equation to be solved (for z& and thus 
can use equations (4) and (6) to obtain the required 1: 
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II. THE NUMBER OF ZEROS OF h(z) IN THE CUT PLANE 

We now wish to solve equation (7) explicitly. If we let 

(9) 

where 

and 

P1(z) = z - iU (114 

P2(z) = -w(z2 - iUz + V), (1 lb) 

we conclude that A(z) is analytic in the complex plane cut from -1 to 1 along the 
real axis and that 

A(z) + (1 - w)z, as lzl --+ co. 
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In order to compute K from equation (17) some rather careful analysis of the 
functions A(t), B(t), 0(t) and E(t), for t E [-1, 11, is required, since the results 
depend, naturally, rather intricately on the parameters o, U and V defined by equa- 
tions (5b) and (8). Here we consider real values of the parameters such that 0 < cu < 
1, U > 0, and 1 VI > 0, and in Tables 1 and 2 we summarize our conclusions regarding 
the number K of zeros (in the cut plane) of R(z). We believe, however, that several 
additional comments are required. 

TABLE l.-THE NUMBER OF ZEROS K OF h(z) IN CUT PLANE FOR UI E (0, l), 
U>OAND V>O 

qv-u K 

>o Mjo) i: 01 2 
<o >o 3 
<o <o 1 

TABLE Z.-THE NUMBER OF ZEROS K OF h(z) IN CUT PLANE FOR WE (O,l), 
U>OAND V<O 

yivj- u E(L) E(tz) K 

>o >o >o 2 
>o >o 
>o 

[OS 01 
ro& 01 

4 
2 

>o tw) f 01 2 
>o <o 

roct;: 01 
2 

<o >o 1 
<o <O [O(G f: 01 3 

First of all, for V > 0 and A(0) < 0, we find that K depends onB(t,J where t, E (0,l) 
is defined by A(@ = 0, i.e., K = 1 for B(t,) < 0, and K = 3 for B(t,) > 0. For 
V < 0, we find that K depends on E(t,) and E(t,), tl and t, E (0, 1) with t, > t,, 
where 0(t,) = 0(t,) = 0. Of course, A(t)=O, t E (0, 1) and 0(t) = 0, t E (0, l), 
are in fact transcendental equations, which could be solved if necessary; ..,,wever, to 
determine K it is sufficient to establish only the algebraic signs of B(t,), for V > 0, 
or E(t,) and E(t,), for V < 0, and this can, in general, be accomplished either by 
employing an analytical bounding procedure or numerically, if preferred. We note 
also that our Tables 1 and 2 do not include several (unlikely) special cases which 
require rather careful deductions to be resolved. 

III. EXPLICIT RESULTS 
Since the method (SIEWERT and BURNISTON, 1972; BURNISTON and SIEWERT, 1973) 

we use here to solve the considered transcendental equation is based on seeking zeros 
in the cut plane of an even function F(z), we now introduce 

F(z) = A( (18) 
and note, obviously, that if A(z) has K zeros in the cut plane then F(z) has 2~ zeros 
in the cut plane. In the manner of our previous work, we now seek a canonical 
solution to the Riemann problem (MUSKHELISHVILI, 1953) defined by the boundary 
condition 

X+(t) = G(t)X-(t), t E (0, I), (19) 
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where 

F+(t) 
G(t) = - 

F-(t) ’ (20) 

with G(0) = G(I) = 1, is continuous and nonvanishing (for the cases listed in 
Tables 1 and 2). 

We note that G(t) has unit modulus, and thus if we write 

G(t) = exp [2i @(t)] (21) 
and choose continuous values of B(t) such that e(O) = 0, for all K, then the analysis 
of MUSKHELISHVILI (1953) allows us to write canonical solutions to the Riemann 
problem defined by equation (19) as 

K = 1, Xdz> = exp [tle(t)f-J, 

xdz) = (&I exp [i j+(t) 51, K = 2, 

(224 

(22b) 
or, in general, 

K = i,2, 3 or 4. (224 

If we now observe that F(z)_%?-l(-z) is also a solution to equation (19), then we 
can write (MUSKHELISHVILI, 1953) 

F(z)X-I(-z) = X(z)B(z) (23) 
where Y(z) is a polynomial in z. Since X(z) is nonvanishing in the finite plane, we 
deduce that 

gl(z) = (1 - o)2k” - z2], K = 1, (2% 

9,(z) = (1 - CQ[Yl” - z”][Q - z2], K = 2, (24b) 
or, in general with f~, denoting the zeros of F(z), 

PJZ) = (1 - w)” fi (V,2 - z2), 
a=1 

K = 1, 2, 3 or 4. (24~) 

This completes the factorization of F(z): 

F(z) = (1 - w)“X,(z)X,(-z) fi (v,” - z2), K = 1, 2, 3 OI’ 4. (25) 
LZ=l 

For K = 1, we can set z = 0 [since G(t) is Holder continuous at the origin] in 
equation (25) to obtain the explicit result 

K = 1, (26) 

where, in general, 

e(t) = tan-l 4tMO - NW(t) 
B(t)%0 + A(r)G(t) 1 ’ (27) 
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For the case K = 2, equation (25) can be evaluated at two points, say z = 0 and 
z = i, to yield two equations in v12 and v22 which can be solved to give the results 

Vl = f : 1 [A(i) - A(0) - 1 + {[A(O) - A( + 1 
J2 

and 

- 2[A(i) + A(O)]}““]““, 

v2 = f - 1 CA(i) - A(O) - 1 - {[A(O) - A( + 1 
J2 

where 

- 2[A(i) + A(0)]}1’2]1’2, 

K = 2, (28a) 

K = 2, (28b) 

A(0) = (1 - co)-” (2W 

1 

A(i) = 2(1 - o)-~F(~) exp dt 
t CD(t) - 1 t2+1 * 

In a similar manner, we can evaluate equation (25) for K = 3 at, say, z = 0, z = i 
and z = 2i, and by successive eliminations obtain the bi-cubic equation 

V4 
va6 - L- 12 [A(2i) - 8A(i) + 3A(O) - 601 

v, - 12 [A(2i) - 32A(i) + 15A(O) - 481 - A(0) = 0, K = 3, (30) 

where we now require 

A(2i) = 25(1 - o)-2F(2i) exp 
dt 

t e(t) - 1 t2+4 * (31) 

Equation (30) can now be solved analytically by using the standard technique 
(ABRAMOWITZ and STEGUN, 1964) for solving cubic equations to obtain the three 
results v12, vz2 and vs2, which in turn yield immediately the six zeros of F(z) for K = 3. 
Finally, for K = 4, we can evaluate equation (25) at, say, z = 0, i, 2i and 3i to obtain, 
after elimination, a quartic equation in v,” which again can be solved analytically 
(ABRAMOWITZ and STEGUN, 1964) to yield vc, ~2, vs2 and v: and subsequently the 
eight zeros of F(z) for K = 4. 

We have succeeded in finding analytical solutions for all of the zeros {z,}~~ of 
F(z) in the plane cut from -1 to 1 along the real axis. It therefore follows, since 
F(z) = A(z that half of this set {z~}, corresponds, in fact, to closed-form 
results, by means of equation (9), for it. Some rather elementary analysis can now 
be used to deduce which elements of the set {z,)~, are zeros of A(Z) and which are 
zeros of A(-z). 
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IV. EXAMPLE CALCULATION 

In order to illustrate the application of the preceding solutions, we consider, as 
did GOLDSTEIN and COHEN (1962), the 192 eV resonance of 238U. We have converted 
GOLDSTEIN and COHEN’S (1962) data to our notation. We find that for this case Vis 
positive, and since we can argue that B(t,) is positive, we conclude from Table 1 that 
K = 3. 

We have used an improved Gaussian quadrature scheme (KRONROD, 1965) 
to evaluate numerically the integrals required in equations (29) and (31) and subse- 
quently have solved equation (30) analytically to obtain 

Yi = f iO.8553096 
v2 = fl*010503 f iO.01155536 (32) 
vZ = &1*010503 F iO.01155536 

Some elementary considerations now reveal that of the six zeros of F(z) given by 
equation (32), the subset 

z1 = + iO-8553096 
z, = 1.010503 + iO.01155536 (33) 
za = -1*010503 + iO.01155536 

are our computed zeros of A(z), and thus from equation (9) we find the three solutions 
to equation (1): 

1, = O-261673 
A2 = -145924 + iO.389937 (34) 
2, = -1.45924 - iO.389937 

We note that GOLDSTEIN and COHEN (1962) reported the value 3, = 0.264 and that we 
have shown by iteration that each of the solutions given by equation (34) satisfies 
equation (1) to within the accuracy reported. Of course, for GOLDSTEIN and COHEN’S 
(1962) use of equation (l), the real A’s are of principal interest. 

We have also evaluated our analytical solutions of equation (1) cast into the form 
of equation (7) to confirm, for an example of each of the cases in Tables 1 and 2, 
results obtained by solving equation (7) iteratively. 
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