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Abstract—The method of elementary solutions is employed to solve two coupled integrodifferential equations
sufficient for determining temperature—density effects in a linearized BGK model in the kinetic theory of
gases.

Full-range completeness and orthogonality theorems are proved for the developed normal modes and the
infinite-medium Green's function is constructed as an illustration of the full-range formalism.

The appropriate homogeneous matrix Riemann problem is discussed. and half-range completeness and
orthogonality theorems are proved for a certain subset of the normal modes. The required existence and
uniqueness theorems relevant to the H matrix. basic to the half-range analysis, are proved. and an accurate
and efficient computational method is discussed. The half-space temperature-slip problem is solved analyti-
cally. and a highly accurate value of the temperature-slip coefficient is reported.

I. INTRODUCTION

THErRE ExIsTS in the kinetic theory of gases a class of one-dimensional problems for
which the transverse momentum and heat-transfer effects can be separated by project-
ing the basic kinetic equation describing the particle distribution function onto certain
properly chosen directions in a Hilbert space. The resulting expression describing the
heat-transfer and compressibility effects is a vector integrodifferential equation with a
matrix kernel similar in form to one studied previously by Bond and Siewert{4] and
Burniston and Siewert|5] in connection with the scattering of polarized light. It can be
shown that such a vector integrodifferential equation admits a general solution similar
to that suggested by Case[7] for scalar transport problems und applied by
Cercignani|12] to kinetic equations.

We develop in this paper the elementary solutions to the vector integrodifferential
equation basic to a linearized, constant collision frequency (BGK) model suggested by
Bhatnagar et al.[3] and Welander[29]. The elementary solutions, some of which are
generalized functions|[14], can be shown to possess rather general full-range and half-
range completeness and orthogonality properties. The expansion (or completeness)
theorems are proved by reducing a system of singular integral equations to an equival-
ent matrix Riemann problem and subsequently making use of the theory of
Mandzavidze and Hvedelidze[20] and Muskhelishvili[21] to establish the solubility of
the resulting equations.
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As an application of our established analysis, we construct in this paper the infinite-
medium Green’s function useful for developing particular solutions to the basic trans-
port equation. We also make use of the half-range expansion theorem to solve the
notoriously difficult temperature slip problem considered previously[2. 19,23, 28.29]
by approximate methods. Our solution permits an accurate computation of the ‘tem-
perature slip coefficient” which may be used to evaluate the merits of approximate
techniques.

2. THE KINETIC MODEL AND LINEARIZATION

Basically, the BGK model is constructed by replacing the collision integral in the
Boltzmann equation by a more tractable relaxation term: we therefore write

(’) ~
[EJru-V]f(y, u, 7)) =vlfly, u. 7)— fly. u. 7). (2.1)
where f(y,u, 7) is the particle distribution function, y is the position vector, u is the
particle velocity, 7 is the time, and v is a characteristic collision frequency. To ensure
that the model conserves particles, momentum and energy. we require that

f [f(y.u. 7) = f(y.u, 1)U d'u = 0. (2.2)

where the integration is to be taken over all velocity space and U is a five-element vec-
tor with components 1, u,, u., us, and u°, the collisional invariants. Here u., a = 1, 2.
and 3, and u are respectively the components and magnitude of u. The invariance re-
quirements given by equation (2.2) can be satisfied by choosing

2 B m i _mlu—qly.7) 2]
fly, u, 7)=nly,. 7)[——277,(,”% T)] exp [ _—_——2kT(y, mat (2.3)

the local Maxwellian distribution. Here m is the particle mass and k is the Boltzmann
constant. In addition

n{y, 7) 1
n(y, 7) qy. 7) :ff(y, u, 7)[ u ]d‘u (2.4)
3n(y, ) kT(y, 1) mlu—qly. m)f

defines the local number density n(y, 7), the fluid velocity q(y, 7). and the absolute
temperature T(y, 7).

It is not difficult to demonstrate that the model given by equations (2.1), (2.3), and
(2.4) admits an H theorem, such that

a_(j_ f fu,myInf(u, r)d'u <0, (2.5)

for spatially uniform conditions. Thus the model possesses many of the important prop-
erties of the full Boltzmann equation.

Because of equation (2.4), the model is described by a nonlinear functional equa-
tion; however, we consider circumstances for which the particle distribution function
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f(y. u, 7) differs only slightly from an initial Maxwellian distribution fo(u) characterized

by a set of constant initial values of the number density n,, fluid velocity q., and
temperature T,. If we now write

fly.u, 7) = fo(u) + fi(y.u, 7), (2.6)

and truncate f(y. u. 7) at the linear terms in a Taylor series expansion about f,, we find
that equation (2.1) can be approximated by

[a_at+(C+V)V+ I]H(x. C, t):j ﬁ(x,c” t)K(C,:C)Ci(Qd}(‘,’ (27)
with
K"'_] 1+2_/+2 \23 _,23 )3
(@0 =Tt 2e e+ 3(e =g )5 | 2.8)
and where
172
xz”(zz?n,) y. t=vn (2.9a.,b)
m b2 m 1/2
C:<7kT> (u—qv), v:<_2kT> Q. (2.10a.b)
and
fol@R(x.c. 1) = fux. ¢, 1). 210

A model equation more general than equation (2.7) may be constructed, as
suggested by Gross and Jackson[13] and Sirovich{27], by expanding the kernel of a
linearized Boltzmann equation in an appropriately chosen complete and orthonormal
set of eigenfunctions. We shall, however, restrict our attention to the linearized model
described by equation (2.7).

If we now let ¢.(c), a =1, 2, ..., 5, denote the elements of the vector
- _
Vi(er -9
(b(C):# V2en |, (2.12)
\/E 3
\/§ (&8}

where ¢, ¢z, ¢i, and ¢ are respectively the components and magnitude of ¢, then
equation (2.8) can be written as

K(c :¢)= ¢ ()b (). (2.13)

Here the superscript tilde is used to denote the transpose operation. We note that the
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elements of ¢(c) obey the orthonormal conditions

(Por D) = 8 B =1.2,....5, (2.14)
in a Hilbert space (a) of the functions of ¢ defined by the inner product

(A1, A =fA1(c)A:(c)e"‘d3<-. (2.15)

The elements ¢. (c) are, of course, related to the collisional invariants which define the
U vector in equation (2.2), and the orthogonality conditions stated in equation (2.14) are
therefore direct consequences of the invariance requirements of equation (2.2).

3. THE VECTOR KINETIC EQUATION
As stated in the Introduction, we are primarily interested in steady-state gas-kinetic

problems with plane symmetry. Without loss of generality, we set g, = 0, and thus the
steady-state version of equation (2.7) for

hix,.e)= hix.e)=2m Pedenh). (3.1
becomes
[('la%Jr l]h(.\w.c) =Y G (N h) (3.2)

We now follow Cercignani[12] and consider the functions

172

gics, ¢ =7 gAhcn )y =7 it i),

(3.3)

-2

1/2
g_}(('z, ('1) - (‘1‘1’) C2, and g4(('z, ('x) = (g) Cs.

Itis a straightforward matter to demonstrate that the g functions given by equations (3.3)
satisfy the orthonormal conditions

(Zer €8)p = Bap.a = 1,2, 3, and 4. (3.4)

in a subspace (b) of the functions of ¢. and ¢, defined by the inner product
(Bl- B:)h :J’ J‘ B](('z, ('})BQ((':. ('1)67‘@‘(%’ d(‘:d('}. (35)

We now span the Hilbert space (b) by the subspace (¢ ) characterized by the g.’s and a
subspace (d), the orthogonal complement to (c); subsequently we expand h(x,, ¢) of
equation (3.2) in the manner

4
hixi©)= 2 Walxi, )galCa )+ Wi(x). 0), (3.6)

where W¥s(x,,c) is the component of h(x,,¢) belonging to the subspace (d). Such an
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expansion yields the interesting property that the inner products (V,, ¢.)., a =1, 2, 3,
and 4, are simply related to the perturbations of the number density, the temperature,
and the transverse components of the fluid velocity, respectively.

Substituting equation (3.6) into equation (3.2) and projecting each term onto the
appropriate directions of g, in the Hilbert space (b), we obtain

a s 1 . R -
—+1]\I’ X, :—J f J ’1If_-, s m d ;. 37
[“a,\- (x, ) Vo () (uHWr(x, e m (3.7)
where ¥(x, p)isafour-element vector with components W, (x, u), ¢ = 1,2,...,4,and

Vip*=H 100

=

000
J(p) = 0 010/ (3.8)
0 001

For convenience, we have changed the variables x, and ¢, to x and w. We note that the
two functions ¥,(x, w) and ¥.(x, w). characterizing the perturbations of the number
density and temperature respectively, are described by a set of two coupled integ-
rodifferential equations. These two equations are, of course, uncoupled from the func-
tions Wi(x. w) and Wy(x, w) which describe the perturbations of the transverse
momenta.

4. ELEMENTARY SOLUTIONS OF THE TWO-VECTOR TRANSPORT EQUATION
RELEVANT TO TEMPERATURE-DENSITY EFFECTS
We are interested in the steady-state, gas-kinetic effects of temperature-density
variations in plane-parallel media. According to equation (3.7). the relevant coupled
equations are

d 1 oz e
,LL——‘II(.\‘.M)Jr\I'(.\'.,u):—/:Q(u)J QuHW(x. whe ™ du', 4.1
ax Vo .
where Q(u) is the transpose of

\/?(pf";) ]] A

and V¥ (x, u) and Wa(x, n), which are sufficient to determine the temperature-density
effects, are respectively the upper and lower entries in the two-vector W(x, u). We
should like to note that equation (4.1) is quite similar to the equation of transfer used in
a related study[4, 5] of the scattering of polarized light.

Following Case[7] who introduced the method of normal modes in regard to

one-speed neutron-transport theory, we search for elementary solutions to equation
(4.1) of the form

W (x, w)=F(& pe (4.3)

where £ and F(£, p) are the eigenvalues and eigenvectors to be determined. From equa-
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tion (4.1), we obtain

I
<§——u)F(§,u)77~;T§Q(u)M(§) (4.4)

where the normalization vector M(¢) is given by
M(§) = f Q(u)F(& pwe™ dp. (4.5)

Equation (4.4) admits both discrete eigenvalues and a continuous spectrum. We
consider first the discrete spectrum: &€ = n;,, Im n: # 0, and solve equation (4.4) to obtain

I m
F(ni,u):—\T;rnl’MQ(p«)M(n;). (4.6)

where m: are the zeros (in the complex plane cut along the entire real axis) of the
dispersion function

A(z) = det A(z). 4.7)

Here the dispersion matrix is
; dp
Alz)=1+:z ‘If(;u)——M —, (4.8)

with I denoting the unit matrix and the characteristic matrix given by

W)= \—}; Qu)Q(u)e * 4.9)

Further, M(%;) is a null vector of A(m:) such that
A(ni)M(n) = 0. (4.10)
The argument principle[10] may be used to show that A(z) has no zeros in the finite
cut plane; however, since A(z) ~(a/z*) +. .., for |z| tending to infinity, we may deduce

four ‘discrete’ solutions to equation (4.1). In the limit |z| — %, we obtain from equations
(4.6) and (4.10)

Fiu) = Q(M)[(])] - @[#Z; ] and Fx(p) = Q(u)[(])] > [(',] @.11)

To construct the other two solutions requires a technique discussed by Case and
Zweifel [8] to split the degeneracy at infinity. The resulting solutions are

Wa(x, w) = (u — x)\/g[y;]# 2], and Wa(x, u) = ( — x)[(l)]. (4.12)



Equations in the kinetic theory of gases 447

It should be noted that equations (4.11) are solutions to equation (4.1) and to equation
(4.4) in the limit || = =; whereas, equations (4.12) are solutions only to equation (4.1).

We now consider the continuous spectrum: £ = n, with Im n = 0. and the solutions
to equation (4.4) are

F(n. u)z:‘/:[npv( >+)\*(n)8(n—u)]Q(u)M(n). (4.13)
T

noH

where Prt1/x) denotes the Cauchy principal-value distribution, and 8(x) represents the
Dirac delta distribution. Pre-multiplying equation (4.13) by Q(u)e ™ and integrating
over all p, we find

[A(n) = A*(n)W(n)]M(n) = 0. (4.14)
where
A(n):1+nPf W8, (4.15)
/ |
and hence from
det [A(n) — AX()W(n)] =0, (4.16)

we obtain a quadratic equation for the function A*(n). In general there are two solu-
tions which we label A%(n) and A%(n), and thus we write the two-fold degenerate
continuum solutions as

>+ AEm&(n ~ u)]Q(u)M{,(n). a=1or2, né(—x, %),
(4.17)

|
F. (7. ):——[ Pv(
. M \/—7; n n—n

where the vectors M, (n) are to be determined by the corresponding A*(n). through
equation (4.14).

Having established the elementary solutions. we write our general solution to
equation (4.1) as

Wy, w)= E ALF () + 2 AW, (X )+ 2 f As(mF. (n, we V" dy.  (4.18)

where the expansion coefficients A, and A, (n) are to be determined once the boundary
conditions of a particular problem are specified. Although in general the integral terms
in equation (4.18) may diverge for x#0, this will not be the case when the
specific problems of sections 7 and 13 are considered.

S. A FULL-RANGE EXPANSION THEOREM
To ensure that the normal modes developed in the previous sections are sufficiently
general for full-range. w €(— 2, ), boundary-value problems, we should now like to
prove a basic result.
Theorem 1. The functions F(uw), Falw), Fa(p) =W,(0, w), Fi(u) =T, (0, w), and
F.(n. ). o =1 and 2. n €(—o0, =), form a complete basis set for the expansion of an
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arbitrary two-vector I{i), which is Holder continuous on any open interval of the real
axis and, for sufficiently large ||, satisfies

I (u) exp(—|luD) <= a=1o0r2,

in the sense that

I(w) = Zl AF . (n)+ fo Ac(m)F.(n, w)dn, w €(—x, x). (5.1

To prove the theorem, we shall construct an analytical solution to the above coupled
singular integral equations. For the sake of brevity, we write

() = 1) = 2 AF. (i), (5.2)
introduce the (2 X 2) matrix
G(n, w)=[Fi(m, ) Fan, )l (5.3)

let A(n) denote a vector with elements A.(7n), @ = 1 and 2, and thus write equation (5.1)
as

i = [ GO A dn, e, ) (5:4)

Pre-multiplying equation (4.13) by Q(u) e * and invoking equation (4.14), we obtain

~ s |
Q)G w)e ™ = [an(n o)+ 50n wmm]vm), 5.5)

-
where

Vin)=[M(n) Ms(n)] (5.6)

I

is the (2 x 2) normalization matrix. We now pre-multiply equation (5.4) by Q(u) e
make use of equation (5.5), and integrate the & term to obtain

Q(ui(p)e ™ = /\(M)B(P«)+‘I’(M)Pfi nB(n)n(_i,nM, (5.7)

where B(n) = V(n)A(ny). Equation (5.7) may now be solved explicitly by using the
theory of Muskhelishvili[21]. To convert equation (5.7) to a special form of a matrix
Riemann problem, we introduce the sectionally holomorphic matrix

N dn
N(‘)_zm'f, nB(n)n_Z- (5.8)

The boundary values of N(z) as z approaches the real line from above (+) and below
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(—) follow from the Plemelj formulae{21]:

dy

N () +N 1= P | B (5.92)

n— K

and
N () =N ()= uB(p). (5.9b)

In a similar manner, the boundary values of the dispersion matrix follow from equation
(4.8):

AT(uw) + A () =2A(p), (5.10a)
and
AT() = A () = 2mip W(p). (5.10b)
Equations (5.9) and (5.10) may now be used in equation (5.7) to yield
rQU)i(p)e™ = AT(IN" () = A"(IN (), (5.11)

which can be solved to give

1 ] * od A 2 d[.l,
=A ()5 =t 5.
N(z) = A ()5 j rQ(p)I(p)e e (5.12)
We note that for large |z},
117 &
A~ == § N as|z]—=, (5.13)
and
o 12, Y <
AN~ - L Y| asz[on (5.14)

and therefore if the N(z) as given by equation (5.12) is to vanish when |z| tends to
infinity, as equation (5.8) prescribes, we must impose on the vector I(u) the four
constraints

f, p QUu)I(w)e ™ du =0, a=1and?2. (5.15)

Recalling equation (5.2) for I(n). we observe that equation (5.15) will be inherently
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satisfied if we specify the expansion coeflicients A.. « = 1, 2, 3. and 4. to be
. roo
A Y N N
A: 12 e Ny~ N
: ’ (5.16)
A | SVem | i L
A \8}'1” \/3112—\/2121
where
Ls ij pfliw)e ™ du, a=1lor2:8=1273o0r4, 517

and I,(x) and I(u) are respectively the upper and lower entries of I(u ). Theorem 1 is
therefore established.

Although we could pursue equations (5.9b) and (5.12) to obtain explicit results for
the continuum coefficients A.(7n), a = 1 or 2, we prefer to summarize the final expres-
sions in terms of the formalism of the full-range orthogonality relations given in the
next section.

6. ORTHOGONALITY RELATIONS AND EXPLICIT SOLUTIONS

We should first like to state the general orthogonality relation relevant to all
solutions including the special distributions, F(¢, ), of the separated equation (4.4).

Theorem 2. All eigenvectors F(& w) which are solutions of equation (4.4) are
orthogonal on the full range, p €(—, =), in the sense that

f, F(&', wF& p)e * ndp =0, & #¢& (6.1)

To prove the theorem, equation (4.4) is first pre-multiplied by F(¢', w)e *'/&, the trans-
pose of equation (4.4) with £ changed to ¢’ is post-multiplied by F(¢, n)e *'/¢', and the
two resulting equations are then integrated over all u and subtracted one from the other
to yield

(é'é) f ~ F(&". wF(E p)e " pdu =0, (6.2)
which establishes equation (6.1). Though equation (6.2) is a general statement of
full-range orthogonality, it is clear that several additional relations are required here.
First of all, since F,() and F.(u ) are both associated with & — «, equation (6.2) does not
ensure that they will be mutually orthogonal in the sense of equation (6.1). In addition,
the vectors Fi(u) and F.(u), being derived from the solutions of equation (4.1), rather
than equation (4.4), are not included in Theorem 2. However, it can be easily shown
that F.(w) and F»(u) are mutually orthogonal, and, in fact, self-orthogonal; the same is
true for Fs(w) and F(u ). In addition, F;(u) and F.(u) are orthogonal to the continuum
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solutions Fi(n, w) and Fx(n, w). We note that F,(u) and F.(w) are not orthogonal to
Fi(w) and Fi(u): however, suitably defined adjoint vectors for these special cases can
be developed by employing a Schmidt-type procedure.

Considering first the normalization integrals related to the solutions given by equa-
tion (4.13), we find

f CFa wFs(n, pe " pdp = S(n)d(n —n)8upt e = 1.2, (6.3)
where
S(n) = —fmn® + AXm)A S IM. () W(n)M, (7). (6.4)
Vo

The Kronecker 8,4 appearing in equation (6.3) should be noted since it ensures that the
degenerate continuum solutions given by equation (4.13) are orthogonal even for ' =
7. To establish equation (6.3) requires the use of the Poincaré-Bertrand formula[21] and

[A%(n) = AS()IML (MW ()M, (1) = 0, (6.5)

a relation which can be deduced from equation (4.14).

Though the representations of the two continuum solutions given by equation (4.13)
were convenient for proving the full-range expansion theorem, we choose to make use
of more explicit forms for actual applications. We note that equation (4.16) is quadratic
in A*(7n). and thus the two solutions will in general involve radicals. To avoid the
cumbersome nature of the ensuing solutions, we prefer the linear combinations

D, (. p) =T, (MF(n, p)+ Ton)FAn. p). «=1land?2, (6.6)

which. for judicious choices of T.;(7n). enable us to deduce the more tractable solutions

] 1 s
77<M *")PU< )e T A(m)é(n —w)
Vi 2 n-— K

(pl(n’ N') = (673)
J—Pv( )e"+[l+/\(n)] o(n — )
N/;'n n—u 2
and
| I
WT”]PU< _ )e +/\u(7})5(7’]*}i)
Do, ) = moR . (6.7b)
1
53(7) —u)
where

1 - : du
Am)=1+—= Pf e R (6.8a
Ul \/7—Tn ’ e )
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or

Ao(m) =1 —zne"*”f e* du, (6.8b)

and
Ai(m) =31+ (n° = HAum). (6.9)
We note that equations (6.7) are not mutually orthogonal for 5’ = 1; however, a
Schmidt-type procedure may be used here as well. Since our final adjoint vectors follow
in a manner analogous to that reported by Siewert and Zweifel[26], we shall simply
summarize our conclusions below. For the case of the degenerate continuum modes,

we find that the procedure discussed in reference [26] can be used to establish the
required adjoint vectors. To unify our notation, we also define

&.(u)=F. (), a=123and4. (6.10)

The orthonormal full-range adjoint set is given by:

Xi(u)= \/—[6‘4’3(#) 2Ved.(n)]l, (6.11a)
Xo(p) = \/_[ 2V6Dy() + 14@D4()], (6.11b)
Xi(p) = o~ /—[6€D.(u)v’\/3¢>«(u)} 6.11¢)
1
= [
Xu() 5\/7.7[ 2VOD () + 14@()]. (6.11d)
Xdn p)= N( )[va(n)@ (. 1) = No(n)@aim, w)l. (6.11e)
and
I )
Xu(m, va) = W[Nn(n)@z(n, my— N;:’(T))(D:(T}, ), 6.110)
where
Niu(m) =[Ao(m) +iF+ Al + 7nl(n° =3+ 1]e >,
Nu(n) = AolmAdn) +iho(n) + 5+ mni(n’—He ™,
Nau(n)=Adm)+i+mnie ™
and

Nim)=me A (A (7). (6.12)
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The required orthogonality relations among the full-range basis and adjoint sets
are:

f X (W)Py(w)e ™ pdp = 8.5 . =1.2.3,0r4, (6.13a)
f X () @s(n.p)e ™ pudu =0 =1,2,3,0r4, B =10r2, (6.13b)
f Xon' w)@e(m, w)e ™ pdu =8(n —n')8.s .8 =1o0r2, (6.13¢)

J Xo(n' W Pu(pw)e " pwdpw =0 =1or2. 8 =1.2.3. 0r4. (6.13d)

With the formalism thus established, we note that all expansion coefficients in
equations of the form

I(u):Z A,,d’,,(p.)%—Ef Ac(M®. (n, w)dm, p €(— =<, %), (6.14)
a1 a -1 .
may be expressed immediately in terms of inner products:

A, :f X.(I(w)e * pdw, a = 1.2, 3and 4, (6.15)
and

Au(n):f Xo(n.w(p)e * udp. a = 1and 2. (6.16)

7. THE INFINITE-MEDIUM GREEN'S FUNCTION
In order to illustrate the use of the elementary solutions of equation (4.1) and the
relevant orthogonality relations, we should now like to develop the infinite-medium
Green's function. Here we seek a solution to

ud‘l’(\ wy+W(x, u)= \l M)J Qu)W(x, w)e " du’ +S(xy. i pat X. ),

(7.1)

where

S(xa, prs ot X, ) = 8(x — \1))[pl giﬁ ﬁl;] (7.2)

Clearly, since the kinetic equation conserves particles, kinetic energy, and momentum,
there will exist no bounded (at infinity) solution to equation (7.1); however, the Green's
function we develop may be used in the classical manner to construct particular solu-
tions to equation (7.1) for arbitrary inhomogeneous source terms for semi-infinite or
finite media. As discussed by Case and Zweifel[8], we neglect the inhomogeneous term



454 J.T. KRIESE et al.

in equation (7.1) and require the solution to the resulting homogeneous equation to
satisfy the ‘jump’ boundary condition

. o | -
W (X0, ps oy Xo, ) — WX, po, pai X, 'UV)JA[p Biﬁ ﬁ;] pE(— %, 2), (7.3)

where the argument list has been extended to include the parameters x,, w,, and w.. We
therefore write the desired solution as

W(xo, ti, oy X, )= ZI AD, () + 2{ f AP, (n, w)e " dy, (7.4a)

for x > xy.
and

W(xo, py, p2; X, p)= ~Z AW (x — X, u)-z ' Ac(Da(m, ) e " dy
for x <x,. (7.4b)

Substitution of equations (7.4) into equation (7.3) vields the full-range expansion

[Zl o ﬁj)} W2 a3 [ Ameomw dnfpei-ez. 09
Though the left-hand side of equation (7.5) certainly is not a Holder function, Case and
Zweifel[8] have concluded that expansion theorems similar to our Theorem 1 remain
valid formally even for this type of delta distribution. We therefore pre-multiply equa-
tion (7.5) by Xo(w)e *, a=1.2.3, or4 and X.(n’. w)e ™. a =1 or 2, and integrate
over all w to find, after invoking equation (6.13),

A. = piXai(p) e T+ pXoo(pa)e *a = 1,2,3, and 4, (7.6a)
and

Au() = pr Xor(m ) € 41+ pr Xaolm, pa) € “ a=1land?2, (7.6b)

where the subscripts 1 and 2 are used to denote the upper and lower elements of the X
vectors. Since all expansion coefficients required in equations (7.4) are given by equa-
tions (7.6), the infinite-medium Green’s function is established.

8. A HALF-RANGE EXPANSION THEOREM

Having developed in sections 5 and 6 the necessary completeness and orthogonality
properties of our normal modes, we should now like to discuss the analysis required for
the considerably more interesting problems defined by half-range, u €(0, ), boundary
conditions. The following theorem states the very important half-range expansion prop-
erties basic to a certain subset of our derived elementary solutions.

Theorem 3. The functions F((u), Fo(n) and F,(m, ), « = 1 and 2, n €(0, =), form
a complete basis set for the expansion of an arbitrary two-vector X)) which is Hélder
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continuous on any open interval of the positive real axis and, for sufficiently large el
satisfies
L(w)lexp(—|uh) <> a=1lor2,

in the sense that
()= 2 AF.(u)+ > f Ao (MF.(m, w) dn, €0, =). (8.1)
a =1 o 1 4]

To prove this theorem, we premultiply equation (8.1) by e * Q(u). integrate the
8 term and use equations (4.13) and (4.14) to obtain

Q(u)im)e'“:Mu)BmH\P(M)PJ nB(n)nd_nM,uE(O.oc). (8.2)
where
W) =1 -3 AF.(n) (8.3)
and
B(n) = V(n)A(n). (8.4)

In addition, V(7)) is given by equation (5.6) and the unknown A(n) has elements
A, (n)and Ax(n). In amanner similar to that used to prove Theorem 1, we now introduce

1 ” d
N(Z):z—; . nB(’)’])n—I”?. (85)

The N matrix is clearly analytic in the complex plane cut along the positive real axis.
Further, the Plemelj formulae[21] can be used, with equation (8.5), to show that the
boundary values of N(z) satisfy

~

AN (W) +N ()= Pf 7 nB(n)nd_n“ (8.6a)

and
NY(uw) =N ()= pB(p). (8.6b)

Equations (8.6) can now be used, along with equations (5.10), to express equation
(8.2) in the form

p Oy e ™ = A (WN () — A ()N (p), €0, %). (8.7)

If we now let X(z) denote a canonical (non-singular in the finite plane) solution to the
homogeneous Riemann problem defined by

X'() = G()X (). i €(0, %), (8.8a)
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where
G(p)=A" (WA (w)] ', (8.8b)

then equation (8.7) can be solved immediately to yield
N( )=X*‘(z)[L f (0w e 4 p )] (8.9)
z 2’771 i) K K K H—2Z 245 ’

Here, P(2) is a matrix of polynomials, and
N(u)=pn X (W)A" ()] (8.10)

Since the G matrix given by equation (8.8b) is continuous for u €[0, ©), G(0) = I and
G(pn)—1TI as pu — oo, the analysis of Mandzavidze and Hvedelidze[20] can be used, after
an elementary transformation of variables, to ensure the existence of a canonical solu-
tion to the Riemann problem defined by equation (8.8a). In section 9 we argue that the
partial indices x, and «. associated with our canonical solution X(z) are

K =K:= 1, (8.11)
and thus if we allow our canonical matrix X(z) to be of normal form at infinity [21], we

may write

]im:X(z):A. (8.12)

where A is nonsingular and bounded.
From the defining equation (8.5), we observe that z N(z) must be bounded as |z|— =,
and thus from equation (8.9) we conclude that

lim zA"'[%j ' )W) e * du +2P(z)]<xz (8.13)

Izl

we must therefore set P(z) =0 and, in addition, require that

ﬁ T()Q(u)i()e ™ du =0. (8.14)

Equation (8.14) is, of course, not satisfied by all i(u), but recalling equation (8.3), we
conclude that choosing the discrete expansion coefficients to be solutions of

A,

f D)W dua| "

I .
]—\/7—71) F(e)Q(u)I(p) e™ du (8.15)

renders equation (8.1) valid for all appropriate I(u ). The matrix in equation (8.15) whose
inverse is required to obtain A, and A, can be shown to be non-singular by making
use of a Cauchy integral representation of X(z). The theorem is therefore proved.
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Though, as for the full-range case, we could pursue this completeness proof to
construct the continuum expansion coefficients A(n), n €(0, x), we find it more conve-
nient to express the final results in terms of half-range orthogonality relations.

9. A PROOF REGARDING THE PARTIAL INDICES OF THE
RIEMANN PROBLEM
The proof of the half-range expansion theorem given in section 8 is based on the
proposition that the partial indices k, and «. are both non-negative. In fact, equation
(8.13) is valid only if the partial indices are given by «, = k.= 1. In this section we
develop the required proof that k; = k.= 1.
We consider then the homogeneous matrix Riemann problem defined by

D () =Gu)P (), u €0, =), 9.1
where

G() = A (WA (w)] . we€l0. %) (9.2)

Here we seek a matrix @(z) analytic in the plane cut along the positive real axis,
non-singular in the finite plane, and with boundary values @ " (n) which satisfy equation
(9.1,

Since G(0) =1 and G(w)—1T in the limit as w — =, we can define G(w) =1 on the
entire negative real axis and thus consider equation (9.1) for u €(— =, =). To make use
of the results developed by Mandzavidze and Hvedelidze[20]. valid for closed con-
tours, we make the change of variables

L=+ (9.3)

which maps the upper half of the z plane into the interior of the unit circle in the
{-plane. We note that the positive (negative) real axis maps into |£| =1, Im { > (<) 0.
The existence of a solution to the Riemann problem in the { plane follows from the
theory of Mandzavidze and Hvedelidze [20]. since the resulting G matrix is continuous
on the unit circle, and @(z). the canonical solution in the z-plane, is the image of the
solution in the { plane postmultiplied by an appropriate matrix of rational functions.

It can be demonstrated|S] that the A matrix can be factored as

A(Z) = () P(2)D(-2) (9.4)

where @(z) is any canonical solution (of ordered normal form at infinity) to equation
(9.1) and 2(z) is a matrix of polynomials, which depends on the particular choice for
b(:).

The fact that 6(;;) =[G(w)] ', where the bar indicates the complex conjugate, en-
ables us to extend the results of Siewert and Burniston’s[25] Theorem Il to the
Riemann problem defined by equation (9.1):

Theorem 4. There exists at least one canonical matrix @(z) of ordered normal
form at infinity for the Riemann problem defined by equation (9.1) such that @.(2) =
D).
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Since the proof of Theorem 4 follows very closely one previously reported[25]. it
will not be given here.

If we use @,(z) in the factorization of A(z), the resulting polynomial matrix J(z) is
such that P(z) = P(~ z) and P(z) = P(Z), since A(z) = A(z) = A(— 2)and A(z) = A(3).

By definition[21], a canonical solution of ordered normal form at infinity is such that

lim d),(z)[ZO‘ f’J =K, det K # 0, (9.5)

[

where «, and k. = «, are the partial indices. Furthermore the sum of x, and . must
yield the total index «, which in the manner of Muskelishvili[21] can be computed di-
rectly once the G matrix and the appropriate contour are specified. For this problem, we
find
Ki+ k=K =2. (9.6)
If we now evaluate equation (9.4), for &@(z) = &,(z) at z = 0, we obtain
P0) = D, '(0)D:'(0), (9.7)
and since @,(0) is real (recall that @,(z) = @,(2)), we conclude from equation (9.7) that

%,,(0) # 0 and P.,(0) # 0. Again from equation (9.4), for @(z) = @,(z), we can write,
after using equation (5.13),

> -—>__1__ zn 0 -1 ;x \;,*(‘ A (”:)K' 0 J
rao--L[ Skl VR[S 0.8

as |z]| >,
from which it follows, since K is real, that
K= Kk>= 1. (9.9)

It is clear, since @,(z) is a canonical solution of ordered normal form at infinity, and
since k, = k> =1, that

a VY
(b()(z) = (pl(Z)KV’I\/{Z‘[ 0 1 :I (910)

is also a canonical solution of ordered normal form at infinity and is such that @,(z) =
dy(2). In view of equations (9.8) and (9.10), we can therefore write equation (9.4) as

A(z) = Po(2)DPo(— 2), 9.11)
where

@,(0)D(0) =1 (9.12a)
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and

\/?; Ve
' , (9.12b)

lim z@y(z) = \[2\: 0- [1

We note that Cercignani[11] has reported a factorization in the spirit of our equation
(9.11). We have been unable, however, to justify some of Cercignani’s results [11; pp.
84-85] since. for example, upon ‘taking’ determinants of his equation (311) we find an
inconsistency in the number of poles on the two sides of the equality sign. We have
found that the extension of scalar results to the case of matrix Riemann problems, in
general. does not follow immediately [6].

10. HALF-RANGE ORTHOGONALITY AND NORMALIZATION INTEGRALS

The half-range orthogonality relations developed by Kuscer, McCormick, and
Summerfield[18] for the elementary solutions of the one-speed neutron-transport equa-
tion have proved to be useful for establishing concisely the solutions to a scalar singular
integral equation somewhat analogous to equation (8.1). We should thus like to prove,
in a manner similar to that reported by Siewert[24] for an equation of transfer basic to
the scattering of polarized light, the following theorem concerning the half-range or-
thogonality properties of a subset of our developed normal modes.

Theorem 5. The eigenvectors F(u), F.(n), Fi(n, ), and Fxm, p), 1m€(0,%), are
orthogonal to the related set G(w), G(p), Gi(n, n) and Gxm, p), n€(0,%), on the
half-range, u €(0, %), in the sense that

J:’ G(&' wF(E n)e “adp =0, E# & £ =xor €(0, =), (10.1)

Here F(& ), & = x or € (0, %), denotes any of the eigenvectors Fi(w), Fa(w), for & = =,
or Fi(n, w), Fo(n, w). for n €(0,%). In a similar manner, G(&, ). represents either

G.(p) = Q(u)H(WH'Q (u)F. (). @ = lor2, (10.2a)
or
G.(m, 1) =Q(uH(pH '(mQ "(w)F.(n, 1), €. %), a =lor2.  (10.2b)

In addition

i =f’ FI() W) pdp (10.3)

¢

and H(w) is the H matrix basic to our half-range analysis. In section 11 we prove the
existence of a unique solution to the system of singular integral equations

FGA () = 1+ P f f(m)W ()37

s €0, <), (10.4a
—— ) )
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plus the constraint

J H(pw)W(pw)du =1, (10.4h)

i

which we take to specify H(u). As shall be shown, H(u) can be expressed in terms of
&,(z), our canonical solution, of ordered normal form at infinity, of the matrix Riemann
problem defined by equation (9.1); that is

H(p) = @'~ p)dy(0). (10.5)

which can be extended to the complex plane cut along the negative real axis to yield a
factorization of A(z):

AZY=H"(2)H '(— 7). (10.6)

To establish our Theorem 5, we first pre-multiply equation (4.4) by G(¢', ) e */&,
we then post-muitiply the transpose of equation (4.4), having changed £ to &', by
Q '(WH ' ENH()Q()F(E n) exp (— w’)/€, integrate the two resulting equations over
w from 0 to e« and subtract the two equations, one from the other, to obtain

1 I T s 2 1

- G&, wWF(E e ™ pdp = —=[K (&', &)~ K&, &), Eand & > 0.
(g ¢ ) [ vV (10.7)
Here

K&, &)= ME (&) f (O p) e * du (10.8)
and

KiA&', &) = f FE, Q' (w)H (¢NA)Q(r)Q() e d M(£).  (10.9)

If now, in the manner similar to that previously reported[24], we make use of
equations (4.5), (4.11), (4.13), (4.14) and (10.4) to evaluate equations (10.8) and (10.9) for
all appropriate ¢ and &', we find

K(&'. &) =Kuy(&',8). £'€(0,x), £ =xor €(0, ), (10.10)

and from equation (10.7) we obtain

('lg“ El') f G WF(E p)e™ pdp =01 £ >0, (10.11)

which proves the theorem. We have only established equation (10.11) formally for
&' # «=. However, considering that case separately, we do find that G. (), a =l or 2, is
orthogonal to F(£, i) in the sense of Theorem 5. Of course, since F () and Fy(u) both
correspond to the eigenvalue ¢ = =, equation (10.1) does not ensure that the inner
product, in the sense of Theorem 5, of G,(w) with F.(u) and Gx(p) with F,(n) is zero.
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However, for this special case we have carried out the algebra prescribed by equation
(10.1) to show explicitly that

f GolwIFa() e ™ pdu =0, a % B, (10.12)
}

¢

so that all of the half-range eigenvectors are orthogonal in the manner of Theorem 5.

Having established the required half-range orthogonality results, we should now like
to consider again the normalized solutions given by equation (6.7) in order to present
our half-range normalization integrals in a form analogous to that used for the full-range
theory. We consider then the half-range adjoint set

1 —ty-
®a(u)=‘:—~\/—7——TQ(u)H(u)Hl Q (wW)P.(p), @ =1and?2, (10.13a)

and

O.(n, 1) =Q(uH(WH '(MQ ' (u)Xa(n, 1), M€, ), =1and2, (10.13b)

where the vectors X, (7, n), @ =1 and 2, are given by equations (6.11e) and (6.11f); we
can therefore summarize our results in the manner

f O, (W De(p)e™ pdu = 8.4: = lor2, (10.14a)

f '(S)A(u)cpﬂ(n, ple ™ pdu =0, n €0, %) . = 1or2. (10.14b)

f( O.(n'. wWDsin. pre pdu = 8.:8(n — 1) mn €0, %), a,f =1 o0r2, (10.14c¢)
and

f O.(n. w)Ps(p)e ™ wdu =0:n (0. %), . = 1or2. (10.14d)

With the half-range formalism thus established. we note that the solutions for all
expansion coefficients in equations of the form

)= Z| AF. () + Zt f“ A.(mF.(m. ) dn, p €00, 2, (10.1%)

can be expressed concisely as

A. :f O, (W (p)e™ pdp. a = land 2. (10.16a)

and

A,,(n)=f0 O.(n. uMu)e * pdu, @ = 1 and 2. (10.16b)
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We note that a set of integrals of the form
T, &)= j‘ O p)P(— & pw)e * pdu, & and £ >0, (10.17)

has been evaluated and is listed elsewhere|16].

1. EXISTENCE AND UNIQUENESS OF THE H MATRIX

We first wish to prove
Theorem 6. The equations

ﬁ(p)A(u)ZI-F;.LPJ H(n)W(n) ‘i”“,#ew,x). (11.1a)

n
and

Lﬁ(u)‘lf(u)du:l (11.1b)

possess a unique solution in the class of functions continuous on every open interval of
the positive real axis.

Though for the sake of brevity we do not give an explicit derivation of equations
(11.1), we note that the H matrix specified by equations (11.1) is sufficient for establish-
ing the half-range orthogonality theorem.

To prove Theorem VI we make use of the equivalence of the given singular-integral
equations to a certain matrix version of the Riemann problem. In the manner of
Muskhelishvili[21], we introduce the matrix

1 T
NG) = 7 [ e 91 (112

which is analytic in the plane cut along the real axis and vanishes at least as fast as /-
as |z| tends to infinity. The Plemelj formulae[21] can be used with equation (11.2) to
yield

dn_ 0, =), (11.3)
n-u

TN () + N )] = P [ AmWen)
and
N () = N7(p) = H(u)W(w), p €(0, ). (11.4)

If we make use of equations (5.10), (11.3) and (11.4) then equation (11.1a) can be cast in
the equivalent form of an inhomogeneous Riemann problem:

N () = G(u)N () + W()[A (w)] ™, w €(0, ), (11.5)
where
G(p) = A" (WA ()" (11.6)
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The solution to equation (11.5) can be written as

N(:):%d&(:)U K(n) dj_+f’(:)] (11.7)
2mi 0 n—:
where P(z) is a matrix of polynomials,

K(p)=[@" ()] "W(u)A ()] (11.8)

and @(z) is any canonical solution (of ordered normal form at infinity) to the
homogeneous Riemann problem defined by equation (9.1). In order that equation (11.7)
have behavior as |z| approaches infinity consistent with equation (11.2), we must take
f’(:) to be a constant matrix.

Following closely Siewert and Burniston’s[25] work on the scattering of polarized
light, we can now use the constraint to specify uniquely the constant P(z) in equation
(11.7). Tt thus follows that equation (11.7) along with equations (9.11) and (11.4) yields
the result

H(w) = @5 (— w)Dy(0), w €0, %), (11.9)

where @,(z) is the canonical solution (of ordered normal form at infinity) used in
equation (9.11). We note from equation (11.9), since @,(z) = @,(Z), that H(u) is real for
w €(0, ). Further, equation (11.9) can be used to extend the definition of H(w) to the
complex plane:

H(z) = @,'(— 2)D(0), (11.10)
so that the A matrix can now be factored as
AG)=H"(—2)H '(2).

We note that equations (5.10), (9.11) and (11.10) can be used in the Cauchy integral
representation

o] U du
¢()(~)—_2ﬂi J:‘ [(D()(M) d’n(#)]“_z (111])
to obtain
. dn
H(z) =1+ zH(z) | Hm)¥(n) (11.12)
0 n+z
or
_ i dn
HO0 =1 ) [ w8 w0, =) (1.13)

Since we have established the existence of a unique solution to equations (11.1) and
developed equation (11.13) specifically to be used, along with equation (11.1b), as the
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basis for our procedure for computing the H matrix. it follows that we require proof of
Theorem 7. The equations

dn
+u

H(#)=I+pﬂ(u)f fA(n)W(n) . €J0. %), (11.14a)

n

and

fﬁ(u)xp(md# -1 (11.14b)

possess a unique solution in the class of functions continuous on every open interval of
the positive real axis.

We have shown that equations (11.1) possess a unique solution; thus we need only
show that any solution of equation (11.14a) is also a solution of equation (11.1a). We
first write equation (11.14a) as

H(M)[I—uﬂ ﬁ(n)‘l"(n)nin“]zl (11.15a)

or, alternatively,

1 ]H(u)zl. (11.15b)

(1= [ ey 42

If the transpose of equation (11.15b) is post-multiplied by

dn

I+ ;U«Pf - ﬁ(n)‘lf(n)n

then, after making use of some partial-fraction analysis and equations (4.15) and (11.15),
we obtain

ﬁ(u)uu):HuPﬁ AW =2 e (0. ). (11.16)

n—u

which proves Theorem 7.

12 AN EXPEDIENT METHOD FOR COMPUTING THE H MATRIX

It is clear from the previous sections of this paper that the H matrix is the basic
quantity required in the solutions of problems defined in terms of equation (4.18) and
specified by half-range, u €(0, ), boundary conditions. It is also apparent from the
analysis of section 11 that the basic proofs regarding the existence and uniqueness of
the H matrix have been established; however, to demonstrate the utility of our analysis,
we must now establish a procedure by which we can compute the H matrix accurately
and efficiently.

As we have discussed, the H matrix is uniquely specified by the nonlinear equation
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- dn
H =I+uH fH W(n)——, u €0, x), (12.1a)
(w) wH(p) ) (m) (n)nﬂl el

and the constraint

f Hu)W(pu)du = 1. (12.1b)

Rather than seek a numerical solution to equation (12.1a) which must also satisfy equa-
tion (12.1b), we prefer [15, 22] first to write

H(w) = (1+ w)L(p). p €[0, =). (12.2)
If we now substitute equation (12.2) into equation (12.1a), perform some elementary

partial-fraction analysis, and make use of the constraint, equation (12.1b), then we find
that L{p) must satisfy

* s d
L(u):IﬂLL(u)J (IAn‘)L(n)‘I’(n)nfM,ME[O. x), (12.3a)
and
J) Lu)W(uw)(1+p)dp=1. (12.3b)

It follows from Theorem 7 that equations (12.3) have a unique solution. We regard
equations (12.3) as the basic equations to be solved numerically because an iterative
procedure based on these equations has proven to converge faster than a similar itera-
tive solution of equations (12.1).

For calculational convenience, we now prefer to make in equations (12.3) the change
of variable

. K >
Ce (12.4)
and thus to write
L) =1+ () | 27250 (owes) ds t€[0, 1) (12.5)
- AR AT Tt =s)+s(1—1t) i =

where we have introduced the notation g-(t) = g[t/(1 — t)]. We have found that equa-
tion (12.5) can be solved quite effectively by iteration.

The computations were performed in double-precision arithmetic on an IBM
370/165 computer, and we used an improved Gaussian-quadrature [17] representation of
the integration process. The iterative procedure was terminated when successive calcu-
lations of L-(t) differed by no more than 10 '".

To substantiate confidence in our computations, several “‘checks™ were incorporated
in the calculation. As expected L.(t) satisfied

1—[ L.w.—3L —o. (12.6)

t (]_t)}
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an identity corresponding to the constraint, equation (12.1b), to thirteen significant
figures. The equation in terms of L.(t) corresponding to the identity[16]

( 0

2[} ‘I’(#)u“d#«*f ‘I’(M)H(M)Iid#f H(p)W(p) udp =0 (12.7)

was also verified to thirteen significant figures.
The analytical solution[16]

> .
H(z):detH(z)z\ll“zzexp{~if arg A'(w) dps } (12.8)
: T Jo n+z

where arg A"(0) = — 24, can be shown to satisfy

H(u)=1+uH(u)f/ f(m)H(n) dn €10, ), (12.9)
0 n+u
where
fm=t e | Y omsme [Tevai] (12.10)
KRV R A ' -

Rather than solve equation (12.9) and the appropriate constraint for H (u) we prefer to
write

Hp)=0+uYL(u), €0, x). (12.11)

If we substitute equation (12.11) into equation (12.9), perform some partial-fraction
analysis and make use of two identities[16] for H(u) then we find that (after an
appropriate change of variables) L.(t) = det L.(t) must satisfy

L [ta=2s) . ds
T T S A AR YT s wrupyy pon

),té[O,l). (12.12)

We have compared L.(t) as computed from equation (12.5) to a direct solution of
equation (12.12) and the appropriate constraint to find agreement to nine significant
figures.

Finally the number of quadrature points used to represent the integration process
was increased to suggest that the numerical values of the L. matrix given in the
accompanying Table (1) were insensitive to further refinements in the quadrature
scheme.

13. AN APPLICATION OF THE THEORY:
THE TEMPERATURE SLIP PROBLEM
We consider the effect of a body surface on the behavior of the particle distribution
function of a rarefied gaseous medium. It is known that, in the absence of boundaries,
the particle distribution function in a gas with slowly varying physical parameters obeys
the Chapman-Enskog equations (and therefore the macroscopic variables obey the
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Table 1. The L. matrix

! Loty L..(t) L.o.(t) L...(t)
0-0 1-0 00 0-0 1-0
0-05 1-05781 —0-0409718 - 0-0406202 1-08988
0-10 1-08842 - 0-0702992 —0-0691920 1-14897
0-15 110976 0-0960791 - 0-0939297 1-19824
(-20 1-12527 - 0:119749 —0-116314 1-24158
0-25 1-13648 - 0-141931 - 0- 136989 128073
0-30 1-14424 - 0162963 — 0156307 1-31664
0-35 1-14909 0-183053 - 0-174483 1-34992
0-40 1-15139 - 0202341 — - 19165K 1-38097
045 [-15138 - 0-220921 -0-207929 1-41009
(30 1-14926 - (0-23R862 0-223361 1-43748
-85 1-14514 —(:256214 - 0-238000 1-46333
0-60 1-13912 - 0-273011 - 0-251873 1-48774
0-63 1-13125 - (-298278 - 0264997 1-51082
0-70 1-12157 - 0-305030 -0-277373 1-53265
075 1-11008 - (-320274 - (-288995 1-55328
0-80 1-09678 - 0:335010 —0:299344 1:57276
0-85 1-08162 —0-349228 —(-309887 1-59111
0-90 1-06454 0-362913 - 0-319081 1-60835
0-95 1-04545 — 0376036 —0-327361 1-62449
0-99 102864 (3-386108 -0-333271 1-6366()

Navier-Stokes equations). Near the body surface. the behavior of the gas is described
by a rarefied Knudsen layer in which the collisional effects are only of secondary im-
portance. It is natural to ask how the outer Chapman-Enskog (or Navier-Stokes) region
can be matched consistently with the inner Knudsen layer. Saying it differently, we ask
what are the velocity and temperature slip boundary conditions at a body surface for
the Navier-Stokes equations due to the presence of the Knudsen layer adjacent to the
body surface.

To understand the asymptotic behavior of the Knudsen layer, we may stretch loc-
ally the coordinate normal to the body surface such that the gas-kinetic motion in the
Knudsen layer reduces to a locally defined half-space problem and the kinetic equation
takes on a one-dimensional character in the form studied in this paper.

Since the asymptotic boundary condition of the Knudsen layer is given by the
Chapman-Enskog equations, the asymptotic form of the particle distribution function
is nearly Maxwellian. If we also assume that the effect of the body surface is to re-emit
molecules described by a suitably chosen Maxwellian distribution and that the macro-
scopic variables do not vary appreciably throughout the Knudsen layer. a linearization
scheme for the one-dimensional kinetic equation in the sense described in sections 2
and 3 is justified. Based on the constant collision frequency BGK model, the pertinent
linearized kinetic equation for the Knudsen layer is that given by equation (3.7). The
velocity-slip (or Kramers problem) for this equation for a diffusely reflecting wall has
been solved exactly by Cercignani[9] and an accurate velocity-slip coeflicient has been
calculated.[1]. Although approximate analyses of the associated temperature slip prob-
lem have been reported by a number of authors|2, 19, 23, 28, 29], an accurate calcula-
tion of the temperature-slip coefficient has not been previously reported. Since the
temperature-density effects for the problem for a diffusely reflecting wall are un-
coupled from the transverse momentum effects, we will show that an accurate determi-
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nation of the temperature slip coefficient for steady gas-kinetic motion may be ettected
by using the method of elementary solutions and the half-range expansion theorem de-
veloped in this paper for the vector integrodifferential equation 4. 1)

It is straightforward to demonstrate that the heat flux in the normal direction in the
Knudsen layer is a constant and since the Chapman-Enskog solution relates the heat
flux linearly to the temperature gradient, to match the Chapman-Enskog region and the
Knudsen layer it is only necessary to consider an asymptotic boundary condition with a
constant temperature gradient. It is interesting to note that such an asymptotic bound-
ary condition, as far as the temperature-density effects are concerned. can be satisfied
by taking the asymptotic perturbation distribution function to he

T 2 4
s (X, c)=[ ’ ] [2 A, (1) + D A,uv,ﬁ(.\;,n}, (13.1)
ol i

(g+(i‘*’l -1

where the @.s and Wjs are the discrete solutions to equation (4.1), and ¢.. ¢. are the
components of the dimensionless particle velocity in the transverse directions. Since
the Chapman-Enskog theory requires the medium to obey the perfect gas law and the
pressure in the Knudsen layer far from the wall is a specified constant, we deduce from
the definitions

o (X) = 77 "/ZJ'}L,H(A\'.C)C Cdte (13.2)
and
T (x) = 17 ”:J. how (X, 0)(¢ = e de, (13.3)
the requirements
A= - V3A, and A, = — \ AL (13.4;

For an asymptotic temperature gradient of unity, it is clear that the temperature slip
coefficient £ defined by T...(0) = &(d/dx)T...(x)|. .« will be given by £ = €'[.. | 19]. where

e =\1A,. (13.5)
I = @/S)H/nk)m[2kT)'" is a mean free path, and J{ is the thermal conductivity.

For a diffusely reflecting wall, the boundary condition at x = () requires

B 4 2 s
[0]:2 A.tba(,uuz AP, (n, 1) dn, w0, =). (13.6)

o |

The unknown constant B is related to the density of the gas near the wall and need not
be specified for temperature-slip coefficient calculations. We make use of equation
(13.4) and the specified asymptotic temperature gradient to write equation (13.6) as

Vid(p)— @)= A D () + (A — B)Ds(e) + D, f A (D, (n. w)dn.
(13.7)
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Theorem 3 and equation (10.16a) enable us to solve equation (13.7) for A,:

A,:f O IVID(w)— D)l e " pudu. (13.8)

(

It is clear from the definition of Q(uw) that A, may be expressed in terms of
appropriate moments of the H matrix discussed in section 11. The numerical procedure
used 1o evaluate integrals involving the H matrix was given in section 12. We find

€ =" (1-17597). (13.9)

<

This compares with the variational result of €’ = 37" (1-1621), [2, 19, 23], Wang Chang
and Uhlenbeck’s result of € =377 (1:150), [28], and Welander's value of €' = i7"
(1-17%).129]. We believe our result to be accurate to the number of significant figures
quoted.
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Résumé—La méthode des solutions élémentaires est employée pour résoudre deux équations integro-
différentielles couplées pour la détermination des effets du rapport température-densité, dans un modéle
BGK linéarisé dans la théorie cinétigue des gaz. 1.état complet de tout le domaine et les théorémes
d’orthogonalité sont démontrés pour les modes normaux développés et fa fonction de Green pour un milieu
infini est établie comme illustration du formalisme sur tout le domaine.

Le probléme de Riemen approprié & une matrive homogéne est étudiée et I'état complet de tout e domaine
et les théorémes d’orthogonalité sont démontrés pour un certain sous-systéme des modes normaux. Les
théorémes nécessaires d'existence et d'unicité concernant la matrice H. fondamentale pour I'analyse du
domaine complet, sont démontrés et une méthode de calcul précise et efficace est présentée. Le probléeme du
glissement de température d’un demiespace est résolu analytiquement et une valeur trés précise du coefficient
de glissement de température est donnée.

Zusammenfassung—Das Verfahren elementarer Losungen wird verwendet, um zwei gekuppelte Integro-
differentialgleichungen zu losen. die geniigen. um die Temperatur-Dichtewirkungen in einem linearisierten
BGK-Modell in der kinetischen Theorie von Gasen zu bestimmen.

Vollbereichs-Vollstindigkeits- und Orthogonalitdtstheoreme werden fiir die entwickelten Normalformen
bewiesen und Green’s Funktion des unendlichen Stoffes wird als eine Illustration des Vollbereichsformalis-
mus konstruiert.

Das entsprechende Riemann’sche Problem einer homogenen Matrix wird besprochen und Halbbereichs-
Vollstindigkeits- und Orthogonalititstheoreme werden fiir eine bestimmte Untergruppe der Normalformen
bewiesen. Die fiir die H-Matrix belangreichen erforderlichen Existenz- und Eindeutigkeitstheoreme, grund-
legend fiir die Halbbereichs-Analyse, werden bewiesen, und eine genaue und wirksame Berechnungsmethode
wird besprochen. Das Temperaturgleitproblem des Halbraumes wird analytisch geldst und ein sehr genauer
Wert des Temperaturgleitkoeffizienten wird berichtet.

Sommario—I| metodo delle soluzioni elementari viene usato per risolvere due equazioni integrodifferenziali
accoppiate, sufficienti a determinare gli effetti della densita di temperatura in un modello BGK linearizzato
nella teoria cinetica dei gas.

Vengono dimostrati i teoremi della completezza e dell’ortogonalitd su tutta la gamma per i modi normali
sviluppati e, per illustrare il formalismo sull’intera gamma. viene costruita la funzione di Green per un mezzo
infinito.

Viene discusso il problema di Riemann per una matrice ontogenea appropriata €, per un certo sottoas-
sieme det modi normali, vengono dimostrati i problemi di completezza ¢ ortogonalita per la semigamma. Ven-
gono dimostrati i necessari teoremi di esistenza e unicitd relativi alla matrice H. fondamentali per "analisi
della semigamma, e viene discusso un metodo di caleolo accurato ed efficiente. 1l problema
temperatura/scorrimento del semispazio viene risolto analiticamente e viene dato un valore molto accurato
del coefficiente temperatura/scorrimento.

AGcrpaxt — [IpuMeHEH METOM HNIEMEHTAPHBIX PEILCHMIT AN PELIeHHs ABYX WHTErpo-IH(depeHuatbHbiX
ypaBHEeHHH AOCTATOMHBIX At onpefencHus 3(OeKkToB TeMIiepaTyphl H IOTHOCTH B JIHHEAPH3OBAHHOH
mozenn (BGK) B xuneTyeckoll TeOpuH ra3os. [lassl noxasaTenscTsa Teopem o0 obiuell noaHOTE H OpTO-
FOHANBHOCTH JJIS Pa3sBHBAEMbIX HOPMAbLHBIX DEXHMMOB, mocrpoeHa ¢ynxuus I'puna 1sa OeckoHedHOH
cpedBl B KAa¥eCTBE MIUTIOCTPAuUMM obuero gopmanusma. OOCyxkaeHa COOTBETCTBYIOLIAA DUMaHOBCKad
npobeMa OAHOPOIHON MATPHIbI, AZHb! OKA3aTeNbeTBA TEOPEM O IIOJOBHHHON MOIHOTE H OPTOTrOHAb~
HOCTH IUIS OIpPedesIeHHOM TOACHCTEMbI HOPMATILHBLIX PeXXHMMOB. JlokasaHbkl HCKOMBIE TEOPEMBI O CYIIECTBO-
BAHHH K €AMHCTBEHHOCTH OTHOCHTETBHO MaTpuubi H, nexaliue B OCHOBE aHa/M3a MOJIOBHHHON IOJHOTSI,
a Taoke OBCYXIEH TOYHbIH PAUMOHANIBHBIN METOZ BBIYMCICHHA. AHANHTHYECKH pelucHa npobliema nomy-
OPOCTPAHCTBEHHOTO CKONBXEHHS M TEMICPATyphi, cOODIICHO BBICOKOTOYHOE 3HakeHHe KO>(dmuueHTa
CKOBKCHAN ¥ TEMIIEPATYPHL.



