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Abstract-The method of elementary wlution\ i\ employed to wlve two coupled integrodifferential equation\ 
\ufficient for determining temper;lture~~len~it4’ effect\ in a linexi/cd BGK model in the kinetic theory of 
ga\e\. 

Full-range completeness and orthogonnlity theorems are proved for the developed normal mode\ and the 
infinite-meLGum Green‘\ function is con\tructed a\ an illustration of the full-range formalism. 

The appropriate homogeneou\ matrix Riemann problem i\ discu\\ed. and half-range completenesc and 
orthog~mality theorem\ are proved for ;I certain wh\et of the normal mode\. The required existence amI 
uniquenes\ theorems relevant to the H matrix. ha\ic to the half-range analy\i\. are proved. and an accurate 
and efkient c~~mputntional meth~xi i\ discu~wtl. The half-\pace tempcratmx-\lip problem i\ \olved analyti- 
sally. anJ ;I high11 ac‘curxte value of the temperature-\lip coeflicient i\ reported. 

I. INTROl~~‘CTION 

THEI~F FXISIS in the kinetic theory of gases ;I class of one-dimensional problems for 
which the tranxver\e momentum and heat-transfer effects can be separated by project- 
ing the basic kinetic equation describing the particle distribution function onto certain 
properly chosen directions in a Hilbert space. The resulting expression describing the 
heat-transfer and compressibility effects is a vector integrodifferential equation with a 
matrix kernel similar in form to one studied previously by Bond and Siewert [4] and 
Burniston and Siewert 151 in connection with the scattering of polarized light. It can be 
<hewn that such ;I vector integrodifferential equation admits a general solution similar 
to that suggested by Case[7] for scalar transport problems and applied by 

Cercignani [ 121 to kinetic equations. 
We develop in this paper the elementary solutions to the vector integrodifferential 

equation basic to ;I linearized, constant collision frequency (BGK) model suggested by 
Bhatnagar rt trl. [3] and Welander[39]. The elementary solutions, some of which are 
generalized functions[l4]. can be shown to possess rather general full-range and half- 
range completeness and orthogonality properties. The expansion (or completeness) 
theorems are proved by reducing a system of singular integral equations to an equival- 

ent matrix Riemann problem and subsequently making use of the theory of 
MandiavidLe and Hvedelidze[ZO] and Muskhelishvili 13-11 to establish the solubility of 
the resulting equations. 
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As an application of our established analysis, we construct in this paper the infinite- 

medium Green’s function useful for developing particular solution% to the basic tran\- 
port equation. We also make use of the half-range expansion theorem to solve the 
notoriously difficult temperature slip problem considered previously 12, 19.23.2X. 291 
by approximate methods. Our solution permits an accurate computation of the ‘tem- 
perature slip coefficient’ which may be used to evaluate the merit\ of approximate 
techniques. 

2. THE KINETIC MODEL .AND LINEARIZATIOh’ 

Basically, the BGK model is constructed by replacing the collision integral in the 
Boltzmann equation by a more tractable relaxation term: we therefore write 

[s 4 +u v .f(y, u, 7) = vlP(y, u. 7) --f(y. u. T)l. (2. I ) 

where f(y, u, r) is the particle distribution function, y is the position vector, u is the 
particle velocity, T is the time, and v is a characteristic collision frequency. To ensure 
that the model conserves particles, momentum and energy, we require that 

I 
[I(y, u, 7) - f(y, u, T)IU d‘u = 0. (2.2) 

where the integration is to be taken over all velocity space and U is a five-element vec- 
tor with components 1, u,, uZ, us, and Al’, the collisional invariants. Here u,,, LY = 1. 3. 
and 3, and u are respectively the components and magnitude of u. The invariance re- 

quirements given by equation (2.2) can be satisfied by choosing 

m 

25TkT(y, 7) 1 ’ (2.3) 

the local Maxwellian distribution. Here 177 is the particle mass and k is the Boltzmann 
constant. In addition 

defines the local number density n(y, T), the fluid velocity q(y, T), and the absolute 
temperature T(y, T). 

It is not difficult to demonstrate that the model given by equations (2.1), (2.3), and 
(2.4) admits an H theorem, such that 

g f(u,T)lnf(u.T)d’lc SO, 
I 

(2.5) 

for spatially uniform conditions. Thus the model possesses many of the important prop- 
erties of the full Boltzmann equation. 

Because of equation (2.4), the model is described by a nonlinear functional equa- 
tion; however, we consider circumstances for which the particle distribution function 
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f(y. IL T) differs only slightly from an initial Maxwellian distribution f”(u) characterized 
by a set of constant initial values of the number density I?,~, fluid velocity q,,, and 
temperature T,,. If we now write 

f(y. u, 7) = fO(U) + f,(y, IL 7), (2.6) 

and truncate f(y, u, T) at the linear terms in a Taylor series expansion about fi,, we find 
that equation (2.1) can be approximated by 

with 

~+(c+v).v+l h^(x,c,t)= 1 I i(x,c’, t)K(~‘:c)e~“~d’~‘, (2.7) 

and where 

t = vr, (2.9a,b) 

(2.8) 

(2.lOa,b) 

and 

fil(C)h^(X, c. t) = f,(x, c, t). (2.1 I) 

A model equation more general than equation (2.7) may be constructed, as 
suggested by Gross and Jackson [ 131 and Sirovich[27], by expanding the kernel of a 
linearized Boltzmann equation in an appropriately chosen complete and orthonormal 
set of eigenfunctions. We shall, however, restrict our attention to the linearized model 
described by equation (2.7). 

If we now let &(c), a = 1, 2, . . , 5, denote the elements of the vector 

4(c) = + (2.12) 

where c,, cZ, c?, and c are respectively the components and magnitude of c, then 
equation (2.8) can be written as 

KCc’ :c) = &c)cf~(c’). (2.13) 

Here the superscript tilde is used to denote the transpose operation. We note that the 



elements of 4(c) obey the orthonormal conditions 

(d‘,, CjQ ),, = 6,, ii : a,@ = 1. 2. . . * 5. (2.14) 

in a Hilbert space (a) of the functions of c defined by the inner product 

(A,, A,),, = 
I 

A,(c)A?(c) emI2 d3c. (2.12) 

The elements &(c) are, of course, related to the collisional invariants which define the 
U vector in equation (2.2), and the orthogonality conditions stated in equation (2.14) are 
therefore direct consequences of the invariance requirements of equation (2.2). 

3. THE VECTOR klINETIC‘ EC_)I:ATION 

As stated in the Introduction, we are primarily interested in steady-state gas-kinetic 

problems with plane symmetry. Without loss of generality. we set q. = 0. and thus the 

steady-state version of equation (2.7) for 

becomes 

We now follow Cercignani[l2] and consider the functions 

g,(cz, CT) = Tr =. gz(c.‘, (,1) = 7r “ycI + ci - I), 

(3.2) 

(3.3) 

It is a straightforward matter to demonstrate that the g functions given by equations (3.3) 
satisfy the orthonormal conditions 

(&. go ),, = 6,~. (Y = I. 2. 3. and 4. (3.4) 

in a subspace (h) of the functions of c: and (‘? defined by the inner product 

We now span the Hilbert space (h) by the subspace (c) characterized by the g,‘s and a 
subspace (d), the orthogonal complement to (c ): subsequently we expand h (zL,, c) of 
equation (3.2) in the manner 

where yTJ(x,,c) is the component of h(s,,c) belonging to the subspace (d). Such an 
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expansion yields the interesting property that the inner products (qer,, be)<,, (Y = I, 7, 3, 

and 4, are simply related to the perturbations of the number density, the temperature, 
and the transverse components of the fluid velocity, respectively. 

Substituting equation (3.6) into equation (3.2) and projecting each term onto the 
appropriate directions of g, in the Hilbert space (h). we obtain 

(3.7) 

where @(x, p) is a four-element vector with components qIr, (s, p), cx = 1.2, . . ., 4, and 

d/5(+;) 1 0 0 

ti 0 0 0 

J(P)= ! 0 0 IO 1 (3.8) 
0 00 1 

For convenience. we have changed the variables s, and C, to .Y and CL. We note that the 
two functions q,(s. CL) and ‘P2(s, p). characterizing the perturbations of the number 
density and temperature respectively, are described by a set of two coupled integ- 
rodifferential equations. These two equations are. of course, uncoupled from the func- 
tions T?(.Y. p) and 9\lrJ(s. F) which describe the perturbations of the transverse 
momenta. 

3. EI.EMENTARY SOLUTIONS OF THE TWO-VECTOR TRANSPORT EQUATION 
RELEVANT TO TEMPERATIJRE-DENSITY EFFECTS 

We are interested in the steady-state, gas-kinetic effects of temperature-density 
variations in plane-parallel media. According to equation (3.7). the relevant coupled 
equations are 

~~~(.r.~)+\v(.r.,)-~Q(~) 
I’, 

Q(p’)W(r. p’)e I”’ dp’, (4.1) 
rr 

where Q(p) is the transpose of 

(4.2) 

and q,(s, p) and qv2(s, y), which are sufficient to determine the temperature-density 
effects, are respectively the upper and lower entries in the two-vector w(s, F). We 
should like to note that equation (4.1) is quite similar to the equation of transfer used in 
a related study[4, S] of the scattering of polarized light. 

Following Case171 who introduced the method of normal modes in regard to 
one-speed neutron-transport theory, we search for elementary solutions to equation 
(4.1) of the form 

W6(.u. FL) = F(5. w))e ii<, (4.3) 

where 5 and F([, F) are the eigenvalues and eigenvectors to he determined. From equa- 
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tion (4.1), we obtain 

where the normalization vector M(t) is given by 

~(5) = 1 
x 

&)F’(& cLKp2 dp. (4.5) 
1 

Equation (4.4) admits both discrete eigenvalues and a continuous spectrum. We 
consider first the discrete spectrum: 5 = ni, Irn 77; # 0, and solve equation (4.4) to obtain 

(4.6) 

where 7i are the zeros (in the complex plane cut along the entire real axis) of the 
dispersion function 

A(z) = det A(;). (4.7) 

Here the dispersion matrix is 

A(z) = I + 2 
I’. 

T(P) $. (4.8) 

with I denoting the unit matrix and the characteristic matrix given by 

WF)= --!-b)Q(pk &'. 
6 

Further, M(vi) is a null vector of A(vi) such that 

(4.9) 

A(ni)M(ni) = 0. (4.10) 

The argument principle[ lo] may be used to show that A(z) has no zeros in the finite 
cut plane; however, since h(z) - (a/z”) + . , for 121 tending to infinity, we may deduce 
four ‘discrete’ solutions to equation (4.1). In the limit Iz I-+ 30, we obtain from equations 
(4.6) and (4.10) 

To construct the other two solutions requires a technique discussed by Case and 
Zweifel[8] to split the degeneracy at infinity. The resulting solutions are 

(4.13) 
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It should be noted that equations (4. I I) are solutions to equation (4.1) and to equation 

(4.4) in the limit 151 --,x: whereas. equations (4.12) are solutions only to equation (4. I). 

We now consider the continuou\ spectrum: 6 = q, with 1n1 q = 0. and the solutions 

to eqtlation (4.4) are 

F(T.~)=$$+(,) ] + A*(T)~(T -CL) Q(LL)M(~). (4.13) 

where Pv( I/.\-) denotes the Cauchy principal-value distribution, and 6(s) represents the 
-II 

Dirac delta distribution. Pre-multiplying equation (4.13) by Q(p) e 
over all p. we find 

[A(T)- A”(rl)V(~)lM(rl) =O. 

where 

’ and integrating 

(4.14) 

and hence from 

det [A(T) - h*(rl)V’(~)l= 0. 

(4.15) 

(4.16) 

we obtain a quadratic equation for the function A*(q). In general there are two solu- 
tions which we label AT(q) and AT(q), and thus we write the two-fold degenerate 
continuum solution\ as 

F,,(rl. CL) = $=[ TP~(&, +A?(TJ)?~(T--) Q(~)M,,(rl),a=Ior9,,rl~(-~;.x). ] 

(4.17) 

where the vectors M,, (7) are to he determined by the corresponding A Z(q ). through 

equation (4.14). 
Having established the elementary solutions. we write our general solution to 

equation (4. I ) as 

where the expansion coefficients A,, and A,,(q) are to be determined once the boundary 
conditions of ;I particular problem are specified. Although in general the integral terms 
in equation (4.18) may diverge for s # 0, this will not be the case when the 
specific problems of sections 7 and 13 are considered. 

5. A FIlLi:RANGE EXPANSION THEOREM 

7‘0 ensure that the normal modes developed in the previous sections are sufficiently 
general for full-range, p C(- x, ~1, boundary-value problems, we should now like to 
prove a basic result. 

Theorenr 1. The functions F,(p), F,(p), F&L) = *?(O, p), F&L) = *JO, CL), und 
F,.(q, p 1. (Y = I and 2. 7 c(- *, x). form a cwnplete basis set for the el-pnnsion of UII 
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arbitrary two-vector I(p), which is Hiilder continuous on any open interval of the real 
axis and, for suficiently large 1~1, satisfies 

in the sense that 

11, (pL)I exp (-/pII < x, CY = I or2. 

To prove the theorem, we shall construct an analytical solution to the above coupled 
singular integral equations. For the sake of brevity, we write 

I(/J)=I(E.L)- i: A-F,(F), (5.2) ,” = I 

introduce the (2 x 2) matrix 

G(rj, II)= [F,(n, /J) F:(n, CL)], (5.3) 

let A(n) denote a vector with elements A,(T), (Y = 1 and 2, and thus write equation (5. I) 
as 

I 
% 

i(p) = G(T, FM(V) dv, p Et- ~3, ~1. (5.4) -, 

Pre-multiplying equation (4.13) by O,(F) e U- and invoking equation (4.14), we obtain 

&)G(q, CL) em”’ = vr(p.)+G(r, -1*)1\(v) 
1 
V(77L (5.5) 

where 

V(n) = [M,(n) Wdrl)l (5.6) 

is the (2 x 2) normalization matrix. We now pre-multiply equation (5.4) by &CL) e I’.. 
make use of equation (5.5), and integrate the S term to obtain 

where B(q) = V(q)A(n). Equation (5.7) may now be solved explicitly by using the 

theory of Muskhelishvili[21]. To convert equation (5.7) to a special form of a matrix 
Riemann problem, we introduce the sectionally holomorphic matrix 

(5.8) 

The boundary values of N(Z) as z approaches the real line from above (+) and below 
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(-) follow from the Plemelj formulae[21]: 

and 

N+(w) - N-(p) = ~B(cL). (5.9b) 

In a similar manner, the boundary values of the dispersion matrix follow from equation 
(4.8): 

A’(p) +A-(cc) = 2A(/J), (5. IOa) 

and 

A+&) - h-(/L) = 277i/_L~(I*). 

Equations (5.9) and (5.10) may now be used in equation (5.7) to yield 

p&F)i(p)e-I1’ = A’&)N+(p) - A-(cL)N~(~). 

which can be solved to give 

(5.10b) 

(5.11) 

We note that for large 1~1, 

and 

(5.12) 

(5.13) 

(5.14) 

and therefore if the N(z) as given by equation (5.12) is to vanish when ]zl tends to 
infinity, as equation (5.8) prescribes, we must impose on the vector i(w) the four 
constraints 

waG!(p)i(pL)emu2 dF = 0. LY = I and 2. (5.15) 

Recalling equation (5.2) for i(p), we observe that equation (5.15) will be inherently 
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satisfied if we specify the expansion coefficients A,,. cy = I, 2. 3. and 4. to be 

A, 

A.? 

A7 

A4 

12 =- 
5vG (5.16) 

where 

Ima A p”L(~)e~“‘d~., (Y = lor2:p = l,2,3or4, (5.17) 

and I,(F) and I&) are respectively the upper and lower entries of I(p). Theorem 1 is 

therefore established. 
Although we could pursue equations (5.9b) and (5.12) to obtain explicit results for 

the continuum coefficients A,(q), a = I or 2, we prefer to summarize the final expres- 
sions in terms of the formalism of the full-range orthogonality relations given in the 

next section. 

6. ORTHOGONALITY RELATIONS AND EXPLICIT SOLUTIONS 

We should first like to state the general orthogonality relation relevant to all 

solutions including the special distributions, F(.$, CL), of the separated equation (4.4). 
Theorem 2. All eigenvectors F(& CL) which are solutions of equation (4.4) are 

orthogonal on the full range, p c(-x, =), in the sense that 

To prove the theorem, equation (4.4) is first pre-multiplied by fi(&‘. p)emUL/& the trans- 
pose of equation (4.4) with 5 changed to 5’ is post-multiplied by F(.$ p)e “‘/t’, and the 

two resulting equations are then integrated over all p and subtracted one from the other 

to yield 

(6.2) 

which establishes equation (6.1). Though equation (6.2) is a general statement of 
full-range orthogonality, it is clear that several additional relations are required here. 
First of all, since F,(p) and F&) are both associated with 5 -_,a, equation (6.2) does not 
ensure that they will be mutually orthogonal in the sense of equation (6.1). In addition, 
the vectors F3(p) and F,(p), being derived from the solutions of equation (4.1), rather 
than equation (4.4), are not included in Theorem 2. However, it can be easily shown 
that F,(p) and F&) are mutually orthogonal, and, in fact, self-orthogonal; the same is 
true for F3(p) and F4(p). In addition, F3(p) and F&) are orthogonal to the continuum 



solution\ F,(n, F) and F,(n, CL). We note that F,(p) and FL(p) are not orthogonal to 
F,(p) and F,(p): however, suitably defined adjoint vectors for these special cases can 

be developed by employing a Schmidt-type procedure. 
Considering first the normalization integrals related to the solutions given by equa- 

tion (4.13). we find 

where 

The Kronecker La appearing in equation (6.3) should be noted since it ensures that the 
degenerate continuum solutions given by equation (4.13) are orthogonal even for 7’ = 
n. To establish equation (6.3) requires the use of the Poincare-Bertrand formula[3,1] and 

a relation which can be deduced from equation (4.14). 
Though the representations of the two continuum solutions given by equation (4.13) 

were convenient for proving the full-range expansion theorem, we choose to make use 
of more explicit forms for actual applications. We note that equation (4.16) is quadratic 
in A*(n), and thus the two solutions will in general involve radicals. To avoid the 
cumbersome nature of the ensuing solutions, we prefer the linear combinations 

which. for judicious choices of T,,,(q), enable us to deduce the more tractable solutions 

@,(77, PI = 

i 
-$$+(&)e “?+ [i+ A,,(n)]6(n -/J) 

1 

(6.7a) 

aJY!(o. E,L) = 
CL) I- (6.7b) 

where 

(6.8a) 
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or 

and 

A1(77)=~+(^f111-~)A,1(77). (6.9) 

We note that equations (6.7) are not mutually orthogonal for n’ = n; however, a 
Schmidt-type procedure may be used here as well. Since our final adjoint vectors follow 
in a manner analogous to that reported by Siewert and Zweifel[26], we shall simply 
summarize our conclusions below. For the case of the degenerate continuum modes, 
we find that the procedure discussed in reference [X1 can be used to establish the 
required adjoint vectors. To unify our notation, we also define 

@a(~) 2 Fa(pL). cy = l,2,3and4. (6.10) 

The orthonomal full-range adjoint set is given by: 

(6.1 la) 

(6.11b) 

(6.1 IC) 

(6.1 Id) 

and 
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The required orthogonality relations among the full-range basis and adjoint sets 

: a,,,,: CX,/~ = l-2,3, or4, (6.13a) 

: Q = 1,2, 3, or 4, fi = I or 2, (6.13b) 

With the formalism thus established, we note that all expansion coefficients in 
equations of the form 

may be expressed immediately in terms of inner products: 

’ A,, = I %,,(P )1(p) e li’ pdp, cy = I. 2,3 and4, 
1 

and 

A,(q) = I’, k,(77. p)I(11.)e U’2 pdp. CY = 1 and 2. (6.16) 

(6.15) 

7. THE INFINITE-MEDIUM GREEN’S FUNCTION 

In order to illustrate the use of the elementary solutions of equation (4.1) and the 
relevant orthogonality relations, we should now like to develop the infinite-medium 
Green’s function. Here we seek a solution to 

(7.2) 

Clearly, since the kinetic equation conserves particles, kinetic energy, and momentum, 
there will exist no bounded (at infinity) solution to equation (7.1): however, the Green’s 
function we develop may be used in the classical manner to construct particular solu- 
tions to equation (7.1) for arbitrary inhomogeneous source terms for semi-infinite or 
finite media. As discussed by Case and Zweifel181. we neglect the inhomogeneous term 
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in equation (7.1) and require the solution to the resulting homogeneous equation to 
satisfy the ‘jump’ boundary condition 

where the argument list has been extended to include the parameters .yU, plr and ~2. We 
therefore write the desired solution as 

and 

Though the left-hand side of equation (7.5 ) certainly is not a Holder function, Case and 
Zweifel[8] have concluded that expansion theorems similar to our Theorem 1 remain 

valid formally even for this type of delta distribution. We therefore pre-multiply equa- 

tion (7.5) by X,(p) e LL2, CY = I. 2, 3, or 4 and X_(n’. p) em*‘. a = I or 2, and integrate 

over all p to find, after invoking equation (6.13). 

for x < s,,. (7.4b) 

Substitution of equations (7.4) into equation (7.3) yields the full-range expansion 

and 

A, = p,Xn,(p,) e “:+ pGL,(& e “$. CY = I,?, 3, and 4, (7.6a) 

An(v) = P~X,~(~, p,,) e “;+ P~X_~(~, ~~1 e Wi. cy = I and 2, (7.6b) 

where the subscripts I and 2 are used to denote the upper and lower elements of the X 
vectors. Since all expansion coefficients required in equations (7.4) are given by equa- 
tions (7.6), the infinite-medium Green’s function is established. 

8. A HALF-RANGE EXPANSION THEOREM 

Having developed in sections 5 and 6 the necessary completeness and orthogonality 
properties of our normal modes, we should now like to discuss the analysis required for 
the considerably more interesting problems defined by half-range, F E(O, m), boundary 
conditions. The following theorem states the very important half-range expansion prop- 
erties basic to a certain subset of our derived elementary solutions. 

Theorem 3. The functions F,(p), F&) and F,(n, CL), (Y = I and 2, n c(O, x), form 
a complete basis set for the expansion of an arbitrary two-vector I&) which is Hiilder 
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continuous on any open interval of the positive reul nxis and, for suficiently [urge /p j. 

satisfies 

in the seltse thut 

JL(r*)] exp C- IpI) <x5 a = 1 or 2, 

(8.1) 

To prove this theorem, we premultiply equation (8.1) by e W2 Q(p). integrate the 

6 term and use equations (4.13) and (4.14) to obtain 

where 

i(/d=W- i: A,F<,(p) (8.3) 
<I I 

and 

B(n) = V(rl)A(n). (8.4) 

In addition, V(q) is given by equation (5.6) and the unknown A(n) has elements 
A ,(n ) and A:(n). In a manner similar to that used to prove Theorem 1, we now introduce 

The N matrix is clearly analytic in the complex plane cut along the positive real axis. 
Further. the Plemelj formulae[21] can be used, with equation (8.5) to show that the 
boundary values of N(z) satisfy 

I 
7 

ri[N’(p.)+N (pII= P 
0 rlB(rl& (8.6a) 

and 

N*(p)-N-(p) = wB(p). (8.6b) 

Equations (8.6) can now be used, along with equations (S.lO), to express equation 
(8.2) in the form 

~cL(r(~h) e “-=A’(dN‘(p)-.4 (p)N (p),pC(O,x). (8.7) 

If we now let x(z) denote a canonical (non-singular in the finite plane) solution to the 
homogeneous Riemann problem defined by 
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where 

then equation (8.7) can be solved immediately to yield 

1 
. 

(8.8b) 

(8.9) 

Here, P(z) is a matrix of polynomials, and 

r(F) = Px+(PL)[A’(P)I-f. (8.10) 

Since the G matrix given by equation (8.8b) is continuous for p E [0, p), G(0) = I and 
G(p)-+1 as p +m, the analysis of Mandiavidze and Hvedelidze[20] can be used, after 
an elementary transformation of variables, to ensure the existence of a canonical solu- 
tion to the Riemann problem defined by equation (8.8a). In section 9 we argue that the 
partial indices K, and K? associated with our canonical solution X(z) are 

K, = K:= 1, (8.11) 

and thus if we allow our canonical matrix X(Z) to be of normal form at infinity[21], we 
may write 

lim z X(Z) = LL (8.12) 
.I 

where A is nonsingular and bounded. 
From the defining equation (8.5), we observe that z N(z) must be bounded as IzI -+ x, 

and thus from equation (8.9) we conclude that 

we must therefore set P(z) = 0 and, in addition, require that 

I$L>&~)~(~) e (” dy = 0. (8.14) 

Equation (8.14) is, of course, not satisfied by all i(p), but recalling equation (8.3), we 
conclude that choosing the discrete expansion coefficients to be solutions of 

I 
m 

0 

(8.15) 

renders equation (8.1) valid for all appropriate I(k). The matrix in equation (8.15) whose 
inverse is required to obtain A, and AZ can be shown to be non-singular by making 
use of a Cauchy integral representation of X(z). The theorem is therefore proved_ 



Though, as for the full-range case, we could pursue this completeness proof to 
construct the continuum expansion coefficients A(v), q E(0, x), we find it more conve- 

nient to express the final results in terms of half-range orthogonality relations. 

9. A PROOF REGARDING THE PARTIAL INDICES OF THE 
RIEMANN PROBLEM 

The proof of the half-range expansion theorem given in section 8 is based on the 
proposition that the partial indices K, and Kz are both non-negative. In fact, equation 

(X.13) is valid only if the partial indices are given by KI = KZ = 1. In this section we 
develop the required 

We consider then 

where 

proof that K! = K? = 1. 
the homogeneous matrix Riemann problem defined by 

@)‘(/_L) =G(P)W(P). P Cl().x), (9.1) 

G(p) = /z’(cL)IA (/.L)I ‘. p CIO. 4. (9.2) 

Here we seek a matrix CD(Z) analytic in the plane cut along the positive real axis, 
non-singular in the finite plane, and with boundary values a+(p) which satisfy equation 
(9. I ). 

Since G(0) = I and G(p)+1 in the limit as p +x, we can define G(F) = I on the 
entire negative real axis and thus consider equation (9. I) for p C(- x, x). To make use 
of the result\ developed by Mandiavidze and Hvedelidze[ZO]. valid for closed con- 

tours, we make the change of variables 

<-i-z 
i+z 

(9.3) 

which maps the upper half of the 2 plane into the interior of the unit circle in the 
[-pl;me. We note that the positive (negative) real axis maps into 151 = I, Im 5 > (<) 0. 
The existence of a solution to the Riemann problem in the 5 plane follows from the 
theory of Mandiavidze and Hvedelidze [30]. since the resulting G matrix is continuous 
on the unit circle. and G(Z). the canonical solution in the -_-plane, is the image of the 
solution in the 5 plane postmultiplied by an appropriate matrix of rational functions. 

It can be demonstratedI5j that the A matrix can be factored as 

where Q(Z) is any canonical solution (of ordered normal form at infinity) to equation 
(9.1) and Y(Z) is a matrix of polynomials. which depends on the particular choice for 
@(-_ ). 

The fact that G(w) = [G(/_L)]- ‘, where the bar indicates the complex conjugate, en- 
ables us to extend the results of Siewert and Burniston’s[25] Theorem II to the 
Riemann problem defined by equation (9.1): 

Theorem 4. There exists at lecwt one canonical matrix Q,(z) of ordered normul 

form trt ir1fir7ity for the Riemtrr7r7 problem defined by eqmutiorl (9.1) such that G,(F) = 

@I( : ). 



Since the proof of Theorem 4 follows very closely one previously reported 125 1. it 
will not be given here. 

If we use a,(z) in the factorization of A(Z), the resulting polynomial matrix s i\ 

such that B(Z) = @(- 2) and P(z) = P(5), since A(Z) = A(:) = A- Z) and ‘4(-_) = h(f). 
By definition[21], a canonical solution of ordered normal form at infinity is such that 

(9.5) 

where Kc and Kz 2 K, are the partial indices. Furthermore the sum of K( and K? mUSt 

yield the total index K, which in the manner of Muskelishvili[211 can be computed di- 

rectly once the G matrix and the appropriate contour are specified. For this problem, we 

find 

K,+Kz=K =?. (9.6) 

If we now evaluate equation (9.4), for @p(z) = @J,(Z) at z = 0, we obtain 

P(O) = c.D~‘(O>~,r’(O), (9.7) 

and since a,(O) is real (recall that a,,(z) = Q,(Z)), we conclude from equation (9.7) that 

C?,,(O) # 0 and CPpzZ(0) # 0. Again from equation (9.4) for a,(z) = @,(z), we can write, 

after using equation (5.13) 

(9.8) 

from which it follows, since K is real, that 

,.,=KI= I. (9.9) 

It is clear, since a,(z) is a canonical solution of ordered normal form at infinity, and 
since K, = ~2 = 1, that 

(9.10) 

is also a canonical solution of ordered normal form at infinity and is such that G,,(z) = 
G,,(f). In view of equations (9.8) and (9. IO), we can therefore write equation (9.4) as 

A(2) = !&(z)@“(- z), (9.1 I) 

where 

(9. I2a) 



and 

(9. l’b) 

We note that Cercignani [ 1 I] has reported a factorization in the spirit of our equation 

(9. I I ). We have been unable, however, to justify some of Cercignani’s results [ 11; pp. 
X4-85] since. for example. upon ‘taking’ determinants of his equation (31 I) we find an 
inconsistency in the number of poles on the two sides of the equality sign. We have 
found that the extension of scalar results to the case of matrix Riemann problems, in 
general. does not follow immediately [S]. 

111, HALF-RANGE ORTHOCONALITY AND NORMALIZATION INTEGRALS 

The half-range orthogonality relations developed by KuSCer, McCormick, and 
Summerfield [ 181 for the elementary solutions of the one-speed neutron-transport equa- 

tion have proved to be useful for establishing concisely the solutions to a scalar singular 
integral equation somewhat analogous to equation (8.1). We should thus like to prove, 

in a manner similar to that reported by Siewert [24] for an equation of transfer basic to 
the scattering of polarized light, the following theorem concerning the half-range or- 
thogonality properties of a subset of our developed normal modes. 

Theorem 5. The eigenvectors F,(p), F,(p), F,(n, p)), and Fz(n, p), n c(O, x), ure 

orthogonul to the related set G,(p), G:(p), G,(q, p) und GAq, p), q C(O, ~1, on the 

hcrlf-rmge, I_I C(0. x). in the sense that 

Here F(.$ CL), ,$ = x or E (0, x), denotes any of the eigenvectors F,(P), F?(k), for [ = r, 
or F,(T, p). Fz(~, p). for n c(O, cf). In a similar manner, G([. p). represents either 

G,,(P) = Q(~)H(P)H~‘Q~‘(P)F,(P), (Y = 1 a-2. (10.2a) 

G,,(v. CL) = Q(P)H(P)H ‘(v)Q~-‘(P)F.,(~, IL), TI E(0.x) LY = 1 a-2. (10.2b) 

In addition 

and H(p) is the H matrix basic to our half-range analysis. In section 11 we prove the 
existence of a unique solution to the system of singular integral equations 



plus the constraint 

which we take to specify H(,u). As shall be shown, H(g) can be expressed in terms of 
a,,(z), our canonical solution, of ordered normal form at infinity, of the matrix Riemann 

problem defined by equation (9.1); that is 

which can be extended to the complex plane cut along the negative real axis to yield a 
factorization of A(z): 

To establish our Theorem 5, we first pre-multiply equation (4.4) by G([‘, p) Ed “‘15, 
we then post-multiply the transpose of equation (4.4), having changed 5 to c’, by 
~-‘(~)I-~--‘(~‘)~(~)~(cL)F(~, p) exp (- ~‘)/t’, integrate the two resulting equations over 
k from 0 to ~0 and subtract the two equations, one from the other, to obtain 

Here 

and 

If now, in the manner similar to that previously reported]24]. we make use of 
equations (4.3, (4.1 I), (4.13), (4.14) and (10.4) to evaluate equations (10.8) and (10.9) for 
all appropriate .$ and [‘. we find 

K ,([‘. 6) = Kd5’, 0: 5’ E(O, =I, 5 = = or C (O,+, ( to. 10) 

and from equation (10.7) we obtain 

&5’, p)F(& p) e-@‘ pdp = 0: &;5’ >O, (10.11) 

which proves the theorem. We have only established equation (10.11) formally for 
5’ # z. However, considering that case separately, we do find that G,(p), LY = 1 or 2, is 
orthogonal to F(.$, CL) in the sense of Theorem 5. Of course, since F,(g) and F,(p) both 
correspond to the eigenvalue 5 = =, equation (10.1) does not ensure that the inner 
product, in the sense of Theorem 5, of G,(p) with F?(p) and G*(p) with F,(p) is zero. 



However, for this special case we have carried out the algebra prescribed by equation 
(IO. 1) to show explicitly that 

so that all of the half-range eigenvectors are orthogonal in the manner of Theorem 5. 
Having established the required half-range orthogonality results, we should now like 

to consider again the normalized solutions given by equation (6.7) in order to present 
our half-range normalization integrals in a form analogous to that used for the full-range 
theory. We consider then the half-range adjoint set 

and 

O,(p) =~Q(r*)H(~)H;‘Q-‘(~)~~(~), a = 1 and 2, 
?r 

(10.13a) 

o.(n+)= Q(~)H(~)H-'(~))Q-'(~,)x,(~~, P), vWA=>, Q = 1 and2, (10.1%) 

where the vectors X,(7, p), Q: = 1 and 2, are given by equations (6.11e) and (6.1 If); we 
can therefore summarize our results in the manner 

and 

With the half-range formalism thus established, we note that the solutions for all 
expansion coefficients in equations of the form 

can be expressed concisely as 

’ - A,, = ~,~(~)I(~) e-“’ PDF.. a = 1 and 2. (10.16a) 

an d 

(10.16b) 
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We note that a set of integrals of the form 

T(5’, 5) = _/ O(8’. ~)a(- E, CL) e “’ I* dp. .$ and 6’ ) 0. ( IO. I?) 
I) 

has been evaluated and is listed elsewhere]16]. 

II. EXISTENCE AND UNIQUENESS OF THE H MATRIX 

We first wish to prove 
Theorem 6. The equations 

possess a unique solution in the class of functions continuous on every open interval of 
the positive real axis. 

Though for the sake of brevity we do not give an explicit derivation of equations 
(11. I), we note that the H matrix specified by equations (11. I) is sufficient for establish- 
ing the half-range orthogonality theorem. 

To prove Theorem VI we make use of the equivalence of the given singular-integral 
equations to a certain matrix version of the Riemann problem. In the manner of 
Muskhelishvili[21], we introduce the matrix 

N(z) = & I 0 

(I 1.2) 

which is analytic in the plane cut along the real axis and vanishes at least as fast as I/z 
as Iz] tends to infinity. The Plemelj formulae[21] can be used with equation (11.2) to 
yield 

and 

ni]N+(p) +N-~t/..~)l = PI’ fiW’tq)&. /.L C(0, x), (1 I .3) 
0 

N+(p) - N-(p) = %-+I’(& F E(0, 3~). ( I I .4) 

If we make use of equations (5. lo), ( 11.3) and (I 1.4) then equation (11.1 a) can be cast in 
the equivalent form of an inhomogeneous Riemann problem: 

where 

*b-4 = G(dfi-Cd + WPNA-(P)I-', I-L c(O, ml, (I 1.5) 

G(F) = A+(/J)]A (c~)l-‘. (I 1.6) 



Equations in the kinetic theory of gases 361 

The solution to equation (11.5) can be written as 

( I 1.7) 

where fi(:) is a matrix of polynomials, 

K(p) = [@‘(p)l~ ‘W(p.,[A-t~.,l-‘. (11.8) 

and @(-_) is any canonical solution (of ordered normal form at infinity) to the 
homogeneous Riemann problem defined by equation (9.1). In order that equation (11.7) 
have behavior as \;I approaches infinity consistent with equation (11.2), we must take 

i(z) to be a constant matrix. 
Following closely Siewert and Burniston’s[25] work on the scattering of polarized 

light. we can now use the constraint to specify uniquely the constant P(z) in equation 
(11.7). It thus follows that equation (I 1.7) along with equations (9.11) and (11.4) yields 

the result 

H(p) = @‘ia’ (-,4&(o), P E(O.x), (1 1.9) 

where e,,(z) is the canonical solution (of ordered normal form at infinity) used in 

equation (9.1 I). We note from equation (11.9), since a,,(~) = a,,(f), that H(p) is real for 
I_L G(O. x). Further, equation (I 1.9) can be used to extend the definition of H(p) to the 
complex plane: 

H(Z) = @a’(- =)6(O), (11.10) 

so that the A matrix can now be factored as 

We note that equations (5.10). (9.11) and (11.10) can be used in the Cauchy integral 

representation 

to obtain 

H(z) = I + OH 
I 0 

or 

(11.11) 

(11.12) 

(11.13) 

Since we have established the existence of a unique solution to equations (Il. 1) and 
developed equation (11.13) specifically to be used, along with equation (11. lb), as the 
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basis for our procedure for computing the H matrix. it followIs that we require proof elf 
Theorem 7. The equations 

and 

possess a unique solution in the class of functions continuous on every open interval of 
the positive real axis. 

We have shown that equations (I 1.1) possess a unique solution; thus we need only 
show that any solution of equation (11.14a) is also a solution of equation (11. la). We 
first write equation (11.14a) as 

or, alternatively, 

1 
H(p)=I. 

tI1.15a) 

(11.15b) 

If the transpose of equation (11.1Sb) is post-multiplied by 

then, after making use of some partial-fraction analysis and equations (4.15) and (I 1.15). 
we obtain 

(11.16) 

which proves Theorem 7. 

12.AN EXPEDIENT METHOD FOR COMPUTINCi THE H MATRIX 

It is clear from the previous sections of this paper that the H matrix is the basic 
quantity required in the solutions of problems defined in terms of equation (4. IX) and 
specified by half-range, r_~ E(O, xc), boundary conditions. It is also apparent from the 
analysis of section 11 that the basic proofs regarding the existence and uniqueness of 
the H matrix have been estabiished; however, to demonstrate the utility of our analysis. 
we must now establish a procedure by which we can compute the H matrix accurately 
and efficiently. 

As we have discussed, the H matrix is uniquely specified by the nonlinear equation 



H(P) = I + /.LH(+) /L E [O. X)> (12.la) 

and the constraint 

Rather than seek a numerical solution to equation ( 12.1 a) which must also satisfy equa- 
tion (12.lb). we prefer [15. 221 first to write 

H(p) = (1 + ~)L(/J), I* c]o. x). (12.2) 

If we now substitute equation (12.2) into equation (12.la), perform some elementary 
partial-fraction analysis. and make use of the constraint, equation (12. lb), then we find 
that L(p) must satisfy 

and 

I 
x 

L(/OI’(~)(l+~)d~=1. (12.3b) 
0 

It follows from Theorem 7 that equations (12.3) have a unique solution. We regard 

equations (12.3) as the basic equations to be solved numerically because an iterative 
procedure based on these equations has proven to converge faster than a similar itera- 
tive solution of equations ( 12. I ). 

For calculational convenience. we now prefer to make in equations (12.3) the change 
of variable 

and thus to write 

CL 
t-l+ 

( 12.4) 

L.(f) = 14 fL*(f) I ’ 1-2s - 
----_iL*( s)W*( s) 

d s 

0 (I -s) f(l-.s)+.s(l--t)’ r CU), I), (13.5) 

where we have introduced the notation gA( t) = ,g[t /( 1 - t )]. We have found that equa- 
tion (12.S) can be solved quite effectively by iteration. 

The computations were performed in double-precision arithmetic on an IBM 
370/ 165 computer, and we used an improved Gaussian-quadrature [ 171 representation of 
the integration process. The iterative procedure was terminated when successive calcu- 
lations of L.(t) differed by no more than IO I’. 

To substantiate confidence in our computations. several “checks” were incorporated 
in the calculation. As expected L+(t) sati!‘ied 

I- 
I’ 

dt 
0 

L-c t W\v-( t )(l = 0. (12.6) 
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an identity corresponding to the constraint, equation ( 12. lb), to thirteen significant 
figures. The equation in terms of L*(t) corresponding to the identity[ 161 

was also verified to thirteen significant figures. 
The analytical solution [16] 

(12.8) 

where arg A+(O) = - 27r, can be shown to satisfy 

H(p)= IICLH(P) 
I 

(12.9) 
0 

where 

(12.10) 

Rather than solve equation (12.9) and the appropriate constraint for If(p) we prefer to 
write 

H(P) = (1 + P)‘L(P)? CL ClO,x). (12.11) 

If we substitute equation t 12. I I) into equation ( 12.9). perform some partial-fraction 
analysis and make use of two identities[ 161 for H(p) then we find that (after an 
appropriate change of variables) L.(t) = det L*(t) must satisfy 

I 
m=‘-t I ’ (1-2s): 

,, (l 
f*(s)L*(s) ds 

s(l-t)+t(l-s)’ 
f C[O, 1). (12.12) 

We have compared L*(r) as computed from equation (12.5) to a direct solution of 
equation (12.12) and the appropriate constraint to find agreement to nine significant 
figures. 

Finally the number of quadrature points used to represent the integration process 
was increased to suggest that the numerical values of the L. matrix given in the 
accompanying Table (I) were insensitive to further refinements in the quadrature 
scheme. 

I?. AN APPLICATION OF THE THEORY: 
THE TEMPERATURE SLIP PROBLEM 

We consider the effect of a body surface on the behavior of the particle distribution 
function of a rarefied gaseous medium. It is known that, in the absence of boundaries. 
the particle distribution function in a gas with slowly varying physical parameters obeys 
the Chapman-Enskog equations (and therefore the macroscopic variables obey the 



Table I The I,- matrix 

/ L.,,(f) L.141) L..,(f) L..,(i) 

I).0 

(I.05 
0. IO 

0.15 
I).‘0 

0.25 

0~70 
1).7i 

040 

0~45 
(1~50 

(I.ii 

11~00 
O-hi 
0.70 
0.75 
0.x0 

0.85 
O.YO 
0.95 
0.‘)‘) 

I .o 
I ~0578 I 
I ax42 
I.10976 
I.12527 
I 1364X 
1.14424 
I I4909 
I.IliY 
1.1513x 
I I4926 
I.14514 
l.l1Yl? 
I.lil2i 
I.12157 
I.1 1008 
I +967x 
I .0x If2 
I ~06454 
I dI454i 
I .(12X64 

Navier-Stokes equations). Near the body surface. the behavior of the gas is described 
by a rarefied Knudsen layer in which the collisional effects are only of secondary im- 

portance. It is natural to ask how the outer Chapman-Enskog (or Navier-Stokes) region 
can be matched consistently with the inner Knudsen layer. Saying it differently, we ask 
what are the velocity and temperature slip boundary conditions at a body surface for 
the Navier-Stokes equations due to the presence of the Knudsen layer adjacent to the 

body surface. 

To understand the asymptotic behavior of the Knudsen layer, we may stretch loc- 

ally the coordinate normal to the body surface such that the gas-kinetic motion in the 

Knudsen layer reduces to a locally defined half-space problem and the kinetic equation 
takes on a one-dimensional character in the form studied in this paper. 

Since the asymptotic boundary condition of the Knudsen layer is given by the 
Chapman-Enskog equations, the asymptotic form of the particle distribution function 

is nearly Maxwellian. If we also assume that the effect of the body surface is to re-emit 
molecule\ described by a suitably chosen Maxwellian distribution and that the macro- 
\copic variable\ do not vary appreciably throughout the Knudsen layer. a linearization 
scheme for the one-dimensional kinetic equation in the sense described in sections :! 
and 3 is justified. Based on the constant collision frequency BGK model, the pertinent 

linearized kinetic equation for the Knudsen layer is that given by equation (3.7). The 
velocity-clip (or Kramers problem) for this equation for a diffusely reflecting wall has 

been solved exactly by Cercignani [9] and an accurate velocity-slip coefficient has been 
calculated. [ I I. Although approximate analyses of the associated temperature slip prob- 
lem have been reported by a number of authors 13, 19, 23, 28, 291, an accurate calcula- 
tion of the temperature-slip coefficient has not been previously reported. Since the 

temperature-density effects for the problem for a diffusely reflecting wall are un- 
coupled from the transverse momentum effects, we will \how that an accurate determi- 



nation of the temperature slip coefficient for steady gas-kinetic rn<jtion may he ettectett 
by using the method of elementary solutions and the half-range expansion theorem de 
veloped in this paper for the vector intejiroditferenti~tl equatic~n t-4. I I 

It is straightforward to demonstrate that the heat flux in the normal direction in the 
Knudsen layer is a constant and since the Chapmart-En&og \cJlution relater; the heat 
flux linearly to the temperature gradient, to match the Chapman ~!:nkug region xncl the 
Knudsen layer it is only necessary to conyicier an asymptotic h~~ttnclar)~ ctjndition with a 
constant temperature gradient. It is interesting to note that \tjch an a\?,rnptotic hounti- 
ary condition, as far as the temperature-density effects are concerned. can be satisfied 
by taking the asymptotic perturbation distribution function to bc 

(13.1) 

where the @A and w;s are the discrete solutions to equation (4.1), and (‘:. (,I are the 
components of the dimensionless particle velocity in the transverse directions. Since 
the Chapman-Enskog theory requires the medium to obey the perfect gas law and the 
pressure in the Knudsen layer far from the wall is a specified constant, we deduce from 
the definitions 

and 

the requirements 

For an asymptotic temperature gradient of ilnity, it is clear that the temperature slip 
coefficient 5 defined by T,,,,(O) = [(d/d.r )7l\ (.\- I/> ,, will be gi\.en hl, t’ - t’l,. ( 191. where 

1, = (4/~)(rC/nk)(m/2kT)“’ is a mean free path, and .iC is the thermal conductivity. 
For a diffusely reflecting wall. the boundary condition at .\ = 0 requires 

A.,(r7)4<r(~~, p)dq, p ‘r(O. x). (13.6) 

The unknown constant B is related to the density of the gas near the wall and need not 
be specified for temperature-slip coefficient calculations. We make use of equation 
(13.4) and the specified asymptotic temperature gradient to write equation (13.6) as 



It is clear from the definition of O,(~_L) that .4, may be expressed in term\ of 
appropriate moment\ of the H matrix discussed in section I I. The numerical procedure 

ud 10 CL iiltlate intqr;il\ involvin, 11 the H matrix wa\ given in section 12. We find 

E’ = ;rr”z (1.17597). (13.9) 

Thi\ compare\ with the variational rault of E’ = :7~‘!‘ (l.l611), [2, 19. 731, Wang Chang 
and I!hlenbeck’\ result of E’ = %” (I~IY)), 1281, and Welander’s value of .s’ =:2-r”’ 
(l.l?‘:).[Y]. N’e helie~c our result to hc accur:lte to the number of \igni!icant figure\ 

q1rotcd. 



Resume--l-a methode des solutions elementaires est employee pour re\oudre deu\ 2quation\ ittteytn- 
difftrentielles couplees pour la determination des effeta du rapport temperature-denxitC, dans un modele 
BGK lintarise dans la theorie cinetique de\ paz. I.‘etat complet de tout le domaine et les thcoremc\ 
d’orthogonatite sent demontrec pour les modes normaur developpes et la fonction de Green pour un milieu 
infini est Ctablie comme ~l~ustrati(~n du formalisme sur tout te [~~~rn~iin~. 

Le problbme de Riemen approprie a une matri,:e h<mogtne est etudiee et I.&at ~~trnplet de tout It‘ drmainc 
et les theoremes d’orthogonalite cant demcmtre\ pour un certain ~<~u+\ystcme des modes normaux. IX\ 
theortmes necessaires d’existence et d’unicite concernant la matrice H. fondamentale pour I’analy\e du 
domaine complet, sont demontres et une methode de calcul precise et efhcace e\t present&e. I,e probleme JU 
glissement de temperature d’un demiespace e\t rezolu analytiquement et une valetrr tres precise du coefficient 
de glissement de temperature est don&e. 

Zusammenfassung-Das Verfahren elementarer l.(isungen wird verwendet, um rwei gekuppelte Integn)- 
differentialgleichungen zu liisen. die geniigen. urn die Temperatur-Dichtewirkungen in einem linearisierten 
BGK-Model1 in der kinetischen Theorie van Gasen zu bestimmen. 

Vollhereichs-Vollstandigkeits- und Orthogonalitlitstheoreme werden fur die entwickelten Normalformen 
hewiesen und Green’s Funktion des unendlichen Stoffes wird als eine Illustration dec Vollbereichsformalis- 
mus konstruiert. 

Das entsprechende Riemann’sche Problem einer h(~ll~~)genell Matrix wird besprochen und Haibbereichs- 
~‘~)~~st~ndigkeits- und Orth~~~~~nalit~tsthe~)reme werden fiir eine be~timmte Lrntergruppe der N~~rmalf[~rmen 
bewiesen. Die fur die H-Matrix belangreichen erforderlichen Existenz- und Eindeutigkeitstheoreme. grund- 
legend fur die Halbber&hs-Analyse. werden hewiesen, und eine genaue und wirksame Berechnungsmethode 
wird besprochen. Das Temperaturgleitproblem des Halhraumes wird analytisch geliist und ein sehr genauer 
Wert des Temperaturgleitkoeffi~ienten wird herichtet. 

Sommario-II metodo delle s(~luzi~~ni elementari viene usato per risotvere due equazioni integr~)differenziali 
accoppiate, sufficienti a determinare gli effetti della densita di temperatura in un modello BGK linearirzatci 
nella teoria cinetica dei gas. 

Vengono dimostrati i teoremi della completezza e dell’ortogonalita su tutta la gamma per i modi normali 
sviluppati e. per illustrare il formalismo sull’intera gamma. viene costruita la funzione di Green per un mezzo 

infinito. 
Viene discusso il prohlema di Riemann per una matrice omogenea appropriata e, per un certo sottoas- 

sieme dei modi normali. vengono dimostrati i prohlemi di completezza e ortogonalita per la semigamma. Ven- 
gono dimostrati i necessari teoremi di esistenza e unicita relativi alla matrice H. ft)ndamentali per I’analisi 
delia semigamma, e viene (fkxhw un metodo di calwlo XclJr~ttO ed cfkiente. II prohlema 

temperatura/scorrimento del semispazio viene risolto analiticamente e viene dato un valore molto accurate 
del coefficiente temperatura/scorrimento. 

ABCT~ICT - npHMeHeH MeTOJJ 3JEMeHTapHbiX pW.EHNii ,llJlS peU,eH8W QA,‘X ~HTerpO-n~~~epeHU~~bHblX 

YPaBHeHHti JIOCTaTO9HhIX WiR ~~~~e~eH~~ ct@&KTOB TeMIIepaTyphI N WIOTHOCTH B ~~Heap~3OBaHHO~ 

MOnenH (BGK) B K~HeT~Y~K~~ TeOpHH fa30B. j@HbI ~oKa3aTe~bcTBa TeOpeM 06 06~t@i IVmHOTe 15 OPTO- 

1-OH2JibHOCTU ,WDl pa3BiiBaeMbIX HOPManbHbIX PWKMMOB, IIOCTpOeHti (PYHKULIR TptiHa JIJIJi 6eCKOHe’IHOk 

CjEQbI B KaWCTBe HJL”IOCTPaUM‘4 o6mero @OPMWIA3Ma. 06CyXQeHEi COOTBeTCTBJ’MlqaR PHMaHOBCKiW 

npo6neMa O~BOPO~HOt MZiTp5iLEd, AilAM AOKa3aTWIbCTBa TeOpeM 0 IIOJlOBMHHOfi IIOJIHOTe Ii OpTOrOHWIb- 

HOCTH LVIll OII,WWWHHOii IIOJJCHCTeMbl HOPManbHbIX PWKHMOB. flOKa3aHbI ACKOMbIe TeOpeMbI 0 CyIWCTBO- 

BaHHEi A t.?lJHHCTBeHHOCTH OTHOCATWTbHO MEiTpuIUbI H, JlSKalyMe B OCHOBe aHanrt3a IIOJTOBAHHOfi IIOlTHOTbl, 

23 TBK)Ke 06Cy~~eH TOYHbiii paf.@fOHa?bHblii MeTOn BbtYkfCIIeHUR. AHaJ’EiTWIeCKi4 $%ZIIelia ~pOt%IeMa UOJQ’- 

~p~Tp~.~CT~eHHOrO CKO~b~eH~~ II TeM~epaTypbI, coo6rqeao BbICOKOTO~HOe 3HaYeHYTe KO3~~~U~eHTa 

CKO~b~eH~~ H TeM~epaTypbi. 


