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The theory of complex variables is used to develop exact closed-form 
solutions for the, in general, complex zeros of the exponential polynomial 
F(z) = z exp z - a(z + b), a complex and b real. The established zeros are 
related to canonical solutions of suitably posed Riemann problems and are 
expressed ultimately in terms of elementary quadrature% 

I. INTRODUCTION 

In a recent paper [I] we reported exact analytical solutions of the trans- 
cendental equation 

.zez = a, n complex, (1) 

which is basic to the analysis of a class of differential-difference equations [2]. 
Here the same method [3] will be used to solve the slightly more general 

equation 

(I + 4) ec = P + 95. (2) 

We immediately note that if mq = 0 then Eq. (2) may be reduced to Eq. (l), 
while if m # 0 and mp = ql then Eq. (2) is simply 

??i& = q. (3) 
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Assuming that neither of these two elementary cases apply, we can transform 
Eq. (2) to the equivalent form 

F(z) = zez - a(.2 + b) = 0. (4) 

We note that Wright [4] has considered Eq. (2), for real values of the 
parameters; he has also enumerated the solutions and has given some bounds 

for the various solutions. In addition to an exhaustive bibliography on this 
problem, Wright’s paper [4] reports an algorithm that can be used for 
computational purposes. Here we allow a to be complex and subsequently 
develop exact analytical expressions for all of the zeros of F(z). It will be 
clear from the ensuing analysis that b also may be complex, but we prefer 
to report only the more concise formalism resulting from considering b to 
be real. 

II. ANALYSIS 

It is apparent that the zeros zk of F(z), as given by Eq. (4), are the zeros of 
the functions 

A,(z) = a + log@ + b) - .a - log z + 2k?Ti, R = 0, &l, Ifi ,...) (5) 

where 
01 = log a, a # 0, (6) 

and here log z denotes the principal branch of the log function. We 
observe therefore that /l,(z) is analytic in the complex plane cut along the 
real axis from --b to 0 for b > 0, or cut from 0 to -b for b < 0. 

We shall investigate the two cases separately: 

(1) 6 > 0 * &(.z) is analytic in the plane cut on [-b, 0] 

(2) b < 0 3 n,(z) is analytic in the plane cut on [0, --b]. 

For case (I), b > 0, we can write the limiting values of&(z) as .a approaches 
the cut from above (+) and below (-) as 

A,*(t) = a+ ln(t + 6) - t - In / t 1 + (2k F 1) rri, t E (-b, 0), b > 0, 

(7) 

Note that neither &+(t) nor &e(t) can vanish on the cut except for the two 
special cases 

(i) a~(-~~0) and k=O 

(ii) a~(---co,O) and k = -1. 
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For these two special cases, we see that 

Ao+(t) = &(t), aE(--CO,Q 
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(8) 

and hence we shall require the zeros of 

w(t) = In ) a 1 + In(t + b) - t - In ) t j , t E (4, O), a E (-co, 0). 

(9) 

Elementary considerations are sufficient to show that w(t) has at least one 
zero, say to , for t E (-4, 0). We shall discuss the two special cases (i) and (ii) 
separately and thus first consider all values of a, b, and k such that 

(a,b,K}ED~k=O,fl,~2,~3 ,..., if a$(-co,01 and b>O, 

or 

{a, 6, k} E D 3 k = 1, &2, &3, 14 ,..., if a~(-CD,O) and b>O. 

The argument principle [5] can now be used to show, for {a, b, k} E D, that 
A,(z) has precisely two zeros, say so1 and zoZ , in the plane cut along [A, 0] 
and that A&), k = hl, &2, &3 ,..., has only one zero xk in the same cut 
plane. It therefore follows that 

is analytic and nonvanishing in the same cut plane, and thus F,(Z) is a cano- 
nical solution of the Riemann problem [6, 71 

Fo+(t> = Go(t) F,-(t)> t 6 c--6, O), (11) 

where the Riemann coefficient is 

If we define G,(4) = G,(O) = 1, then it follows that G,(t) is Holder 
continuous on (-4, 0), but fails to be Holder at the two endpoints. We 
conclude that the (suitably normalized) canonical solution of Eq. (11) can 
be written as 

1 
Fob4 = =+b exP 

1 0 
l-1 27ri -0 log Go(t) A] > a$(--9Ol, b >o, 

(13) 
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where log Go(t) is continuous for t E (A, 0) and such that 

log G,(--b) = -2xi. 

Equation (13) can now be entered into Eq. (10) to yield 

(zol - x) (zo2 - z> = - (z + 6) ~,!z) exp [& Job log G(--7) &] . 

(14) 

I f  we now evaluate Eq. (14) at two convenient points, say x = y  and z = 7, 
off the cut then the resulting two equations can be solved simultaneously to 

yield 

z 01 = --B(Y, 77) - (WY, 7) - C(Y, 77Y> a $ (-co, 01, b > 0, (15a) 

and 

202 = -B(y, rl) + (B2(Y, T) - C(Y, 11w2, a$(-co,O], b >O, (15b) 

where 

and 

(16) 

(17) 

In addition we have introduced 

K(Z) = - (2 + 6) fl,(d exp [$ s,” log Go(-) &] . (18) 

Note that the closed-form solutions given by Eqs. (15) contain two free 
parameters y  and 7, the choice of which can yield various equivalent forms 
and can be used to advantage for computational purposes. In a similar manner, 
it is apparent that 

is analytic and nonvanishing in the cut plane, and therefore Fk(z) is a canonical 
solution of the Riemann problem 

F,+(t) = Gcdt)Fk-(t>, t E (4 01% (20) 



SOLUTIONS OF ze’ = a(.Z + b) 

where 

G,(t) = #. 
k 
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(21) 

As before, we define G,(--b) = Gk(0) = 1 and thus can write 

where log Gk(t) is continuous for t E (-!I, 0) and such that 

log G,(--b) = log Gk(0) = 0. 

With Fk(z) established, we can now solve Eq. (19) to obtain the explicit 
closed-form result 

Zk = z + [a + log(.z + b) - z - log z + 2/z&] 

1 b x exp - 1 s 2?Ti 0 log Gd-4 -&] , {a, b, R} E D, k # 0. (23) 

To complete the analysis for b > 0, we must now consider the two special 
cases (i) and (ii), and thus we wish to introduce 

Q(x) = In 1 a 1 + log(z + 6) - a - log z + xi, aE(-qO), b>O, 

(24) 

where by log .s we now denote that branch of the log-function in the plane cut 
along the positive real axis, such that 0 < arg z < 2~. With the log function 
so defined, it follows that L?(z) is analytic in the plane cut along 
(- 00, --6] U[O, co) and such that 

Q(t) = 4th t E (-6, O), 6 > 0. (25) 

The argument principle can now be used to show that Q(z) has three zeros 
in the cut plane, and since Q(a) = /l,,(z) for y  > 0, Q(z) = fl-r(z) for 
y  < 0, and L&,(X) = L,(S), we conclude that the solutions corresponding to 
the special cases (i) and (ii) are just the three zeros t, , x0, and z-r , with 

so = z-1 , of Q(z), and thus if we write 

(to - z) (z. - z) (z-, - 2) = Q(z) H-‘(z), a E (--co, 0), b > 0, (26) 

then H(z) must be the (suitably normalized) canonical solution of the Riemann 
problem 

H+(t) = G(t) H-(t), t E (-03, 4) U(0, co), (27) 
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where 

The limiting values of Q(z) can, of course, be computed readily from Eq. (24): 

Q*(t) = In 1 a 1 + In 1 t + b 1 - t - In 1 t / f ai, 

t E (-co, -b) U(0, co), b > 0. 
(29) 

The Riemann problem defined by Eq. (27) can be solved to yield 

arg Q+(-t) & 

or alternatively 

b >O, (30) 

44 = l z(z + b) exp [ s - $ :,,+,, arg*+ Ed T(1 - T) Pz(l - T)” 

+$j-ol[a@+(j&) -“]T(l-TT)drZ(l -.)2]’ b>o; 
(31) 

here arg Q+(t) is continous on each of the intervals (-co, -b] and [0, co), 
with arg sZ+(- co) = 0 and arg Q+(O) = 0. Since H(x) is now established, 
Eq. (26) can be evaluated at three convenient values, say z = y, z = 7, and 
z = [, off the cuts and the three resulting equations solved simultaneously 
to yield closed-form results for to , z, , and x-i . For the sake of brevity, we 
shall not explicitly list these final results. 

In the event that b < 0, we need to modify slightly the foregoing results; 
however, since the analysis is so similar, we shall only list the relevant solu- 
tions. In analogy with Eq. (15), we find 

ZOI = --Bh 7) - (B2h 7) - C(Y, w2r a$(--co, 01, b (0, (32a) 

and 

.z 02 = -%4 7) + P2h 71) - w, 17v/“, a $ (-co, 01, b < 0, (32b) 
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where 

K(z) = - (z + b) A,(z) exp [& jbo log G,,(--7) $-] , 

a 6 (-~,Ol, b < 0, 
(33) 

is to be used in Eqs. (16) and (I 7) to yield B(y, 7) and C(,, 7). Note that here 
log G,(t) is continuous for t E (0, -b) and such that log G,(-b) = 25ri. In 
regard to Eq. (23), we find the equivalent expression for b < 0 to be 

zk = z + [log a + log(z + b) - x - log x + 2kniJ 

1 O 
’ exp 27fi L-S log Gd--7) -+] , {a, -4 4 E D, k # 0, b 

(34) 
where log Gk(t) is continuous for t E (0, -b) and such that 

log G,(O) = log G,(-b) = 0. 

In addition, we now have 

AR*(t) = log a + In ( t + b ( - t - In t + (2k f 1) vi, 

t E (0, --b), b < 0. 
(35) 

Finally we need to consider the special case, for b < 0, that a E (-co, 0) 
and k = 0 or k = -1. Here we find that 

flo-(t) = A?,(t) = w(t), t E (0, -b), a E (-co, 0), (36) 
where 

w(t) = In I a ) + In / t + b 1 - t - In t, t E (0, -b), a E (-co, 0). (37) 

We note here that w(t) has precisely one real zero, say to E (0, -b), which 
may be determined by considering the function 

L?(z)=ln~a~+log(z+b)--z-logz-d, a~(-co,O), b<O, (38) 

where log@ + b) is that branch of the log-function in the plane cut along 
the real axis from -b to co, such that 0 < arg(z + b) < 27r. Clearly 
Q(z) = A-,(z) for y > 0 and Q(z) = A,(z) for y < 0. Now Q(z) has only 
one zero to in the cut plane, and the limiting values are given by 

Q+(t) = In / a I+ In 1 t + 6 1 - t - In / t 1 7 d, 

t ~(-a, 0) U(-b, co), b < 0. 
(39) 
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Here we find the (appropriately normalized) solution of 

H+(t) = Es (-qt) fv), tE(-m&O) q--b, co), b (0, (40) 

can be written as 

f-w = exp [ - ; jol arg ii?+ (5) + 1 - T) +“q - q 

+ bCibel) bQ’ ii3 + 4 T(1 - T) $1 - .,a1 ’ 

It therefore follows that 

b <O. (41) 

or 

to = x + Lqz) H-‘(z), a~(-m,O), b <O. (42) 

Finally for a E (- co, 0) we note that A,(x) and A-r(z) have zeros z, and z-r, 
with %s = z-r , where Im q, > 0. The determination of this root is effected 
by considering the function 

A(z) =InIaj+iog(z+b)-z-logz+ri, a E (-co, 0), b <O, (43a) 

= Q(x) + 2i7i. t43b) 

The function d(z) = A,(z) for y  > 0 and has only one zero which clearly is 
z,, . In a manner similar to the above we deduce that 

where 

z. = H + A(z) A-l(z), a~(-cqO), b <O, w 

a4 = exp I- & jol log & (5) g _ T) $1 - 42 

+ & Jo;(b-l) log e E-d T( 1 - T) $1 - 7)” 1 ’ (45) 

with 

(46) 
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Although the required analysis may prove tedious, it is clear that the 
solutions given here can be generalized to include complex b and that, in 
general, transcendental equations of the form 

where PI(z) and P2(z) are polynomials, can be solved by the method discussed 
here. 
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