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TWO-GROUP TRANSPORT THEORY* 
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Abstract-Case’s method of singular normal modes is used to construct solutions to the two-group 
neutron transport equations in one dimension. Full-range completeness and orthogonality theorems 
for these eigensolutions are proved and the necessary normalization integrals are presented. In 
addition, functions orthogonal to the degenerate eigensolutions are developed so that all expansion 
coefficients can be found by simply taking scalar products. As an example of the method, the exact 
solution for the infinite-medium Green’s function is obtained. 

1. INTRODUCTION 

IN ORDER to describe properly the behaviour of neutrons in a nuclear reactor system, 
one must be able to solve the general velocity-dependent neutron transport equation. 
The complexity of this equation leads one quite naturally to seek various ways to 
simplify the equation and to construct solutions thereof. DAVISON (1957) discusses 
in detail the formulation of the two-group transport equation and states the conditions 
under which the formulation should give a reasonably good approximation to the 
actual physical situation. In most reactor calculations one is unable to solve even this 
simplified version of the transport equation. As a consequence, the diffusion theory 
approximation is often invoked and the calculations are thus greatly simplified. The 
need, however, for exact solutions is very real since these solutions can be used as a 
standard against which the approximate solutions can be evaluated. 

In a recent paper by SIEWERT and ZWEIFEL (1966), hereafter referred to as I, the 
eigensolutions of the two-group transport equation were presented and several 
completeness and orthogonality theorems proved. In that paper, however, the 
emphasis was on the application to the theory of radiative transfer in stellar atmos- 
pheres where the transfer matrix, C, in the transport equation had a simple form. The 
fact that the transfer matrix had a determinant which vanished, greatly reduced the 
complexity of the completeness and orthogonality theorems. In the present paper we 
remove the restrictions on C and prove the necessary full-space theorems for the set 
of eigensolutions of the two-group, one-dimensional transport equation and thus 
facilitate its application to neutron processes. In Section 2 these eigensolutions are 
presented and in Section 3 we prove the full-space completeness theorem. Section 4 
is devoted to the proof of full-space orthogonality, and the calculation of the necessary 
normalization integrals is given. For the degenerate eigensolutions we also construct 
the necessary orthogonal functions. Finally in Section 5 we apply the method to 
determine exactly the infinite-medium Green’s function. 

2. EIGENVALUES AND EIGENSOLUTIONS 
The two-group transport equation in one dimension for isotropic scattering can 

be written in the form (Siewert and Zweifel) 

(1) 
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Here Y(x, ,u) is a two-component vector, the elements of which are the respective 
_ group angular fluxes, i.e. 

Y(x, P) = 
1(X> P) 

c’ I Y&G P) * 
(2) 

The transfer matrix, C, is arbitrary, with elements ct,. 
X, we write the C matrix as 

u 0 
C= 

[ 1 0 1’ 
u> 1. 

By using the optical variable, 

(3) 

We proceed as did CASE (1961) by seeking solutions to equation (1) of the form 

Y(x, ,u) = e-Z’VF(q, p). (4) 

When this unsatz is substituted into equation (l), we obtain 

1 

a?)-P 0 

I s 

1 

0 
F(Q P) = YC F(r, P) dp. (5) 

7-P -1 

As discussed in I, it is necessary to divide the eigenvalue spectrum into three regions: 

In Region 1 we find a two-fold degeneracy; i.e. we have two linearly independent 
eigenvectors for each eigenvalue. These can be written in the forms 

Region 1: q G [-l/a, l/a], 

Region 2: r] E [-1, -l/a] and [l/a, I], 

Region 3: q$ [-1, I]. 

F’2l’h ,4 = 
(6b) 

In Region 2 there is only one solution, 

F'2'(~, PL> = (7) 

where 

and 
f(r) = c22 - 2+v/q), (8) 

4rl> = 1 - 2v22md - 2Vll7wJ~) + 4112CT(ll)7-(l/or). (9) 
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Throughout this work the symbol P indicates that the Cauchy 
taken when integrals involving these functions are performed. 
abbreviations C for det C and T(x) for tanh-l (x). 

The discrete solutions (Region 3) are 

r - Cl,% 1 
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principal value is to be 
Also, we have used the 

where the Q are the positive roots of the dispersion function 

Q(z) = 1 - 2zc,,T(l/oz) - 2zc,,T(l/z) + 4z2CT(l/z)T(l/az). (11) 

There may be two or four roots of Q(z) depending upon o and the magnitudes of the 
Cii* In the Appendix various possibilities for either two or four roots are discussed. 

3. FULL-RANGE COMPLETENESS THEOREM 
THEOREM I : The set of functions F&), Fil)(q, p), Fil)(q, p) and Ft2)(q, p) for all 

r] is complete for functions de$ned such that ,u E [-1, 11, in the sense that an arbitrary 
function, Y(,u), defined for - 1 I ,u I 1 can be expanded in the form 

‘y(p) = 21 ‘i+F++ku) + 2 A+Fi-@u) + S, 4~Y$“(~, ~1 dV 
i i 

+ s, BW%% /4 dq + s, e(~)F’~‘(r, /JU> dyv -1 Ip I: 1. (12) 

Here the ranges of integration @ and @ refer to Regions 1 and 2 respectively. 
Equation (12) can be considered a singular integral equation for the expansion 

coefficients. To prove the theorem, it is sufficient to prove that a solution exists. This, 
in turn, is done by solving the equation using the methods of MUSKHELISHVILI (1953). 
This yields expressions for the expansion coefficients. However, they are more 
conveniently obtained from the orthogonality relations developed in Section 4. 

We begin by attempting an expansion in terms of the continuum modes alone, i.e. 

Substituting the explicit forms of the eigensolutions, we obtain the two equations 

ye’ = - ? ‘d&J) + c s, !$$ dy + F [c22 - ‘$ T(/J)] 

+ Cl2 s 44 11 - dv, (144 
0 *r - P 



WI 

Here yP,‘(,u) and Y,~(,u) are the two components of Y’@) and 

@i(p) = 1, p E region i, 
z 0, otherwise. 

If, in equation (14a), we make the change of variable ,u/u = 7, solve for a and subs& 
tute into equation (14b), we obtain 

%‘) = K(,‘J)&J) + ~(?2-.~‘-O”)) s_‘, $+ K(q) dy, p E [- 1, 11, (15) 

where 

K(V) A 4 B(r)@,(r) + c(r)@s(71). (17) 

Also, we have made use of the boundary values of the dispersion function, Q,(z), i.e. 

Q*(r) = 1 - 2?%1T(cll) - 2V,J(rl) + Cy2[47WT(cy) - 4 
+ dh + ~~~17 - ~CY~GY?~) + W~r>>l, 7 E region 1; (18a) 

n*:(?j> = 1 - 2yc,,T ; 
( 1 - 2V2,T(V) + c+W (31 

f vi cz2r - 2Cy2T i ( )I , 1;1 E region 2. (18b) 

The function LU(,D) in equation (15) is defined by 

A a+(P) + fi-(P) 44 = 2 * 

By introducing the auxiliary function 

(1% 

with boundary values 

N(z) 2 -!- 
27ri s 

’ V(T) dy - (20) --1 rj - 2 

we can write equation (15) in the usual factored form (CASE, 1960). Thus 

phCu) = N+&)Q+&) - W/W-(/+ 
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Since h&) is a known function (depending only on the expansion function Y’(p)), we 
write the solution to equation (22) as 

N(z) = -L s l dlu 
2?TiQ(z) __1 PKP) - * p-z 

(23) 

Noting from equation (20) that N(z) is to be analytic in the complex plane cut from 
- 1 to 1, we observe that equation (23) for N(z) will have the correct analytic properties 
only if 

s 1 
Ntc) dp 0 -=. 

-1 P ‘F Ti 
(24) 

This condition insures that the singularities introduced into N(z) by the zeros of Q(z) 
are removed. Recalling from equation (13) that the discrete terms in the expansion 
have not yet been included; we note that in actual fact, 

(25) 

where Y(,u) is an arbitrary function. Substituting equation (25) into equation (24) 
determines the coefficients &. Since N(z) is now known, K($, and thus p(r) and 
E(T), can be determined from its boundary values. This leaves only cc(q) to be found 
and this coefficient is given by equation (14a). 

The theorem is now proved; and we could, in fact, determine all of the expansion 
coefficients from this proof. It is, however, somewhat simpler to obtain them from 
the orthogonality relations that are developed in the next section. 

4. ORTHOGONALITY AND NORMALIZATION 

THEOREM II : The functions Fi”(q, p), Fc2)(q, ,u) and F&p) are orthogonal to the 
corresponding solutions of the adjoint equation on the range [ - 1, 1 ] with weight function 
LA. That is 

Here the superscript tilde denotes the transpose operation. We rewrite equation (1) 
and the adjoint equation below in symbolic form: 

(274 

P’b) 

It is easily verified that equations (27) have identical eigenvalue spectra. Also, we 
note that 

F+(q, ~1, C) = F(r, PU, c), (28) 

i.e. the adjoint solutions are found by simply changing cij to cji in the corresponding 
ordinary solutions. 

To prove the theorem, multiply equation (27a) from the left by pF+($, ,u). Then 
multiply the transpose of equation (27b) from the right by ,uF(q, p). Integrating both 
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equations thus formed over ,Y from -1 to 1 and subtracting, we get 

~~~(4, P~)%L ,4 dp = 0. 

This proves the theorem. 
In order to use the orthogonality theorem to calculate the various expansion 

coefficients, we must first determine the necessary normalization integrals. Of course, 
we must not overlook the fact that there are two degenerate eigensolutions in region 1. 
These can be orthogonalized by using a Schmidt-type procedure. Firstly we present the 
normalization integrals. Defining 

we have 

and 

(F, G) =5 11, @+(T’, ru)G(~, P) dpu, 

(F,*, Fi3 = i’Ji*, 

(F’(1) F!‘)) = N.. S(q - $), 2’ 3 23 

(30) 

(31a) 

(31b) 

Here 
(Ft2’, Fc2’) = IV, S(q - q’). (3lc) 

+ k22 - 2C7QV/412[---+& - T(lld]] y (324 
z 

and 

The subscript on Q,*(r) denotes that q is contained in region ‘i’ [cf. equations (IQ]. 
Explicitly, we write- .- 

Ql+(ll)Q-(r) = (1 - 2 ?Ic,,T(cY) - %lczz~(rl) + 172C[4W)7(cr) - n21>” 
+ 7ww?m?) + Vdl - Cl1 - c22}2 

and 

Q2+(*r7P2-(77) = (1 - 7 2 c227-Cd - 2W,W~d + 4~2C7C?)Wc?7))2 
+ 79r2{c,, - 2yCT(l/07?)}? 

Since F$l) and F&l) are not orthogonal for 7 = q’, we introduce two new functions, 
X,(7, ,LJ) and X,(q, ,u), such that X, is orthogonal to Fil) and X2 is orthogonal to Fil) 
(clearly both X1)s are orthogonal to Ft2) and the F,;s). Therefore 

X,(r, P) A ~22Ff’h PU> - %2Fi?(?7, ,4 (344 

and 
Wb) 
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It follows that 
(X,, F$“) = % S(q - r’), (35a) 

(X,, F’,l’) = 0, Wb) 

(X,, FL”) = K WI - r’), (35c) 
and 

(X,, F;“) = 0, (35d) 
where* 

K = r12C2QI+(+l-(r). (36) 

With the formalism developed in this section we are now able to solve for the 
infinite-medium Green’s function. 

5. THE INFINITE-MEDIUM GREEN’S FUNCTION 

We wish to construct a solution to the homogeneous two-group transport equation 
which satisfies the ‘jump’ condition at the source location and which also vanishes 
at x = + co. Clearly this is possible only for some values of the cir (see the Appendix 
for a discussion of this point) since we are restricted to a non-multiplying medium. 
For complete generality we need to find two Green’s functions, G, and G,, corre- 
sponding to the two sources 

(374 
and 

q2 = %4 &P - P2) ; [I WI 

respectively. The superposition principle can then be used to construct the desired 
solution for any arbitrary source distribution. Since the solutions for the two Gis 
are similar, we thus discuss only G, in detail. The solutions to equation (1) that 
vanish appropriately are 

G,(O + x, ,+ - ,u) = 1 A,+e+‘QF,+(p) + 
i s 

110 
a(r])e-Z’qF(l) 1 (17, Pu> d7 

0 

and 

+ 
s 
o1" P(qWZiqF~)(q, p) dy 

+ 
s 

1 

4$e-x'aF(2)(q, ,4 dy, x>o PaI 
I/o 

G,(O ---f x, p1 ---f p) = -2 Ai_eZ’QF i-b> 
i 

a(r>e-z~qF~l’(~, ICI dq 
0 

s 0 
- _l,o B(~WZ~qFi?h P) dy 

s -l/U 
- 4WZ’qF(2)(q, ,4 dq, x < 0. (38b) 

-1 

* The limit C = 0 is not easily deduced from the formalism of this paper. This is evident at once 
since the degenerate eigensolutions F:“(q, ,u) in equations (6) are not linearly independent in the 
limit of C tending to zero. The case of C = 0 is presented in detail by BARAN (1966, private com- 
munication). 



390 C. E. SIEWERT and P. S. SHIEH 

Applying the ‘jump’ boundary condition, 

G,(O -+ O+, pl+ ,4 - G,(O -+ 0-, ,ul + /A) = (39) 

we obtain 

This is simply a full-range expansion of the function 

(41) 

The expansion coefficients Ai*, a($, /3(y) and ~(7) are thus obtained by applying the 
orthogonality relations to equation (40). The coefficients Ai*, for example, are found 
by taking the scalar product of F&u) and equation (40). It follows that 

i.e. 

Multiplying out equation (42b), we see that A,, is given by 

where N,, is given 

1 
a(q) = - - 

N,(q) 

(43) 

by equation (32a). For the remaining coefficients we find 

N22(4c21 NT - ~3 

+ %2(1;1) [-& + a(aq - PU,)(C,, - WW$)]) 7 (44a) 

/f?(q) = + &%(+2J(~ri -A) 
1 

and 
1 c21r 

E(V) = - .-. 
N2(v) m- PI 

(424 

(42b) 

(44b) 

(44c) 

All of the expansion coefficients are now determined. The solution for the source q1 
is therefore known and is given by equations (38), (43) and (44). In a similar manner 



we find the Green’s function 

G,(O --t x, ~2 -+ P) = 

-I- 
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G,(O -+ x, pz --+ p) to be 

s 

r/o 
2 Bi+ e+IqiFi+(,u) + U(T) epZ”IF~)(q, p) dy 
i 0 
l/O 

b(q) ec”‘°F.$l)(q p) dy 

and 
s 1 

+ d(q) e--21vF(2)(q, p) dq, x>o (45a) 
IlO 

G,(O --t x, ,u2 + ,u) = - 2 Bi_ ez’QFi_ 
&) i 

where 

s 0 
- b(r) e -Z’qF$l)(q, p) dl;l 

-l/0 

-1 

-l/O 
d(q) e-z’qF(“)(q, ,u) dy, x<o (45b) 

-1 

(46a) 

(46b) 

and 
(46~) 

Now that the most general Green’s functions are known, such quantities as 
pi(O + X, pi) and Gi(O + x, ,u), the total flux from a directed source and the Green’s 
functions for an isotropic source, are easily obtained by integration over the various 
directions. We omit these operations as they are completely analogous to the steps 
taken in one-speed theory by CASE (1961). 
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APPENDIX 
The discrete eigenvalues, &Q, are the zeros of the dispersion function 

a(z) = 1 - 2CllZT(l/UZ) - Zca*zT(l/z) + 4Cz~T(l/z)T(l/uz). (47) 

By calculating the change in the argument of the function Q(z) around a contour that includes all of 
the z-plane save the segment of the real line [-1, 11, one is able to determine the exact number of 
zeros of G(z). We have made this determination and the results are tabulated in Table 1. In addition, 
we have investigated the nature of these roots. Our results are in agreement with Baran, who also 
considered this problem. 

In order for the infinite-medium Green’s function derived in Section 5 to have meaning, we must 
postulate that the medium is neither conservative nor multiplying. By restricting ourselves to the 
cases where there are only finite, real, discrete eigenvalues, the Green’s functions already developed 
are correct. The necessary information is available in Table 1. 

TABLE I.-THE ZEROS OF THE DISPERSION FUNCTION 

Conditions Roots 

c=o 
2 Real 
2 Imaginary 
2 Infinite 

c<o 
cl1 + cct2 - 2C < o/2 2 Real 
Cl1 + %a - 2C > u/2 2 Imaginary 
cl1 + ocZ2 - 2C = u/2 2 Infinite 

c>o 
caz > 2CT(l/c) 

cl1 + ucZ2 - 2C < a/2 2 Real 
cl1 + ucea - 2C > a/2 2 Imaginary 
cl1 + ocza - 2C = a/2 2 Infinite 

2 Real 
and 

2 Imaginary 

c>o cl1 + cca2 - 2C < u/2 4 Real 

tag I 2CT(l/u) cl1 < o/2 and cZ2 < l/2 cl1 + dcez - 2C > o/2 
cl1 + ucZZ - 2C = o/2 

2 Real and 2 Imaginary 
2 Real and 2 Infinite 

cl1 > c/2 and cBe > l/2 
cl1 + ucZ2 - 2C < a/2 4 Imaginary 
cl1 + ucZa - 2C > o/2 2 Real and 2 Imaginary 
cl1 + uceB - 2C = u/2 2 Imaginary and 2 Infinite 


