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Abstract-The theory of complex variables is used to solve analytically the transcendental equation which 
defines the position, as a function of time, in an inverse-distance-squared force field, and thereby the desired 
solution is reduced to elementary quadrature. 

1. INTRODUCTION 

THE MOTION of a nonrelativistic particle with charge 4, mass m, and no angular 
momentum in an inverse-distance-squared force field, such as arises in the free 
expansion of a charged-particle bunch [ 11, is described (in rationalized m.k.s. units) by 

d2r qQ 
“dt2 = 4rrElg2’ (1) 

where Q is the constant total charge spherically symmetrically distributed within a 
sphere of radius r. Multiplying equation (1) by (dr/dt)dt = dr and integrating once, we 
obtain the energy integral 

(2) 

with the initial conditions drldt = 0, r = r,,, t = 0. A second integral yields 

r(t) = rOx(t), 

in which x(t) is given by the transcendental relation 

l/[x(x - III+ In [d(x) + l/(x - 111 = :, 

where 

T = (2~urzr~/~Q)“2. 

(3) 

(4) 

In the following section the solution of equation (4) is established analytically and is 
thus reduced to quadrature. 

2. ANALYSIS 

We wish to use a recently reported method [2] to solve equation (4), and thus we first 
consider the function of a complex variable 

A(z) = T - v’(z)x& - I) - log [V(z) + U(z - l>l, (3 

where T = t/r and the square-root and log functions are to be interpreted as the 
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principal branches. It is clear that A(t) is analytic in the complex plane cut from - 3~ to 1 

along the real axis and that A(z)/2 + -1 as (~]-+a. In addition, the limiting values A(x) 
of A(z) as z approaches the branch cut from above (+) and below (-) can be deduced 
from equation (5): 

and 

A’(x)= T+.\/(x’-xX)-ln[v(-x)+d(l-x)]TT,xe(--m,O), (6a) 

Ar(x)=T:[tan~lJ(~-l)+~(x-x’)]i,x~(O,l). (6b) 

We can now use the argument principle [3] to show that A(z) has only one zero, say zo, 
in the complex plane and thus the solution of equation (4) is simply x(t) = z,,(t). 

Since h(z) has only one zero in the complex plane, it now follows that 

4(2) = ho 
Zll - z 

is a canonical solution of the Riemann problem[4] 

A’(x) 
cp’(x) = 7 4_(x), XE(--oo, 1). 

A (x) 
(8) 

The methods discussed by Muskhelishvili[4] can now be used to solve the Riemann 

problem defined by equation (8); we find 

d(z) = X,(z)X*(z), (9) 

and 

Here 

and 

X,(z) = exp 
I 

O,(x) 
dx 

x(x - 1) - z(x - 1)’ 1 
dx 

82(x )- 
I x-z. 

0,(x) = tan-’ 

i ,i:-ln[&)+~(i$,ll 
T+- 

(104 

&(x) = tan’ 
i 

tan-‘-J(& l)+V(x -x’> 

T I. 
We can now enter equation (9) into equation (7) to obtain an explicit result for z,,: 

‘MZ) 
z” = z + X,(z)X2(z)’ 

(lob) 

(lla) 

(lib) 

(12) 

Equation (12) is, of course, an identity in the z plane, and thus we can assign z any 
convenient value. For example, on taking z = 1 in equation (12) we find that the desired 
solution of equation (4) can be written as 

x(t)= l+Sexp -$ 
L I’ 0 

@(Y, t)*], (13) 
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where a(~, t)~[0, T] is given by 

with 

t V(Y) N(y, ‘)=;;+I;+ l-y-l* [&+)+ d(h)]) [tan-l J(;-l)+U(y-y’~j 

Wa) 
and 

A Gaussian quadrature scheme has been used to evaluate our solution given by 
equation (13), and without excessive effort accuracy to six significant figures was 
achieved. 
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R&sum&-La theorie des variables complexes est utilisCe pour rCsoudre analytiquement l’iquation transcen- 
dante qui dkfinit une position, comme fonction du temps, dans un champ de force inverse du carr& de la 
distance, et ainsi la solution recherchde est ramenCe B une quadrature 616mentaire. 

Zusammenfassung-Es wird die Theorie komplexer Veranderlicher verwendet, urn analytisch die 
transzendentale Gleichung zu liisen, die die Lage, als Funktion der Zeit, in einem umkehrdistanzquadrierten 
Kraftfeld festlegt, wodurch die gewiinschte L&sung auf eine elementare Quadratur reduziert wird. 

Semma&La teoria d&e variabili complesse viene usata per risolvere analiticamente l’equazione trascen- 
dentale the definisce in fur&one del tempo la posizione di un campo di forza proporzionale al reciproco del 
quadrato della distanza, e per& la soluzione desiderata viene ridotta ad una semplice quadratura. 

A&pa#cT - Ha OCHOBe TeOpIfK KOMlTjEKCHbKX IIeIepeMeHHblX JIaHO UWlATN~~CKOe pellIeHKe TpaHCqea~eHT- 

HOl-0 ypiE=eHWII, OIIpeoenxmorrlerO uOJXO?KeHNe B 3aWiCRMOCTM OT B~‘SMeHH B IIOJIL? CEIJlbI, 3Cl3BbltiEHHOti B 

KBaApaT o6paTHQro PaCCTORHWJ, UT0 lIpHBORKT 3aAaHHOe pWRHMe K @O$lMe 3neM-EwrapHoi-t KBa@aTypbI. 


