ON PARTICULAR SOLUTIONS OF THE EQUATION OF TRANSFER

C. E. Siewert*
Université des Sciences et Technıques, Lille, France
(Recewed 21 January 1975)

Abstract-The partcular solutions corresponding to two very special inhomogeneous terms of the equation of transfer with linearly anisotropic scattering are reported

I INTRODUCTION

It is clear that the analysis of radiative transfer problems, based on the inhomogeneous equation

$$
\begin{equation*}
\mu \frac{\partial}{\partial \tau} I(\tau, \mu)+I(\tau, \mu)=\frac{\omega}{2} \int_{-1}^{1}\left(1+b \mu \mu^{\prime}\right) I\left(\tau, \mu^{\prime}\right) \mathrm{d} \mu^{\prime}+S(\tau), \tag{1}
\end{equation*}
$$

can proceed along classical lines ${ }^{(1)}$ once a particular solution $I_{p}(\tau, \mu)$, corresponding to a given inhomogeneous source term $S(\tau)$, is established. In this paper, we wish to report two particular solutions which correspond to source terms explicitly omitted in an existing tabulation ${ }^{(2)}$ of particular solutions, namely

$$
\begin{equation*}
S(\tau)=\mathrm{e}^{-\tau / \eta_{0}} \text { and } S(\tau)=\tau \mathrm{e}^{-\tau / \eta_{0}} \tag{2}
\end{equation*}
$$

where η_{0} denotes a "discrete eigenvalue" of the homogeneous equation of transfer:

$$
\begin{equation*}
\Lambda\left(\eta_{0}\right)=\omega R\left(\eta_{0}, \eta_{0}\right)\left[1-\eta_{0} \tanh ^{-1} \frac{1}{\eta_{0}}\right]+1-\omega=0, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
R(x, y)=1+b(1-\omega) x y \tag{4}
\end{equation*}
$$

II ANALYSIS

If we first consider $S(\tau)=\exp \left(-\tau / \eta_{0}\right)$ and substitute

$$
\begin{equation*}
I_{p}(\tau, \mu)=\varphi\left(\eta_{0}, \mu\right) \mathrm{e}^{-\tau / \eta_{0}}[A \tau+B(\mu)], \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi\left(\eta_{0}, \mu\right)=\frac{\omega}{2} \eta_{0} \frac{R\left(\eta_{0}, \mu\right)}{\eta_{0}-\mu}, \tag{6}
\end{equation*}
$$

into eqn (1), we find that the constant A and the unknown $B(\mu)$ should satisfy

$$
\begin{equation*}
A \mu \varphi\left(\eta_{0}, \mu\right)+\frac{1}{2} \omega R\left(\eta_{0}, \mu\right) B(\mu)=1+\frac{\omega}{2} \int_{-1}^{1} B\left(\mu^{\prime}\right) \varphi\left(\eta_{0}, \mu^{\prime}\right)\left(1+b \mu \mu^{\prime}\right) \mathrm{d} \mu^{\prime} . \tag{7}
\end{equation*}
$$

Multiplying eqn (7) by $\varphi\left(\eta_{0}, \mu\right)$ and integrating over μ from -1 to 1 , we find immediately that

$$
\begin{equation*}
\frac{1}{A}=N\left(\eta_{0}\right)=\int_{-1}^{1} \mu \varphi^{2}\left(\eta_{0}, \mu\right) \mathrm{d} \mu \tag{8}
\end{equation*}
$$

*Permanent address• Nuclear Engıneerıng Department, North Carolina State Unıversity, Raleıgh, NC 27607, U S.A.

To find $B(\mu)$, we can first integrate eqn (7) from -1 to 1 to obtain

$$
\begin{equation*}
A \eta_{0}(1-\omega)+\frac{1}{2} \omega \int_{-1}^{1} R\left(\eta_{0}, \mu\right) B(\mu) \mathrm{d} \mu=2+\omega B_{0} \tag{9}
\end{equation*}
$$

where, in general,

$$
\begin{equation*}
B_{\alpha}=\int_{-1}^{1} \varphi\left(\eta_{0}, \mu\right) B(\mu) \mu^{\alpha} \mathrm{d} \mu \tag{10}
\end{equation*}
$$

Thus, after noting that

$$
\begin{equation*}
B_{1}=\eta_{0} B_{0}-\frac{1}{2} \omega \eta_{0} \int_{-1}^{1} R\left(\eta_{0}, \mu\right) B(\mu) \mathrm{d} \mu \tag{11}
\end{equation*}
$$

we can write eqn (7) as

$$
\begin{equation*}
A \mu \varphi\left(\eta_{0}, \mu\right)+\frac{1}{2} \omega R\left(\eta_{0}, \mu\right) B(\mu)=1+\frac{1}{2} \omega R\left(\eta_{0}, \mu\right) B_{0}+\frac{1}{2} \omega b \eta_{0} \mu\left[-2+A \eta_{0}(1-\omega)\right] \tag{12}
\end{equation*}
$$

Since $\varphi\left(\eta_{0}, \mu\right) \exp \left(-\tau / \eta_{0}\right)$ is a solution of the homogeneous version of eqn (1), it is clear that the constant B_{0} appearing in eqn (12) can be chosen arbitrarlly. We now take $B_{0}=-2 / \omega$ to obtain the final result

$$
\begin{equation*}
B(\mu)=\frac{-2}{\omega R\left(\eta_{0}, \mu\right)}\left\{A \mu \varphi\left(\eta_{0}, \mu\right)+b \eta_{0} \mu\left[1-\frac{1}{2} \omega A \eta_{0}(1-\omega)\right]\right\} \tag{13}
\end{equation*}
$$

The algebra associated with the case $S(\tau)=\tau \exp \left(-\tau / \eta_{0}\right)$ is considerably more tedious, and thus we will only list here the final results:

$$
\begin{equation*}
I_{p}(\tau, \mu)=\varphi\left(\eta_{0}, \mu\right) \mathrm{e}^{-\tau / \eta_{0}}\left[C \tau^{2}+D(\mu) \tau+E(\mu)\right] \tag{14}
\end{equation*}
$$

where

$$
\begin{gather*}
C=\frac{1}{2 N\left(\eta_{0}\right)}, \tag{15}\\
D(\mu)=-\frac{4 C}{\omega R\left(\eta_{0}, \mu\right)}\left[\mu \varphi\left(\eta_{0}, \mu\right)-\omega R\left(\eta_{0}, \mu\right)\left(\frac{L\left(\eta_{0}\right)}{N\left(\eta_{0}\right)}-K\left(\eta_{0}\right)\right)-N\left(\eta_{0}\right)\right. \\
 \tag{16}\\
\left.\times\left\{1-\omega b \eta_{0} \mu\left[1-C \eta_{0}(1-\omega)\right]\right\}\right]
\end{gather*}
$$

and

$$
\begin{equation*}
E(\mu)=\frac{2}{\omega R\left(\eta_{0}, \mu\right)}\left[-\mu \varphi\left(\eta_{0}, \mu\right) D(\mu)+\frac{\omega}{2} b \eta_{0} \mu R\right] \tag{17}
\end{equation*}
$$

Here we have let

$$
\begin{gather*}
L\left(\eta_{0}\right)=\int_{-1}^{1} \frac{\varphi^{3}\left(\eta_{0}, \mu\right)}{\omega R\left(\eta_{0}, \mu\right)} \mu^{2} \mathrm{~d} \mu \tag{18}\\
K\left(\eta_{0}\right)=\int_{-1}^{1} \frac{\varphi^{2}\left(\eta_{0}, \mu\right)}{\omega R\left(\eta_{0}, \mu\right)}\left\{1+\omega b \eta_{0} \mu\left[-1+C \eta_{0}(1-\omega)\right]\right\} \mu \mathrm{d} \mu \tag{19}
\end{gather*}
$$

and

$$
\begin{equation*}
R=\frac{\eta_{0}(1-\omega)}{N\left(\eta_{0}\right)}\left[\eta_{0}-\left(\frac{2}{1-\omega}\right) N\left(\eta_{0}\right)+2 \frac{L\left(\eta_{0}\right)}{N\left(\eta_{0}\right)}-2 K\left(\eta_{0}\right)\right] \tag{20}
\end{equation*}
$$

We note that Ref. (2) contans particular solutions for inhomogeneous source terms of the form $\exp (-\tau / \eta)$ and $\tau \exp (-\tau / \eta), \eta \neq \eta_{0}$, and thus the results given here complete the tabulation of Ref. (2).

Acknowledgements -The author would like to note that this problem was suggested by Dr M Herman and to express his gratitude to Prof J Lenoble and the Université des Sciences et Technques, Lille, for their kınd hospitality and partial support of this work

REFERENCES

1 K M CASE and P F Zweifel, Linear Transport Theory Addison-Wesley, Reading, Mass (1967)
2 M N Ozişik and C E Siewert, Nucl Scı Engng 40, 491 (1970)

