ON PARTICULAR SOLUTIONS OF THE EQUATION OF TRANSFER

C. E. SIEWERT*

Université des Sciences et Techniques, Lille, France

(Received 21 January 1975)

Abstract—The particular solutions corresponding to two very special inhomogeneous terms of the equation of transfer with linearly anisotropic scattering are reported

I INTRODUCTION

IT is clear that the analysis of radiative transfer problems, based on the inhomogeneous equation

$$\mu \frac{\partial}{\partial \tau} I(\tau, \mu) + I(\tau, \mu) = \frac{\omega}{2} \int_{-1}^{1} (1 + b\mu\mu') I(\tau, \mu') \,\mathrm{d}\mu' + S(\tau), \tag{1}$$

can proceed along classical lines⁽¹⁾ once a particular solution $I_p(\tau, \mu)$, corresponding to a given inhomogeneous source term $S(\tau)$, is established. In this paper, we wish to report two particular solutions which correspond to source terms explicitly omitted in an existing tabulation⁽²⁾ of particular solutions, namely

$$S(\tau) = e^{-\tau/\eta_0} \quad \text{and} \quad S(\tau) = \tau \ e^{-\tau/\eta_0} \tag{2}$$

where η_0 denotes a "discrete eigenvalue" of the homogeneous equation of transfer:

$$\Lambda(\eta_0) = \omega R(\eta_0, \eta_0) \left[1 - \eta_0 \tanh^{-1} \frac{1}{\eta_0} \right] + 1 - \omega = 0,$$
 (3)

where

$$R(x, y) = 1 + b(1 - \omega)xy$$
(4)

II ANALYSIS

If we first consider $S(\tau) = \exp(-\tau/\eta_0)$ and substitute

$$I_{p}(\tau,\mu) = \varphi(\eta_{0},\mu) e^{-\tau/\eta_{0}} [A\tau + B(\mu)], \qquad (5)$$

where

$$\varphi(\eta_0,\mu) = \frac{\omega}{2} \eta_0 \frac{R(\eta_0,\mu)}{\eta_0 - \mu},\tag{6}$$

into eqn (1), we find that the constant A and the unknown $B(\mu)$ should satisfy

$$A\mu\varphi(\eta_0,\mu) + \frac{1}{2}\omega R(\eta_0,\mu)B(\mu) = 1 + \frac{\omega}{2}\int_{-1}^{1} B(\mu')\varphi(\eta_0,\mu')(1+b\mu\mu')\,\mathrm{d}\mu'.$$
(7)

Multiplying eqn (7) by $\varphi(\eta_0, \mu)$ and integrating over μ from -1 to 1, we find immediately that

$$\frac{1}{A} = N(\eta_0) = \int_{-1}^{1} \mu \varphi^2(\eta_0, \mu) \,\mathrm{d}\mu.$$
(8)

*Permanent address: Nuclear Engineering Department, North Carolina State University, Raleigh, NC 27607, U.S.A.

To find $B(\mu)$, we can first integrate eqn (7) from -1 to 1 to obtain

$$A\eta_0(1-\omega) + \frac{1}{2}\omega \int_{-1}^{1} R(\eta_0,\mu)B(\mu)\,\mathrm{d}\mu = 2 + \omega B_0, \qquad (9)$$

where, in general,

$$B_{\alpha} = \int_{-1}^{1} \varphi(\eta_0, \mu) B(\mu) \mu^{\alpha} d\mu.$$
 (10)

Thus, after noting that

$$B_{1} = \eta_{0}B_{0} - \frac{1}{2}\omega\eta_{0}\int_{-1}^{1} R(\eta_{0}, \mu)B(\mu) d\mu, \qquad (11)$$

we can write eqn (7) as

$$A\mu\varphi(\eta_0,\mu) + \frac{1}{2}\omega R(\eta_0,\mu)B(\mu) = 1 + \frac{1}{2}\omega R(\eta_0,\mu)B_0 + \frac{1}{2}\omega b\eta_0\mu[-2 + A\eta_0(1-\omega)].$$
(12)

Since $\varphi(\eta_0, \mu) \exp(-\tau/\eta_0)$ is a solution of the homogeneous version of eqn (1), it is clear that the constant B_0 appearing in eqn (12) can be chosen arbitrarily. We now take $B_0 = -2/\omega$ to obtain the final result

$$B(\mu) = \frac{-2}{\omega R(\eta_0, \mu)} \left\{ A \mu \varphi(\eta_0, \mu) + b \eta_0 \mu \left[1 - \frac{1}{2} \omega A \eta_0 (1 - \omega) \right] \right\}.$$
 (13)

The algebra associated with the case $S(\tau) = \tau \exp(-\tau/\eta_0)$ is considerably more tedious, and thus we will only list here the final results:

$$I_{p}(\tau,\mu) = \varphi(\eta_{0},\mu) e^{-\tau/\eta_{0}} [C\tau^{2} + D(\mu)\tau + E(\mu)], \qquad (14)$$

where

$$C = \frac{1}{2N(\eta_0)},\tag{15}$$

$$D(\mu) = -\frac{4C}{\omega R(\eta_0, \mu)} \bigg[\mu \varphi(\eta_0, \mu) - \omega R(\eta_0, \mu) \Big(\frac{L(\eta_0)}{N(\eta_0)} - K(\eta_0) \Big) - N(\eta_0) \\ \times \{1 - \omega b \eta_0 \mu [1 - C \eta_0 (1 - \omega)]\} \bigg], \quad (16)$$

and

$$E(\mu) = \frac{2}{\omega R(\eta_0, \mu)} \left[-\mu \varphi(\eta_0, \mu) D(\mu) + \frac{\omega}{2} b \eta_0 \mu R \right].$$
(17)

Here we have let

$$L(\eta_0) = \int_{-1}^{1} \frac{\varphi^3(\eta_0, \mu)}{\omega R(\eta_0, \mu)} \mu^2 d\mu,$$
(18)

$$K(\eta_0) = \int_{-1}^{1} \frac{\varphi^2(\eta_0, \mu)}{\omega R(\eta_0, \mu)} \{1 + \omega b \eta_0 \mu [-1 + C \eta_0 (1 - \omega)]\} \mu \, \mathrm{d}\mu,$$
(19)

and

$$R = \frac{\eta_0(1-\omega)}{N(\eta_0)} \left[\eta_0 - \left(\frac{2}{1-\omega}\right) N(\eta_0) + 2 \frac{L(\eta_0)}{N(\eta_0)} - 2K(\eta_0) \right].$$
(20)

We note that Ref. (2) contains particular solutions for inhomogeneous source terms of the form $\exp(-\tau/\eta)$ and $\tau \exp(-\tau/\eta)$, $\eta \neq \eta_0$, and thus the results given here complete the tabulation of Ref. (2).

Acknowledgements -- The author would like to note that this problem was suggested by Dr M HERMAN and to express his gratitude to Prof J LENOBLE and the Université des Sciences et Techniques, Lille, for their kind hospitality and partial support of this work

REFERENCES

1 K M CASE and P F Zweifel, Linear Transport Theory Addison-Wesley, Reading, Mass (1967) 2 M N Ozișik and C E Siewert, Nucl Sci Engng 40, 491 (1970)