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1. Introduction 

A great deal of interest in neutron-transport theory is centered about the use of Case's 
singular eigenfunction expansion technique [1, 2] for problems with plane symmetry, and 
the successful applications have been numerous; however, because of inherent difficulties, 
even the one-speed problems in neutron-transport theory for non-planar geometries have 
not been solved as readily, nor as rigorously, as might be desired. Some progress, however, 
has been made. Davison [3] and Mirsis [4] established both the singular and the regular 
solutions of the homogeneous transport equation in spherical and cylindrical geometries, 
and the latter author solved thoroughly the critical problem for the bare sphere and the 
unreflected infinite cylinder. 

Leonard and Mullikin [5] have discussed the plane- and spherical-geometry resolvent 
kernel for the Fredholm equation, the solution of which is the neutron density. The 
transform technique and the eigenfunctions of the homogeneous transport equation were 
used by Erdmann and Siewert [6] to develop Green's functions of interest for spherical 
problems in finite and infinite media. Shani [7] and Smith [8] have discussed the so-called 
black-sphere problem for one-speed theory, and Gibbs [9] has utilized a general method for 
convex media; the latter technique, however, has been applied principally to problems 
without an incident neutron flux. 

The purpose of the present work is to extend the transform method used by Mitsis [4] 
to include the effects of sources and, more importantly, neutrons incident on the free surface 
of a finite sphere. The analysis is carried out for the time-independent one-speed model, 
and the sources and the surface boundary conditions are, in general, arbitrary. The mathe- 
matical model discussed herein is applicable to the development of many reactor concepts 
including high temperature reactors with spherical fuel dements [10], AVR reactors 
[11], liquid fluidized beds of spheres [12], and the so-called pebble bed reactors [13, 14]. 

2. Basic Analysis 

Assuming an isotropic scattering law, we seek a solution to the steady-state one-speed 
neutron transport equation, written in the spherically symmetric form 

0 1 - /.2 0 c (+x 
/* -~r W(r,/*) + r tg/* W(r, t*) + W(r,/*) = ~ J - 1  W(r,/*')d/*" + S(r) ,  (2.1) 
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subject to the free-surface boundary condition 

tF(R, - /z)  = F(/z), Fe(0, 1). (2.2) 

Here 'F(r, F) denotes the neutron angular density in a sphere of  radius R (in optical units), 
r is the optical variable,/z is the direction cosine of the propagating neutron, c < 1 is the 
mean number of secondary neutrons per collision, and S(r) represents the inhomogeneous 
source term. Further, the function F(/z), Fe(0, 1), describes the arbitrary incident distribu- 
tion of neutrons. 

From equation (2.1) we can deduce the integral equation for the neutron density [3]: 

fi' p(r) = F(lF0(r, F')l)e-%(""'~d/; 

1 f+/~ C , , + -  , r'El([r - r'l)[S(r') + ~p(r )]dr,  (2.3) 
r g _ ~  

where we have extended the range of r to re[ -R ,  R], and have defined p ( - r )  = p(r) and 
S ( - r )  = S(r). Here the first exponential integral function is denoted by E~(x). 

If  we now define two transform functions, 

�9 (r, F) dr'r'e -('-''~t" S(r') + gp(r ' )  , Fe(O, 1), (2.4a) 
-R 

and 

C t  ,= F rre ] 
we observe the equation (2.3) can be written as 

f+? p(r ) = f(lFo(r, t~')[)e-%(""'~dF ' 

l f l  
+ - [(I)(r, F') + O(r, -/z ')ldF',  

r 

Fe(0, 1), (2.4b) 

(2.5) 
r e [ -  R, R]. 

We note that dg(r, F) , /ze(-  1, 1), has been defined differently for positive and negative 
F; however, differentiation of equations (2.4) and (2.5) may be used to show that in general 
(I)(r, F) must be a solution of 

0 c f + z  
F~r  ~(r ,F) + eg(r,F) = ~ j _ ~  ~(r ,F ')dF'  + rS(r) 

(2.6) 
Cr ~+1 

+ -2 J -x  F(l/zo(r,/z')l)e-So(""'~dF '. 

Equation (2.6) is, of course, the differential transport equation appropriate for applications 
in plane geometry, with an inhomogeneous forcing function 

cr (+1 
Q(r) = rS(r) + -~ J-1  F([Fo(r, F')[)e-%(~'~')dF '. (2.7) 

The boundary conditions subject to which a solution to equation (2.6) must be constructed 
follow immediately from the definitions given by equations (2.4): 

@(r,/z) = - @(-r ,  - /z)  (2.8a) 

and 

r - F )  = 0, /ze(0, 1). (2.8b) 
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It  is evident that the original problem of determining p(r) has been reduced to the 
need to solve the pseudo slab problem defined by equations (2.6) and (2.8); clearly once 
this is accomplished, p(r) follows simply from equation (2.5). 

3. Par t icu la r  Solutions 

It is clear that the pseudo problem defined by equations (2.6) and (2.8) can be solved 
by Case's method once a particular solution appropriate  to the inhomogeneous source 
term Q(r) is established. Clearly the required particular solution can always be written in 
terms of the infinite-medium Green's  function; however, in order to establish more tract- 
able particular solutions for explicit inhomogeneous terms, several particular cases can be 
mentioned. The simplest case, of course, is F(~) = 0, in which case only the internal source 
for the sphere need to be considered. 

The case of a constant source in a finite sphere without incident neutrons leads to 

Q(r) = r, (3.1) 

for which the appropriate  particular solution is [15] 

1 
= - -  (r - ft), c # 1, (3.2a) Op(r , /0  1 - c 

1 
= /~s _ 2 (r - /~)[(r - / z )  2 + 3/z~], c = 1. (3.2b) 

Particular solutions corresponding to isotropically emitting sources described by arbitrary 
polynomials of r have been derived by Lundquist and Horak [ 15 ], so that further examples 
of this type are readily available. 

In regard to incident neutrons, the case of a constant F(~), say unity, is the simplest, 
but perhaps the most interesting for reactor physics calculations. Here we need to evaluate 

(+1 e-%("W)dl z', (3.3) r  
a(r )  = -~ J - 1  

which integrates to 

C 
a(r )  = ~ {R[E2(R - r) - E~(R + r)] + [Ea(R - r) - E3(R + r)]}, (3.4) 

where E2(x) and E3(x) are higher order exponential integral functions. 0zi~ik and Siewert 
[16] have found that for an inhomogeneous source term of the form 

Q(r) = Eu(R  + r), 

Equation (2.6) accepts the solution 

2 n 2 n+r 
egy~(r, tO = - -  t~ - e - ~  ~", ~e(O, 1), 

c 

= O, /ze( -  1, 0). 

Similarly, for Q(r) = EN(R - r), we note 

4~m(r,/z) = O, /ze(O, 1), 

2 • 2 R 
- c ( - / z )  - e ( - , ) t , ,  / z ~ ( -  l ,  0 ) .  

(3 .5)  

( 3 . 6 a )  

(3.6b) 

(3.7a) 

(3.7b) 



640 Shao-po Wu and C. E. Siewert ZAMP 

These results can thus be used to deduce the particular solution corresponding to Q(r) as 
given by equation (3.4). Hence, 

q~v(r,/x) = (R + /z)e -CR+'/", /ze(0, 1), (3.8a) 

= - (R - /z)e (R-')/", /ze(- 1, 0). (3.8b) 
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Abstract 

The time-independent one-speed neutron transport equation for media with spherically 
symmetric invariance properties and an isotropic scattering law is discussed. The analysis allows 
for isotropic internal emission, and emphasis is placed on the treatment of neutrons incident on 
the free surface of a finite spherical medium. 

Zusammenfassung 

Gegenstand diese Artikels ist eine zeittmabh/ingige, monoenergetische Neutronentransport- 
gleichung ffir Medien mit sph~irisch symmetrischen Invarianzeigenschaften und isotropem 
Streugesetz. Die Analysis erlaubt isotrope interne Emission und behandelt das Problem des 
Neutroneneinfalls auf eine freie Oberfl~che eines encllichen sph~irischen Mediums. 
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