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Abstract-A generalized equation of radiative transfer in the two-group picket-fence model is analyzed for a 
plane parallel, emitting, absorbing and isotropically scattering medium containing uniform heat sources and 
having boundary surfaceS’wbich’are diffusk emitters and diffuse reflectors and are maintained at uniform but 
arbitrary temperatures. The solution of the general problem is expressed by the superposition of simpler 
problems which are solved by the application of the normal-mode-expansion technique. Highly accurate 
numerical results are presented for the temperature distribution and the radiative heat flux in the medium. 

1. INTRODUCTION 

THE EVALUATION of the energy transfer by radiation has been of interest to scientists working with 
high:temperatpre ,gases over the years. ,Early investigations of radiative transfer were mostly in 
astrophysical applications, and the analyses were based on approximate methodq oj, ;@$ion. 
HOPF”’ appears to be the first investigator to present exact results for several radi@ive <transfer 
probleqs., La@ : C\HAND+GEKHAR,‘~’ among others, applied a technique based on invariance 
principles to solve exactly various problems of astrophysics. With the introductionof the norjnal- 
mode-expansion technique by CASE,(~) a new era was opened in the field of radiative transfer. 

SIEWERT and ZWEIFEL,‘~’ utilizing this powerful technique, developed the formalism for the 
e%act solution of the equation of radiative transfer in the two-group picket-fence model. Their 
exact method of solution was applied by SIMMONS and FERZIGER,“’ SIEWERT and ~ZISIK,‘~’ BOND and 
SIEWERT’~ and REITH et ~1.‘~’ to radiative transfer problems. Later SIEWERT and SHE&@’ 
SIEWERT and ISHIGURO,“~’ REITH and SIEWERT’“’ utilized this method and obtained the elementary 
solutions of the equation of radiative transfer in the two-group picket-fence model with a 
scattering term included (isotropic and linearly anisotropic scattering) and established the related 
half-range expansion and orthogonality theorems. YENER et a1.(“’ have applied the method to 
analyze a generalized form of the equation of radiative transfer in the two-group picket-fence 
model for a half space. 

In the present analysis, radiative heat transfer in an absorbing, emitting and isotropically 
scattering stagnant gas confined between two emitting and diffusely reflecting parallel boundaries 
and with uniform internal heat sources is considered in the two-group picket-fence model. The 
solution of the problem is expressed by the superposition of simpler problems which are in turn 
solved by the normal-mode-expansion technique. 

2. GENERAL FORMULATION 

The generalized equation of radiative transfer for one-dimensional plane-parallel, emitting, 
absorbing, isotropically scattering non-gray media is (CHANDRASEKHAI?) 

~~~"(x,~)+(K.i(T,)I,(X,p)=(Kv+e~")g~[T(X)l+f~~(~-~,) I 
1 

IAx, p’) dp’, (1) 
-1 

where I”(x) CL) is the spectral ‘radiation intensity, K, and rV are respectively the spectral 
absorbtion and scattering coefficients. Also, B,[T(x)] is the Planck function at the lOCal 
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temperature T(x) and p is the direction cosine of the propagating radiation (as measured from 
the positive x-axis). Here the coefficient E, d 1 allows for the possibility that a certain amount of 
thermal radiation may be associated with the scattering coefficient. 

When the energy transfer is by pure radiation (i.e. conductive and convective modes of heat 
transfer are negligible), the equation of energy conservation in one-dimension for a medium 
containing heat sources of strength g* (energy generated/time volume) is given by (ijzrSIK"3') 

dq’(x)/dx = 8*, (2) 

where q’(x) is the radiative heat flux, which is related to the radiation intensity IV(x) p) by 

m 1 

q’(x)=2?T If L(x) P’)/J’ dp’ dv. (3) 0 -1 

Seeking solutions in the medium bounded by parallel planes at x = 0 and x = x0, we consider 
frequency-dependent boundary conditions of the form 

I 
I 

L(O) /.&) = ETB”[TIl+ 2PY” L(0, -P’)P’ dp’, P E (0, l), (da) 
0 

and 

(4b) 

Here T,, E 5, and p& (Y = 1 or 2, are respectively the temperature, emissitivity, and diffuse 
reflectivity at the boundary surfaces x = 0 (CX = 1) and x = xo (a = 2). 

We now assume that the entire frequency spectrum is divided into two regions AA, i = 1,2 in 
each of which Ky, p.,, E,, E E,, and p Z!, take constant values Kit m, 6, E xi, and p 5. Integration of eqn 
(1) over the Avi yields 

a 
P-J(X,/‘)+(Ki +Ui)L(X,p)=gi ax It@, p’) dp’, 

where 

and 

g, = ‘:’ + Eimh g* 

4’77 2 (Ki + EQi)Wi 
i=* 

(6) 

(7) 

Here 

wi = [T/a-‘(X)] I BvU'(x)l dv, (9) 
Au, 

where & is the Kronecker delta and d is the Stefan-Boltzmann constant. In this analysis 01 and 
o2 = 1 - o1 are taken to be constants. 
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In obtaining eqn (5), we have used the following equation of energy balance: 
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f 
-(KU+~OI)BIIT(x)ldY=~+ffm(KI+(l~~)f’ L(x) p’)dp’ dv. (10) 0 cl -1 

Introducing an optical variable 

we write eqn (5) as 

d7 = (Kz + az) dx, (11) 

P-$(W) + x1(7, CL) = G + iJ 1-1 I(T, p’) dp’. (12) 

Here I(T, CL) is a two-component vector with elements 1,(~, CL) and 12(T, p), while 

s= [; ;I, 

with 

KI+U, 
u=- 

K2 + ~72’ 
u>l, 

and 

i=l 

with 

g* 
F = 27T(Kz + U2)’ 

(13) 

Without loss of generality, u is taken to be greater than unity and Ai is defined as 

KI + EiUi 
A, =- 

Kz+ Uz' 

The elements of the 2 x 2 transfer matrix Q are 

(14) 

(16) 

(17) 

The required boundary conditions on the vector I(T, p) can be obtained by integrating eqns (4) 
over the frequency band Av~, viz. 

I 
1 

I(0, II) = A, +2Bld I(0, -~‘)~‘d~‘, P E (0, l), (19a) 0 

and 

L 

I( To, - p ) = A2 + 2Bzd I(% P')P'+', CL E (0, 1). Wb) 

Here To = (K2 + u3x, is the optical thickness of ‘the slab, and A, and Bad, (Y = 1 or 2, are 
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considered prescribed constants defined~in~terms of the~previously me&wid quantities 

and 

Equations (12) and (19) are the basic equations to be solved. To write the desired solution we 
prefer to use the superposition priyiple and thus let 

I(T, /A) = I”‘(7, /.L) -t P(7, CL). (21) 

To establish the relation defining I(~)(T, I*) and I(“(T, I*), we consider the following 2 x 2 matrix 
problems: 

p~~i(7.~)+PQi(7.~)=s~i~+Ql: fk(T,p’)dp’, i = 1,2, (22a) 

aito, CL) = hiI, CL E (O,l), (22b) 

fbi(To, --CL) = 0, p E (0, 1). (22c) 

Then it can be shown that I(“(T, p) and I(*‘(T, p) are given by 

I”‘(T, II) = fh(T, /J&I + f&(70- T, -p)R, (23a) 

and 

I(*‘(T, /J) = f&,(7, p)L, + &(To - T, -p)Rz + nz(T, PK. (23b) 

Here the vectors L1 and R, are the solutions of the algebraic equations 

L, = A, + 2Bld[ML, + NRJ (24a) 

and 

R, =Az+2Bzd[NL,+MR,1, 

and the vectors L2 and Rz are the solutions of the following algebraic equations: 

Lz = 2Bld [MLt + NRz + WGI 

and 

(24b) 

(254 

Rz = 2Bzd [NLZ + MRz + WGI. W) 

Here M, N, and W are the first moments of the exit distributions of the problems defined by eqns 
(22), i.e. 

M= &(O, - P’)Y’ d@‘, (26) 

N= 
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and 

We note that 

w = 
I 
o’ i&(0, -p’)p’ dp’ = 

I 

1 
fh(~o, CL%’ dp’. 

0 

[gT[M+N] =;[;I’ 

Cw 

(29) 

(30) 

and thus not more than six of the eight matrix elements defined by eqns (26) and(27) and two of 
the four matrix elements defined by eqn (28) are independent. We.use the superscripts T and tilde 
interchangeably to denote the transpose operation. 

The temperature distribution in the medium follows from eqn (10): 

(31) 

In terms of our basic problems, eqn (31) can be written as 

T’(T) = [T(‘)(7)1*+[T(2)(T)]4 024 

where 

and 

6.[Tc2)(~)]’ F 
= 2 + r”‘( T)L + ,(“( 7. - 7)R2 + r’“( 7)G. 

7T 
2 2 hroi 

i-l 

Here we define 

and 

WI 

(32~) 

Wb) 

‘, , 

For the two-group model considered, the radiative heat flux, q’(T), given by eqn (3) becomes 

1= ’ 
q1(7)=2?r 1 HI I(T F’)P’ G’. (34) -1 

Similarly, in terms of the basic problems, this relation can be written as 

QSRTVol. 16,No.2-E 
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q’(7) = q(l)+ q’*‘(T), 

and 

q(2)(7) = (27 - T&s + 2n 

3. BASIC ANALYSIS 

In the previous section we have shown that the:solution of the radiative transfer PI 
given by eqns (12) and (19) could be written in terms of the solutions of the two simpler prc 
defined by eqns(22). In this section, following the work of SIEWBRT and IS~GIJRO,“~) we I 
the solutions of these basic problems. 

The transfer matrix Q in eqn (22a) is, in general, not symmetric and, since we PI 
symmetric form, we muhiply eqn (22a) by 

p = 

[ 

bJ*/wd”2 0 

0 1 1 
to obtain 

~~oi(7,Jl)+~Yi(7,p)=S2IP+C 
I 

1 

‘I’i(T, CL’) dp’, i = 1,2, 
-1 

with 

Y*(O, CL) = SliP, CL E (0, I), 

and 

where 

Yi(T0, --LL)=O, CL E (0, 11, 

y111(T, CL) = pfh(T, CL) 

and 

C =PQP-‘. 

We note that C = C and that the elements of the new transfer matrix C are given by 

Following the work of SIEWERT and SHIEH,@) for 

C =detCrO 

and 

u + 4c - 2c,, - 2ucc22 = 0, 
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we conclude that the dispersion function for this problem has either two zeros at infinity or two 
zeros at infinity plus two real zeros. Since the latter case is rather special (YENER et a1.““), we 
consider the case with only two zeros at infinity, i.e. 

cz2 > 2C tanh-’ (l/a). (43) 

A general solution of eqn (37a) can be written as (SIEWERT and ISHIGURO”“) 

I 
l/u 

+ p,(l) (- 17, k)bI:)(-q) + @02()(--q, p@(- 711 erlrl dq 
0 

I 
f + ac2)(q, p));iY)(q) emT”’ dq 

1/u 

I 
1 

+ (Pc2)(- q, p)6,“‘(-q) e”” dn, (44) 
l/o 

where &(l)(~, CL), @:“(q, CL), and @“‘(q, CL) are the continuum eigensolutions (SIEWERT and 
Isnr~uao~*~~) and a, and a_(~, p) are the discrete eigensolutions (YENER et ~l.(‘*‘); Ai+, Ai-, 
A::‘(? q), Ai:‘(i q), and A?‘(+ 7) are the expansion vector coefficients to be determined; Y, (T, p) 
is the particular solution corresponding to the inhomogeneous term &,P and is written as 

qpTp(7, /sb) = [T~I- 2T/.&‘+ 2/~~~-~]@+&’ + Kfi, (45a) 

where 

K= Cl2 

[ 1 1 9 
c22-z 

and 

fl =$P[pK- &+I, 

with 

WI 

and 

r=KK, 

s = Kcz-‘a+, 

p = ~+cx-‘~ f, 

A = u + 1 - 2(Cl, + c22). 

(4W 

(45f) 

(4%) 

Wh) 

If we now substitute the solution given by eqn (44) into equations (37b) and (37~) we get 

I 
1 

+ @‘)(q, cL Id’“(q) dq, 77 E (0, l), 
lk 
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L&L) = cp+&+ + 

I 
1 

+ @(*)(q, p)Ai:2)(- q) eTd’ dq, CL E (0, l), I/w 

where 

Li,(/A)=SliP-*\lr,(O, /A))-*-(07 p)k- 

r 
l/o 

- p~,“‘(-77, p)dl’,‘(- 7) + @t(l)(- 7, d%%- v)l dq 
Jo 

-I 
1 

@(*)(-q, &0)(-q) dq, 
I/o 

and 

CL E (0, l), 

q, p)&:)(q)1 eeTdq dq 

Wb) 

Wa) 

-I 
1 

@)(-q, p)k(*)(q) emTdq dq, ~1 E (0,l). (47b) 
llrr 

Equations (46) and (47) are two coupled singular integral equations. They may, however, be 
transformed to coupled regular integral equations by making use of the orthogonality properties 
of the eigenfunctions. Since Li,(p) and Li2(p) are themselves expressed in terms of expansion 
coefficients, eight coupled integral equations for the eight unknown expansion vector coefficients 
are obtained rather than closed-form results; since the final equations are long, we do not present 
them here but note that they can be found elsewhere (YENER”~‘). These coupled integral equations 
w&e solved numerically and highly accurate numerical results were obtained for the expansion 
coefficients. Once the expansion coefficients are known various other quantities are readily 
computed from definitions given previously. 

The angular exit distributions ‘Pi(O, -CL), p E (0,l) and i = 1 and 2, follow from eqn (44) by 
setting T = 0 and considering /.L < 0. Similarly, ti (TV, /.L), /.L E (0,l) and i = 1 and 2, follows from 
the same equation by setting 7 = TO and considering p >O. First moments of these exit 
distributions are the basic quantities required for the calculation of the matrices M, N and W. 
These moments can be obtained by multiplying the exit distributions by ~1 and then integrating 
over p from 0 to 1 as follows: 

I 
t 

0 
Yi(O, -/L’)F’ dp’ =~[X”b+oi +.I<@] +i@+Ai++fX-‘@,+A,- 

and 

I’ yyi(Too, CL%’ dp’ = [; To2-;T&+;p-* 
1 

@+6 +;K@ 

+i@+bi++ [~~o-~X-~]@i+Ai- 

[L(7))&(7) evTd” +L(-11);ii(-77)eTo’~ldll, W-4 
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where we have defined, for 7 ~0, 

and 

Here it should be noted that 

and 

(49b) 

Alternatively, we also calculated the first moments of @,(O, -_cL) and *[(To, cl), ~1 E (0,l) and 
i = 1 and 2; using the S matrix defined by SIEWERT and Is~~ou~o”~‘. Since the resulting equations 
are lengthy, we do not present them here. The matrices M, N and W were computed using the 
results from both approaches and the numbers we obtained from both methods agreed at least to 
eight significant figures. 

4. NUMERICAL ANALYSIS AND RESULTS 

The temperature distribution and the heat flux are the two physical quantities of practical 
interest. As discussed previously, the solution of the problem has been related to the solutions of 
two basic problems defined by eqns (22). To perform the calculations numerically, the integral 
region [0, 11 was divided into a number of subintervals and a 40-point Gaussian quadrature 
scheme was used in each of these subintervals. For almost all of the cases considered here, six 
subintervals provided results of sullicient accuracy. All calculations were performed in double 
precision arithmetic on an IBM 3601175 computer. The iterative procedure was terminated when 
successive iterates yielded expansion coefficients in agreement to at least eight significant figures. 

Once the expansion coefficients are determined, the matrices M, N atyI W defined by eqns 
(26x28) are readily evaluated by utilizing the expressions given by eqns (48) and (50). We list in 
Table 1 a choice of eight elements of these matrices for representative values of the parameters 
a, Al, Al, o1 and ro. A check on the computed values of matrices M, N and W is provided by 
verifying eqns (29) and (30) for the cases considered here. 

It is clear from eqns (32) and (35) that the “temperature functions” I’(‘)(T) and l?(2)(7) and the 
vectors Li and Rip i = 1 and 2, are needed to evaluate the temperature distribution and the net 
radiative flux in the slab. The functions I’(~)(T) and rc2)(7) are determined from eqns (33) for any 
given values of the parameters. The vectors Li and Rip i = 1 and 2, are evaluated from the solution 
of eqns (24) and (25) once the reflectivities and emissivities of the boundary surfaces of the slab 
are specified. 

In Tables 2 and 3, the elements of the functions I'(])(T) and p2)(7) are presented for typical 

Table 1. Eight elements of M, N and W with 70 = 1.0 1, 
D A ). u n n I4 II I I Y ” 1 2 1 II 12 21 12 *I 20 1, II 
5 2.5 0.5 0.2 0.18208 0.04713 0.16653 0.02656 0.10626 0.24620 0.37581 0.11050 

: 2.5 2.5 0.5 0.5 0.4 0.6 0.25496 0.31093 0.08377 0.11476 0.12566 0.07651 0.05052 0.07275 0.07577 0.04650 0.21981 0.19586 0.55470 0.71593 0.20555 0.2$090 
: 2.5 1 0.5 1 0.8 0.2 0.21050 0.35689 0.04121 0.14201 0.16485 0.03550 0.02449 0.09356 0.09795 0.02339 0.17383 0.24901 0.42829 0.86359 0.09979 0.36880 

IO 1 1 0.2 0.27141 0.03582 0.14330 0.01894 0.07575 0.25402 0.35468 0.08087 
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Table 2. Temperature function P(T) with 70 = 1.0 

1 I 0.0 I 0.1 I 0.2 I 0.3 I 0.4 I 0.5 I 0.6 I 0.7 I 0.8 I 0.9 I 1.0 

0 )i A Y 12 I y(T) 

5 2.5 0.5 0.2 2.0598 1.3900 1.0307 I.7892 0.6170 0.4893 0.3908 
5 2.5 0.5 

0.3113 0.2437 0.1814 0.1116 
0.4 1.5388 1.639 0.9313 0.7560 0.6176 o.sb47 0.4097 0.3273 0.2527 

5 2.5 0.5 
0.1815 0.1010 

0.6 1.2411 1.0116 0.8521 0.7206 0.6077 0.5084 0.4191 0.3369 0.2592 0.1829 0.0962 
:11 2.5 0.5 0.8 0.2 0.9285 1.0466 0.7446 0.9009 0.6178 0.7882 0.6871 0.5937 0.5060 0.4224 0.3419 0.2630 0.1838 0.0933 

0.5178 0.4363 0.3682 0.3099 0.2585 0.2115 0.1664 
10 1 1 

0.1162 
0.2 0.9671 0.6979 0.5294 0.4124 0.3287 0.2669 0.2191 0.1802 0.1463 0.1145 0.0792 

~-_~~~~~~~---~---__-------__----_-----_------~_---- 
0 A A w 

1 2 1 
r(‘)(r) 

2 

5 2.5 0.5 0.2 0.5215 0.5787 0.5848 0.5695 0.5408 0.5027 0.4573 0.4054 0.3466 0.2784 0.1856 
5 2.5 0.5 0.4 0.4134 0.5075 0.5398 0.5435 0.5276 0.4969 0.4541 0.4009 0.3375 0.2622 0.1601 
5 2.5 0.5 0.6 0.3494 0.4579 0.5041 0.5195 0.5124 0.4873 0.4473 0.3942 0.3289 0.2504 0.1448 
5 2.5 0.5 0.8 0.3062 0.4207 0.4740 0.4978 0.4968 0.4761 0.4386 0.3862 0.3204 0.2406 0.1342 

1: 1 1 1 1 0.2 0.2 0.7522 0.7522 0.7098 0.6691 0.6262 0.5608 0.5329 0.4827 0.4297 0.3736 0.3124 0.2366 
0.7262 0.6932 0.6531 0.6078 0.5583 0.5053 0.4487 0.3879 0.3207 0.2363 

Table 3. Temperature function P(T) with .r,, = 1.0 
T I 0.0 I 0.1 I , o.2T(21r)o.J I 0.4 I 0.5 D ~ ~ w 

5 2.5 0.5 0.2 1.1195 1.7777 2.1501 2.3873 2.5211 2.5644 
5 2.5 0.5 0.4 1.1129 1.9457 2.4367 2.7569 2.9402 3.0000 
5 2.5 0.5 0.6 1.0557 1.9507 2.4993 2.8656 3.0782 3.1481 
5 2.5 0.5 0.8 0.9894 1.8864 2.4532 2.8384 3.0646 3.1393 
5 1 1 0.2 1.0027 1.5525 1.8801 2.0944 2.2172 2.2573 

10 1 1 0.2 1.0011 1.7151 2.1368 2.4046 2.5544 2.6027 

----_----_----______~~~-~~~___-~~-------------~---- 

0 A ?. 0 I 2 r (2) 1 (1) 2 

5 2.5 0.5 0.2 0.9825 1.3818 1.6175 1.7719 1.8608 1.8899 

5 2.5 0.5 0.4 0.8228 1.2662 1.5388 1.7213 1.8276 1.8626 

5 2.5 0.5 0.6 0.6877 1.1404 1.4291 1.6264 1.7L26 1.7811 
5 2.5 0.5 0.8 0.5926 1.0372 1.3288 1.5312 1.6516 1.6916 

5 1 1 0.2 1.0586 1.4412 1.6667 1.8147 1.8999 1.9278 

10 1 1 0.2 1.0590 1.4806 1.7313 1.8953 1.9893 2.0110 

Table 4. Data for selected cases with T,/T, = 2.0 and 7,, = I.0 

I 5 2.5 0.5 0.2 0.8 0.9 0.7 0.8 0.2 
II 

0.1 
5 2.5 

0.3 0.2 
0.5 0.2 0.1 0.3 0.2 0.1 0.9 0.7 

III 
0.8 0.9 

5 2.5 0.5 0.6 0.8 0.9 0.7 0.8 0.2 0.1 0.3 
IT 

0.2 
5 1.5 0.5 0.6 0.1 0.3 0.2 0.1 0.9 0.7 0.7 

v 5 
0.9 

1 1 0.2 0.8 0.9 0.7 0.8 0.2 0.1 
VI 

0.3 
5 

0.2 
1 1 0.2 0.1 0.3 0.2 0.1 0.9 0.7 

VII 10 
0.8 0.9 

1 1 0.2 0.8 0.9 0.7 0.8 0.2 
"III 10 

0.1 0.3 0.2 
1 1 0.2 0.1 0.3 0.2 0.1 0.9 0.7 0.8 0.9 

Table 5. The temperature distribution ‘P(7) and heat flux q”’ for selected cases 

& 0.0 I 0.1 I 0.2 I 0.3 I 0.4 0.5 I 0.6 I 0.7 I 0.8 I 0.9 I 1.0 qW/?F; 

I 0.47799 0.45076 0.43335 0.41934 0.40715 0.39586 0.38481 0.37339 0.34590 0.32365 
II 0.76538 

0.07016 
0.61423 

0.36083 
0.62586 0.57533 0.52898 0.48484 0.44149 9.39769 0.35195 0.30174 1.235?9 0.35212 

III 0.56825 0.53163 0.50400 0.47~7 0.45550 0.43286 0.41047 0.38776 0.364% o.?ie28 0.30539 0.07910 
:V 0.65722 0.76OiO 0.70024 0.63630 0.57545 0.51637 0.45809 0.39966 0.33099 0.27711 0.20029 0.27523 
\' 0.44780 0.433Sl 0.42289 0.41303 0.40377 0.39482 0.38596 0.37698'0.36761 0.35'14& 0.3U59 0.0598: 

'.'I 0.70535 0.64695 0.60340 0.56118 0.52072 0.48115 0.4blS5 0.4,,221 0.36147 0.31818 
VII 0.45865 

0.26518 0.36193 
0.44001 0.42647 0.41512 0.40504 0.39560 0.38632 0.37675 0.36637 0.35440 0.33317 0.06771 

VIII 0.71302 0.65090 0.60223 0.55847 0.51742 0.47774 0.43344 0.38857 0.35703 0.31199 0.25610 9.34765 

Table 6. The temperature distribution T’*)(T/T~) and heat flux q’*‘(~,,/2) for selected cases 

g [TW1)14 
qW(r li) 

r* 

(CL) I 0.Q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

I 6.03825 6.30048 6:43597 6.51020 6.53663 6.52009 6.46100 6.35597 6.19638 5.96202 5.55932 0.28896 

II 1.29453 1.54804 1.69023 1.77921 1.82708 1.83884 1.81626 1.75873 1.66271 1.51845 1.27550 0.09944 

III 4.78144 5.15613 5.37229 5.50154 5.55611 5.54014 5.45407 5.29531 5.05708 4.72253 4.19792 0.20831 

7." 0.95106 1.37733 I.63976 1.81622 1.92050 1.95796 1.93042 1.83699 1.67341 1.42751 1.02726 0.02665 

" 6.14124 6.33008 6.43219 6.48880 6.50784 6.49214 6.44211 6.35617 6.22995 6.05284 5.77115 0.29015 

"I 1.30123 1.50255 1.61875 1.69204 1.73057 1.73744 1.71357 1.75815 1.76811 1.43512 1.21505 0.10420 

VII 6.20656 6.45603 6.59351 6.67077 6.70014 6.68674 6.63141 6.53113 6.37809 6.15569 5.79679 0.28761 

vu.* 1.30550 1.54306 1.68057 1.76604 1.81035 1.81819 1.79106 1.72782 1.72412 1.46939 1.21434 0.11006 
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values of the parameters. Because of the symmetry of the elements of I’(‘)(r) [i.e. 
I”“(T) = I”“(r,, - T)], the elements of this function are tabulated for only half the slab thickness. 
This symmetry condition has been used as one of the checks on the accuracy of the numerical 
results; the results agreed at least up to ten significant figures for the cases presented here. In 
Tables 5 and 6, we present the temperature distribution and the heat flux in the medium for the 
cases listed in Table 4. 
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