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A B S T R A C T  

The theory o f  complex variables is used to develop exact closed-form solutions of  the trans- 
cendental equation x c o t h  x = a x 2  + 1. The  parameter t~ is considered to be real, and the 
reported analysis yields analytical expressions, in terms of  elementary quadratures, for the real 
solutions x, as they depend on prescribed values o f  t,. 

1. INTRODUCTION )~(z) = z  + X / z - ~ -  a2 - - ~  log (zZ _ _ ~ ) .  (4) 

In several recent papers [1-4] we have made use of  
the theory of complex variables to solve a class of 
transcendental equations of  interest in several areas 
of mathematical physics. Here we wish to consider 
the equation 

x coth x = ax  2 + 1, t, > 0 ,  (1) 

where the parameter a > 0 is real and is considered 
given. As discussed, for example, by Bitter [5] or 
Smart [6], equation (1) is basic to  the Langevin-Weiss 
theory of ferromagnetism. With this application in 
mind we therefore seek only the real solutions of 
equation (17 . 
If we let 

2 [ z + ~  a 2] a = 2 X / a -  (2) X ~  a-- ~ -  -- , 

where we take the square-root function to be the 
principal branch in the plane cut from -a to a, then 
we can, on using some elementary identities, rewrite 
equation (1) as 

z +  ~ z 2 - a  2 a2 ( z + l )  
= - ~  log z--2-T- " (3) 

Since the log function in equation (3) is multi- 
valued, it is clear that a solution of equation (3) cor- 
responding to any branch of the log function will 
yield, by way of  equation (2), a solution to equa- 
tion (17 . It can be shown straightforwardly, how- 
ever, that the desired real solutions of equation (17 
correspond to the roots of  equation (3) with the 
log function interpreted as the principal branch. We 
thus seek to establish analytical expressions for the 
zeros z k of 

2. FACTORIZATION EQUATIONS 

It is clear from equation (4) that X(z) is a sectionally 
analytic function; in fact, for a < 1, X (z) is analytic 
in the complex plane cut from -1 to 1 along the real 
axis, whereas for a > 1, the cut is from -a  to a along 
the real axis. We thus fred it convenient to consider 
separately the two cases (1) a < 1 and (27 a > 1. 
First of  all, for case (17 we deduce that the boundary 
values of )~ (z 7 as z approaches the cut [-1, 1] from 
the upper half plane (+) and the lower half plane (-) 
are given by 

a 2 l + t  + i [ ~ a 2 _ t  2 u a  2 ] 
~.-+(t) = t -  ~ In (~_t)  + 4 "' 

t e (-a, a), a < l ,  (5a 7 

and 

X+ (t) = t + sgn (t) V/t ~ - a 2 _ ~-a2/- '1 + t ' + i ~ - , , ,  ~ - ~ 1  - 

t e ( - 1 , - a  7.U(a,17 , a < l .  (5b) 

It is clear from equations (5) that the boundary 
values X-+ (t 7 cannot vanish on the cut, and thus a 
straightforward application of  the argument principle 
[7] can now be used to show that ),(z) has only two 
zeros, for a < 1, in the finite plane. It is also evident 
that these zeros occur as real -+ pairs, say +z 0. 
If we now introduce 

= X (z) , 
F (z) z2 - z~ a < 1, (6) 
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then we conclude that F (z 7 is analytic in the plane 
cut from -1 to 1 along the real axis and nonvanish- 
ing in the finite plane. Further, on letting z approach 
the cut from above and below, we deduce that the 
boundary values of  F (z) must satisfy 

F + ( t )  = G ( t )  F-(tT, t e ( - 1 , 1 ) ,  a <  1, (7) 

where 
),+ 

Git)  = (t) = exp  [2i arg ),+ it)].  (8) 
X- it) 

It therefore follows that F (z) is a canonical solution 
of  the Riemann problem [8] defined by equation (7). 
The Riemann problem can now be solved in the 
manner discussed by Muskhelishvili [8], and thus we 
can write the (properly normalized) canonical solu- 
tion as 

1 
F(z  7 -  2 exp [ ~  ( ar e x + i t )  f - ~ z  1 

z - 1  fr i 

a <  i, (9) 

where arg )t+(t) is continuous for t e ( -1 ,  1) and de- 
fined such that arg X+(-1) = 0. Equation (9) can 
now be entered into equation (6) to yield the factor- 
ization 

2 2 1 ~ (z) (z -1)  exp [-  1 1 argX+(t) dt ] ' 
z - z 0  = T -~-f--1 - 

a < 1. ( 1 0 )  

We now wish to consider case (2), a > 1. Here we 
find that the boundary values of k(z 7 take the 
forms 

a 2 , l + t , + i [  a ~ / ~ _ t 2  
X + i t ) =- t - --4-- In (-f2-('; - + ]' 

t e ( - 1 ,  1 ) ,  a > l ,  
and 

X+ (t7 = t : - ~ -  In (i _-_-~-) _+ i 4 a 2  - t-------2, 

(11a) 

t e ( - a , - 1 )  U(a ,  17, a > l .  (lib) 

On using the argument principle again, we find that 
case (2) subdivides into two cases : 

(2a) a > 1 , - ~ a l n ( ~ _ @ ) >  1 =* ~t(z 7 has two real 

zeros, say +z O, 

1 tn(a_ a + ~ ~k(z) has no zeros. (2b) a > l ,  --~a - ~ 7  < 1 = #  

It is also evident here that X +- it) cannot vanish for 
t e (-a, a). Of  course, case (2b) is of no interest 
since equation (1) has no real solutions. On the 
other hand, for case (2a) the function 

)t(z) a > l  and l a i n  a -  1 
F ( z ) =  z 2 2 ' 4 ( ~ )  > 1 '  

- z° ( 1 2 )  

must be a canonical solution of  the Riemann prob- 
lem 

F+(t )  = G(t 7 F - ( t  7, t e( -a ,  a), 

a>l and ~aln(a-! )> 1, (13) 
4 a + l  

where 

G(t) - ?t+ (t) - -  - exp [2i arg )t + it)] (14) 
X- (t) 

If now we take arg ~k+(t) to be continuous, such 
that arg )t + (-a) = 0, we can write 

a 

2 exp [ ~  f_ arg X+(t) dt l, F(z) = z a a t - z  

1 aln a - 1  a > 1 and ~-- ( -~- i - )  > 1, (15) 

and subsequently we deduce the factorization 

2 2 1 ~(z) (z-a)exp[-  1-__ f : a r g X  + (t)td_-~tz ] ' z - z  0 = 

a > l  a n d l a l n ( a - 1  ) > 1 .  
4 a + l  (16) 

3. EXPLICIT SOLUTIONS 

Having established the factorization equation, we can 
now enter equation (107 or equation (167 into equa- 
tion (2) to obtain the explicit solution of  equation (1). 
First of  all, for case 1, a < 1/4, we can evaluate equa- 
tion (10) at say z = ~ and enter that result into equa- 
tion (27 to obtain the exact solution 

~0 = +- 2-~[x/~ 2 -  K (~7 + 2_ 4 a -  K(~7], 

1 (17> a < ~ ,  

where 
t ~  

K(~)= 21--(~-1)[~ + x/g2- 4oe-alog(~_~+li)] x 

exp[-~-f)l arg X+(t) d t  ] (18) 
t-:T- 

and log z denotes the principal branch of  the log func- 
tion. We note that equation (177 is an identity in ~, 
and thus the equation yields an analytical solution to 
equation (1) for any convenient value of  ~. We list 
here the two special forms resulting from setting 

= 0 and ~ = ~ in equation (17) : 

I 1 (19) x 0 = + ~ - ~ [ V ~ + ' V ~ - 4 a  ], a < ( ~ - - ,  

where 
zr - -  1 1 

L = (a~- +X/a) exp [ - ~ - f - I  [arg k + ( t ) -  ~-1-~-1, 
(20) 
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and 

+1__ X/~-- + X / 1  - 2 0 ~ - M ] ' 2  : _2-~[ + 2a  - M X 0 

1 (21) a<-~-, 

where 

1 1 X+ M = ~- f-1 t arg (t) dt. (22) 

Considering now that a ~ 1/4, we note that equa- 
tion (1) has a real solution only if case (2a) is ap- 
plicable. For this case we can evaluate equation (16) 
at z = ~ and enter that result into equation (1) to 
obtain 

x 0 = + 2 ~ [ # ~  2 - P ( ~ )  + 
2 

1 andco th  1 > 2 X / ~ ,  
a >  T V'-~ (23) 

where 

1 2~/~) + ~/~2 P(~) =-~- (g - [~ - 4 a  

1 2X/a a t  

(24) 

Here equation (23) is a solution to equation (1) for 
any convenient value of ~; we again list the special 
forms due to setting ~ = 0 and ~ = ~ : 

x 0 : + 2-~-[ %/Q + x/-Q - 4a ] ,  

~ _ !  and coth  1 ~ 2 V ~ ,  (25) 
4 

where 

1 2X/a + r r d t  
Q = a(2 + ¢r ~ exp [- ~- f-2 ~ [argk (t)-  ~ - ] T  ], 

and (26) 

Xo =._ 4 x/G - R + 

1 and coth 1 ) 2x/raa, (27) 
a > - T  

where 

1 2 X/-~-~ X+ 
R = -~f2X/.~ a t arg (t) dt.  (28) 

In conclusion we note that the general equations 
(17) and (23) are our explicit closed-form solutions 
to equation (1); whereas equation (19) and (21), and 
(23) and (25), are the special forms obtained from 
special choices of  the free parameter ~. A Gaussian 
quadrature scheme has been used to evaluate all of  
our explicit solutions, for selected values of  a, and 

quite straightforwardly solutions accurate to six 
significant figures were obtained. 
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