Half-space Analysis Basic to the Linearized Boltzmann Equation

By C. E. Siewert ${ }^{1}$), Instituto de Energia Atômica, Cidade Universitária, São Paulo, Brasil

1. Introduction

We wish to consider here the linearized Boltzmann equation written, for steady state conditions, as [1]

$$
\begin{equation*}
\left(c_{1} \frac{\partial}{\partial x_{1}}+1\right) h\left(x_{1}, c_{1}, c_{2}, c_{3}\right)=\int h\left(x_{1}, c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right) K\left(\mathbf{c}^{\prime}: \mathbf{c}\right) e^{-c^{\prime 2}} d^{3} c^{\prime} . \tag{1}
\end{equation*}
$$

Here x_{1}, c_{1}, c_{2} and c_{3} are, respectively, the non-dimensional space variable and velocity components, \mathbf{c} is the velocity of the particles and $c=|\mathbf{c}|$. The dependent variable h represents the perturbation of the particle distribution function from the Maxwellian [1]. In addition, the scattering kernel is taken here to be one corresponding to the linearized BGK model,

$$
\begin{equation*}
K\left(\mathbf{c}^{\prime}: \mathbf{c}\right)=\frac{1}{\pi^{3 / 2}}\left[1+2 \mathbf{c}^{\prime} \cdot \mathbf{c}+\frac{2}{3}\left(c^{\prime 2}-\frac{3}{2}\right)\left(c^{2}-\frac{3}{2}\right)\right] . \tag{2}
\end{equation*}
$$

Since we are interested here in temperature-density effects, we can take 'moments' of Eqn. (1) to obtain equations dependent only on x_{1} and c_{1}. Thus we let

$$
\begin{equation*}
\Psi_{1}\left(x_{1}, c_{1}\right)=\pi^{-1 / 2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(c_{2}^{2}+c_{3}^{2}\right)} h\left(x_{1}, c_{1}, c_{2}, c_{3}\right) d c_{2} d c_{3} \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{2}\left(x_{1}, c_{1}\right)=\pi^{-1 / 2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(c_{2}^{2}+c_{3}^{2}\right)} h\left(x_{1}, c_{1}, c_{2}, c_{3}\right)\left(c_{2}^{2}+c_{3}^{2}-1\right) d c_{2} d c_{3} \tag{3b}
\end{equation*}
$$

so that the density perturbation

$$
\begin{equation*}
\Delta N\left(x_{1}\right)=\pi^{-3 / 2} \int h\left(x_{1}, c_{1}, c_{2}, c_{3}\right) e^{-c^{2}} d^{3} c \tag{4}
\end{equation*}
$$

and the temperature perturbation

$$
\begin{equation*}
\Delta T\left(x_{1}\right)=\frac{2}{3} \pi^{-3 / 2} \int h\left(x_{1}, c_{1}, c_{2}, c_{3}\right)\left(c^{2}-\frac{3}{2}\right) e^{-c^{2}} d^{3} c \tag{5}
\end{equation*}
$$

can be expressed as

$$
\begin{equation*}
\Delta N(x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \Psi_{1}(x, \mu) e^{-\mu^{2}} d \mu \tag{6}
\end{equation*}
$$

${ }^{1}$) Permanent Address: Nuclear Engineering Department, N. C. State University, Raleigh, North Carolina, 27607, USA.
and

$$
\begin{equation*}
\Delta T(x)=\frac{2}{3 \pi} \int_{-\infty}^{\infty}\left[\left(\mu^{2}-\frac{1}{2}\right) \Psi_{1}(x, \mu)+\Psi_{2}(x, \mu)\right] e^{-\mu^{2}} d \mu \tag{7}
\end{equation*}
$$

where we have used x for x_{1} and μ for c_{1}. If now we integrate Eqn. (1) from $-\infty$ to ∞ over both c_{2} and c_{3} and then multiply Eqn. (1) by $\left(c_{2}^{2}+c_{3}^{2}-1\right)$ and integrate similarly, we find that the resulting two coupled equations can be written as

$$
\begin{equation*}
\mu \frac{\partial}{\partial x} \boldsymbol{\Psi}(x, \mu)+\boldsymbol{\Psi}(x, \mu)=\frac{1}{\sqrt{ } \pi} \int_{-\infty}^{\infty}\left[\mathbf{Q}(\mu) \mathbf{Q}\left(\mu^{\prime}\right)+2 \mu \mu^{\prime} \mathbf{P}\right] \Psi\left(x, \mu^{\prime}\right) e^{-\mu^{\prime 2}} d \mu^{\prime} \tag{8}
\end{equation*}
$$

where $\Psi(x, \mu)$ is a two-vector with elements $\Psi_{1}(x, \mu)$ and $\Psi_{2}(x, \mu)$,

$$
\mathbf{Q}(\mu)=\left|\begin{array}{ll}
\left(\frac{2}{3}\right)^{1 / 2}\left(\mu^{2}-\frac{1}{2}\right) & 1 \tag{9}\\
\left(\frac{2}{3}\right)^{1 / 2} & 0
\end{array}\right| \quad \text { and } \quad \mathbf{P}=\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|
$$

We note that we can deduce from Eqn. (8) that $\mathbf{P J}_{1}(x)$, where

$$
\begin{equation*}
\mathbf{J}_{1}(x)=\int_{-\infty}^{\infty} \mu e^{-\mu^{2}} \Psi(x, \mu) d \mu \tag{10}
\end{equation*}
$$

is a constant and thus this term can effectively be removed [2] from the equation to give the equation studied by Kriese, Chang and Siewert [3] in a paper hereafter referred to as KCS.

2. Half-Space Problems

We note that the elementary solutions of Eqn. (8) and the required half-range completeness and orthogonality theorems concerning the elementary solutions have been reported in KCS. Here we wish simply to review those results expressed in a slightly improved form.

As reported by KCS, a general solution of Eqn. (8) can be written as

$$
\begin{equation*}
\boldsymbol{\Psi}(x, \mu)=\sum_{\alpha=1}^{2} A_{\alpha} \mathbf{F}_{\alpha}(\mu)+\sum_{\alpha=3}^{4} A_{\alpha} \boldsymbol{\Psi}_{\alpha}(x, \mu)+\sum_{\alpha=1}^{2} \int_{-\infty}^{\infty} A_{\alpha}(\eta) \mathbf{F}_{\alpha}(\eta, \mu) e^{-x / \eta} d \eta \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{F}_{1}(\mu)=\mathbf{Q}(\mu)\left|\begin{array}{l}
1 \\
0
\end{array}\right|, \quad \mathbf{F}_{2}(\mu)=\mathbf{Q}(\mu)\left|\begin{array}{l}
0 \\
1
\end{array}\right|, \tag{12a}\\
& \mathbf{\Psi}_{3}(x, \mu)=(\mu-x) \mathbf{F}_{1}(\mu) \quad \text { and } \quad \mathbf{\Psi}_{4}(x, \mu)=(\mu-x) \mathbf{F}_{2}(\mu), \tag{12b}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{F}_{\alpha}(\eta, \mu)=\frac{1}{\sqrt{ } \pi}\left[\eta\left(\frac{P}{\eta-\mu}\right)+\lambda_{\alpha}^{*}(\eta) \delta(\eta-\mu)\right] \mathbf{Q}(\mu) \mathbf{M}_{\alpha}(\eta) \tag{13}
\end{equation*}
$$

Here

$$
\begin{align*}
& {\left[\lambda(\eta)-\lambda^{*}(\eta) \Psi(\eta)\right] \mathbf{M}(\eta)=\mathbf{0}} \tag{14}\\
& \lambda(\eta)=\mathbf{I}+\eta P \int_{-\infty}^{\infty} \boldsymbol{\Psi}(\mu) \frac{d \mu}{\mu-\eta} \tag{15}\\
& \Psi(\eta)=\frac{1}{\sqrt{\pi}} \mathbf{Q}(\eta) \mathbf{Q}(\eta) e^{-\eta^{2}} \tag{16}
\end{align*}
$$

and the dispersion matrix is

$$
\begin{equation*}
\mathbf{\Lambda}(z)=\mathbf{I}+z \int_{-\infty}^{\infty} \Psi(\mu) \frac{d \mu}{\mu-z} \tag{17}
\end{equation*}
$$

If we use the continuum expansion coefficients to define a vector

$$
\begin{equation*}
\mathbf{A}(\eta)=A_{1}(\eta) \mathbf{M}_{1}(\eta)+A_{2}(\eta) \mathbf{M}_{2}(\eta) \tag{18}
\end{equation*}
$$

and let

$$
\mathbf{A}_{+}=\sqrt{ } \pi\left|\begin{array}{l}
A_{1} \tag{19}\\
A_{2}
\end{array}\right| \quad \text { and } \quad \mathbf{A}_{-}=\sqrt{ } \pi\left|\begin{array}{l}
A_{3} \\
A_{4}
\end{array}\right|,
$$

then we can express the general solution of Eqn. (8) as

$$
\begin{equation*}
\boldsymbol{\Psi}(x, \mu)=\boldsymbol{\Phi}(\mu) \mathbf{A}_{+}+(\mu-x) \boldsymbol{\Phi}(\mu) \mathbf{A}_{-}+\int_{-\infty}^{\infty} \boldsymbol{\Phi}(\eta, \mu) \mathbf{A}(\eta) e^{-x / \eta} d \eta \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Phi}(\mu)=\frac{1}{\sqrt{ } \pi} \mathbf{Q}(\mu) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\Phi}(\eta, \mu)=\frac{1}{\sqrt{ } \pi} \eta\left(\frac{P}{\eta-\mu}\right) \mathbf{Q}(\mu)+\delta(\eta-\mu) e^{\eta^{2}} \mathbf{Q}^{-1}(\eta) \lambda(\eta) \tag{22}
\end{equation*}
$$

In KCS a half-range expansion theorem was proved, and thus we can state here that the equation

$$
\begin{equation*}
\mathbf{I}(\mu)=\boldsymbol{\Phi}(\mu) \mathbf{A}_{+}+\int_{0}^{\infty} \boldsymbol{\Phi}(\eta, \mu) \mathbf{A}(\eta) d \eta, \quad \mu \varepsilon(0, \infty) \tag{23}
\end{equation*}
$$

has a solution for all Hölder continuous functions I(μ). Also in KCS a half-range orthogonality theorem was deduced; this allows us to write

$$
\begin{align*}
& \int_{0}^{\infty} \tilde{\boldsymbol{\theta}}\left(\eta^{\prime}, \mu\right) \boldsymbol{\Phi}(\mu) e^{-\mu^{2}} \mu d \mu=\mathbf{0}, \quad \eta^{\prime}>0 \tag{24a}\\
& \int_{0}^{\infty} \tilde{\boldsymbol{\theta}}\left(\eta^{\prime}, \mu\right) \boldsymbol{\Phi}(\eta, \mu) e^{-\mu^{2}} \mu d \mu=\mathbf{N}(\eta) \delta\left(\eta-\eta^{\prime}\right), \quad \eta^{\prime}, \eta>0 \tag{24b}\\
& \int_{0}^{\infty} \tilde{\boldsymbol{\theta}}(\mu) \boldsymbol{\Phi}(\eta, \mu) e^{-\mu^{2}} \mu d \mu=\mathbf{0}, \quad \eta>0 \tag{24c}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \tilde{\boldsymbol{\theta}}(\mu) \Phi(\mu) e^{-\mu^{2}} \mu d \mu=\mathbf{N}_{+} \tag{24d}
\end{equation*}
$$

Here the adjoint matrices are

$$
\begin{equation*}
\tilde{\boldsymbol{\theta}}\left(\eta^{\prime}, \mu\right)=\tilde{\mathbf{\Phi}}\left(\eta^{\prime}, \mu\right) \tilde{\mathbf{Q}}^{-1}(\mu) \tilde{\mathbf{H}}^{-1}\left(\eta^{\prime}\right) \tilde{\mathbf{H}}(\mu) \tilde{\mathbf{Q}}(\mu) \tag{25a}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\boldsymbol{\theta}}(\mu)=\pi^{-1 / 2} \tilde{\mathbf{H}}(\mu) \widetilde{\mathbf{Q}}(\mu), \tag{25b}
\end{equation*}
$$

where $\mathbf{H}(\mu)$ is the unique solution [3] of

$$
\begin{equation*}
\mathbf{H}(\mu)=\mathbf{I}+\mu \mathbf{H}(\mu) \int_{0}^{\infty} \hat{\mathbf{H}}(\eta) \Psi(\eta) \frac{d \eta}{\eta+\mu}, \quad \mu \varepsilon[0, \infty) \tag{26a}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \tilde{\mathbf{H}}(\mu) \Psi(\mu) d \mu=\mathbf{1} \tag{26b}
\end{equation*}
$$

In addition, the normalization vectors are given by

$$
\begin{equation*}
\mathbf{N}(\eta)=\pi^{-1 / 2} \eta\left[\lambda(\eta) \Psi^{-1}(\eta) \lambda(\eta)+\pi^{2} \eta^{2} \Psi(\eta)\right] \tag{27a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{N}_{+}=\pi^{-1 / 2} \int_{0}^{\infty} \tilde{\mathbf{H}}(\mu) \Psi(\mu) \mu d \mu \tag{27b}
\end{equation*}
$$

To complete our review, we note that a typical half-space problem can be solved concisely in terms of the established formalism. For example, we can write a solution of Eqn. (8) that is bounded at infinity and satisfies the free-surface condition

$$
\begin{equation*}
\Psi(0, \mu)=\Psi_{\text {inc }}(\mu), \quad \mu \varepsilon(0, \infty) \tag{28}
\end{equation*}
$$

as

$$
\begin{equation*}
\boldsymbol{\Psi}(x, \mu)=\boldsymbol{\Phi}(\mu) \mathbf{A}_{+}+\int_{0}^{\infty} \boldsymbol{\Phi}(\eta, \mu) \mathbf{A}(\eta) e^{-x / \eta} d \eta \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{A}_{+}=\mathbf{N}_{+}^{-1} \int_{0}^{\infty} \tilde{\theta}(\mu) \Psi_{\mathrm{inc}}(\mu) e^{-\mu^{2}} \mu d \mu \tag{30a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}(\eta)=\mathbf{N}^{-1}(\eta) \int_{0}^{\infty} \tilde{\boldsymbol{\theta}}(\eta, \mu) \boldsymbol{\Psi}_{\text {inc }}(\mu) e^{-\mu^{2}} \mu d \mu \tag{30b}
\end{equation*}
$$

If we set $x=0$ in Eqn. (29) and consider only negative μ, then we can write

$$
\begin{equation*}
\Psi(0,-\mu)=\boldsymbol{\Phi}(-\mu) \mathbf{A}_{+}+\int_{0}^{\infty} \boldsymbol{\Phi}(\eta,-\mu) \mathbf{A}(\eta) d \eta, \quad \mu>0 \tag{31}
\end{equation*}
$$

Upon substituting Eqns. (30) into Eqn. (31), we find that the integration over η can be performed analytically to yield the concise surface result

$$
\begin{equation*}
\Psi(0,-\mu)=\int_{0}^{\infty} \mathbf{R}\left(\mu^{\prime} \rightarrow \mu\right) \Psi_{\mathrm{inc}}\left(\mu^{\prime}\right) d \mu^{\prime}, \quad \mu>0 \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{R}\left(\mu^{\prime} \rightarrow \mu\right)=(\pi)^{-1 / 2} \frac{\mu^{\prime}}{\mu^{\prime}+\mu} \mathbf{Q}(\mu) \mathbf{H}(\mu) \tilde{\mathbf{H}}\left(\mu^{\prime}\right) \tilde{\mathbf{Q}}\left(\mu^{\prime}\right) e^{-\mu^{\prime 2}} \tag{33}
\end{equation*}
$$

Acknowledgement

The author is grateful to Professor R. Hukai and the Instituto de Energia Atômica for their kind hospitality and support of this work.

References

[1] G. E. Uhlenbeck and G. Ford, in Lectures in Statistical Mechanics, American Math. Soc., Providence, R. I. (1963).
[2] C. Cercignanı, Mathematical Methods in Kinetic Theory, Plenum Press, New York (1969).
[3] J. T. Kriese, T. S. Chang and C. E. Siewert, Int. J. Eng. Sci., 12, 441 (1974).

Abstract

The elementary solutions and the half-range completeness and orthogonality theorems concerning the linearized Boltzmann equation are discussed.

\section*{Zusammenfassung}

Die elementaren Lösungen und die halbräumigen Vollständigkeits- und Orthogonalitätstheoreme die linearen Boltzmann-Gleichungen betreffend, werden diskutiert.

(Received: November 1, 1976)

