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1. Introduction 

We wish to consider here the linearized Boltzmann equation written, for steady state 
conditions, as [1] 

I el ~x l  + 1 h(Xl, ca, e2, cs) = h(xl, c'1, c'2, c~)K(c':e) e -c'2 dSe '. (1) 

Here Xl, Cl, c2 and c3 are, respectively, the non-dimensional  space variable and velocity 
components,  c is the velocity of the particles and c -~ Ic]. The dependent variable h represents the 
perturbation of the particle distribution function from the Maxwellian [1]. In addition, the 
scattering kernel is taken here to be one corresponding to the linearized B GK model, 

1 
K(c':c) = ~ [1 + 2c'-c + ~ c  '2 - ~)(c 2 . ~)]. (2) 

Since we are interested here in temperature-density effects, we can take 'moments '  of Eqn. (1) to 
obtain equations dependent only on xa and ca. Thus we let 

f~ kI/l(Xl, Cl) = n - - 1 1 2  e-tC~ +~)h(xt, cl, c2, ca) dc2 dcs (3a) 
oo - a t )  

and 

WE(X1, c0  = n -1/2 e-tC2+c] ) h(xl, ci, c2, Ca)(C 2 + c 2 - 1) de2 dca (3b) 
- o o  - o o  

so that the density perturbation 

AN(x~) = ,~-~:~ f h(x,, c1, c~, c~) e-C 2 d3c (4) 

and the temperature perturbation 

AT(xI) = 2~- s/2 Jhr ca, c2, c s ) r  - e-C2 d% (5) 

can be expressed as 

AN(x) = - Va(x, #) e -"2 d# (6) 
- - o o  

a) Permanent Address: Nuclear Engineering Department, N. C. State University, Raleigh, North 
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AT(x) = ~ [ ( /12  - -  l ) k I / l ( X  , /,~) J r  l t~2(X , / A ) ]  e - " 2  d/~,  (7) 

where we have used x for xl and # for ct. If now we integrate Eqn. (1) from - oo to ~ over both 
c2 and Ca and then multiply Eqn. (1) by (c 2 + c23 - I) and integrate similarly, we find that the 
resulting two coupled equations can be written as 

# ~xx V(x, #) + W(x, #) = [Q(/~)0(#') + 2/~#'P]T(x,/t') e-"'2 d#', (8) 
oo 

where T(x,/~) is a two-vector with elements Wl(x, #) and W2(x, #), 

(2)1/2Q22 - �89 10 10 00 Q(#) = (~)1/2 and P = . (9) 

We note that we can deduce from Eqn. (8) that PJl(x), where 

Jl(x) = /~ e -"2 ~(x, #) d#, (10) 
-oo  

is a constant and thus this term can effectively be removed I-2] from the equation to give the 
equation studied by Kriese, Chang and Siewert 1-3] in a paper hereafter referred to as KCS. 

2. Half-Space Problems 

We note that the elementary solutions of Eqn. (8) and the required half-range completeness 
and orthogonality theorems concerning the elementary solutions have been reported in KCS. 
Here we wish simply to review those results expressed in a slightly improved form. 

As reported by KCS, a general solution of Eqn. (8) can be written as 

2 4. 2 /~D 

V ( x , # ) =  ~ A~F~(/~)+ ~ A~,V~(x, tO+ ~ I- A~'(r/)F~'(r/'#)e-Xl'~dr/' (11) 

where 

= Q(/0 10 , Q(/~) 01 FI(#) F2(p) = , (12a) 

Va(X, #) = (~ - x)F:(/~) and V4(x,/~) = (/~ - x)F2(#), (12b) 

and 

: ] F:(r/,/~) x/~ k \ r / - / t / +  2*(r/) 60/-/~1 Q(/~IM,(r/). (13) 

Here 

[~,(r/) - 2*(r/)V(r/)]M(r/) = 0, (14) 

k(r/) = I + r/P V(p) - - , d #  (15) 
/ t - r /  

1 
V(r/) = ~ -  0(r/)Q(r/) e'~2, (16) 
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and the dispersion matrix is 

A(z) = I + z T ( # ) - - .  (17) 
oo # - z  

If  we use the continuum expansion coefficients to define a vector 

A(r/) = al(r/)Ml(r/) + A2(r/)M2(r/) (18) 

and let 

A2 A3 A+ = ~/Tt A1 and A_ = x/Tr A , '  (19) 

then we can express the general solution of Eqn. (8) as 

f_ T(x. p) = O(~)A § + (~ - x)O(g)A_ + O(r/. #)A(r/) e-x/, dr/. (20) 
c~ 

where 

1 
*(#)  = ~ Q(/~) (21) 

m 

and 

O(r/,/~) = ~--~ r/ Q(/~) + 6(r /- /~)  e "2 0 -  t(r/)k(r/). (22) 

In K C S  a half-range expansion theorem was proved, and thus we can state here that the 
equation 

f: I(#) = O(/~)A+ + O(r/, u)A(r/) dr/, #e(0, oo), (23) 

has a solution for all HOlder continuous functions I(p). Also in KCS a half-range orthogonality 
theorem was deduced; this allows us to write 

and 

o ~ 1 6 2  = 0 ,  r/' > 0 ,  

0~ O(r/', #)O(r/,/~)e -~2/~ d/~ = N(r/) 3 ( r / -  r/'), 

fo 'i}(#)O(q,/~)e -"2/~ d/~ = 0, r />  0, 

o ~ J ( l ~ ) O ( # ) e - ~ Z l ~  d/~ = N + .  

Here the adjoint matrices are 

~(r/', ~) = a3(r/', ~ ) 0 -  ~(~)~i- I(r/')A(~)Q(#) 

(24a) 

r/',q > 0, (24b) 

(24c) 

(24d) 

(25a) 
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and 

~(#) = n -  '/21~I(#)Q(#), (25b) 

where H(p) is the unique solution [3] of  

fo H(#) = I + #H(#) ITI(r/)W(r/) - - , d r /  #el0, oo), (26a) 
r /+ /~  

and 

io ~ f i ( ~ ) v ( v )  d u  = 1. (26b) 

In addition, the normalization vectors are given by 

N(q) = n-I/2~/[Z.(q)T-l(r/)k(r/) + / t 2 r / 2 ~ ( r / ) ]  (27a) 

and 

N+ = n -  t/2 IzI~)W(#)# d#. (27b) 

To complete our review, we note that  a typical half-space problem can be solved concisely in 

and 

as 

~(0./~) = Ti ,c~) .  /~(0. oo), (28) 

V(x, p) = O(#)A + + O(r/, p)A(r/) e -  x/, dr/, (29) 

where 

f; A + = N .7. ~ ~(#)~.~(#) e - . 2  # d# (30a) 

A(q) = N-'(r/)  0(r/,/~)~inc(~) e-"2 # d/~. (30b) 

If  we set x = 0 in Eqn. (29) and consider only negative #, then we can write 

o 

W(0, - -#)  = ~ ( - # ) A +  + O(r/, -/~)A(r/) dr/, # > 0. (31) 

Upon substituting Eqns. (30) into Eqn. (31), we find that  the integration over q can be 
performed analytically to yield the concise surface result 

fO O t _..r t v(o.  - ~ )  = R(~ ")%no(~) a,' .  ~ > 0. (32) 

where 

11(# --, #) (n) -  1/2 #' ' = Q(#)H(~)i~I(ff)Q(~') e -. '2.  (33) 

terms of the established formalism. For  example, we can write a solution of Eqn. (8) that  is 
bounded at infinity and satisfies the free-surface condit ion 
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Abstract 

The elementary solutions and the half-range completeness and orthogonality theorems concerning the 
linearized Boltzmann equation are discussed. 

Zusammenfassung 

Die elementaren L6sungen und die halbr/iumigen Vollst~indigkeits- und Orthogonalitfitstheoreme die 
linearen Boltzmann-Gleichungen betreffend, werden diskutiert. 
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