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Abstract. The effect of widely differing scattering laws on the critical thickness of a 
multiplying slab in one-speed neutron transport theory is studied using a scattering 
kemel which consists of a linear combination of backward, forward and isotropic 
scattering. An extensive numerical survey is carried out for the critical thickness in 
order to provide benchmark results for future studies. 

‘Exact’ solutions are obtained by two methods: the Wiener-Hopf technique and 
the method of elementary solutions. Although both methods lead to the same results, 
it is shown that the method of elementary solutions is superior, in terms of operational 
simplicity, for this type of problem. 

1. Introduction 

The importance of accurate solutions of the transport equation is well-known. For many 
years, the digital computer has enabled solutions of increasing degrees of complexity to 
be obtained in which multidimensional and multi-group effects are faithfully reproduced. 
Such approaches have been made through a direct numerical attack on the integro- 
differential or the integral form of the Boltzmann equation, e.g., by the use of S,& and 
collision probability techniques. However, as useful and essential as these methods can 
be in practical reactor analysis, it is always desirable to evaluate their accuracy by com- 
parison with well-established bench mark problems. A particularly dificult area to test 
in this respect is that connected with anisotropic scattering, since even the so-called 
‘exact’ methods have difficulties in dealing with arbitrarily anisotropic scattering. Usually 
only a few orders in the Legendre expansion series are manageable for exact analysis; 
yet, in practice, much stronger anisotropy may exist. In an attempt to overcome this 
problem, that is to estimate the effect of strong anisotropy on the solution, we will 
consider in this paper a special kernel which combines backward scattering and forward 
scattering with an admixture of isotropic scattering in arbitrary proportions. In this 
way the influence of different aspects of the scattering law may be compared. A one- 
speed model will be employed. In the case of purely forward scattering with an isotropic 
component, there are no particular problems in casting the transport equation into a 
suitable form for solution. On the other hand, when backward scattering is included, it 
is necessary to employ a transformation due to Inonu (1973, 1976) to cast the equation 
into canonical form. 
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The purpose of this paper, therefore, is to solve exactly by analytic methods the 
critical problem for a slab reactor, in which fission is isotropic, but in which the scatter- 
ing is a combination of completely forward, completely backward and isotropic distri- 
butions. We use two analytic techniques to solve the problem: the method of elementary 
solutions and the Wiener-Hopf technique (Case and Zweifel 1967, Williams 1971). 
This dual approach has the advantage of showing the relationship between the two 
methods and is therefore to be regarded as a further contribution to our understanding 
of tramport theory. 

Numerical results are obtained for the critical thickness of the slab for a variety of 
situations. 

Lathrop (1963) has also considered the effect of extreme scattering limits. but his 
work was confined to a study of the infinite-medium eigenvalues of the transport equation 
and did not involve a boundary-value problem such as that described here. 

2. The basic equations 

The one-speed transport equation for the angular flux $(x, p) may be written a5 (Case 
and Zweifel 1967) 

where = Xa + &. The fission source term is taken to be isotropic in the laboratory 
system of coordinates, andf(p'+ p) is the angular distribution of the scattered neutrons. 

The cases of backward, forward and isotropic scattering can be combined by writing 
the scattering probability in the form 

f ( P ' - +  p) = 16 (P + p') + ma (P  - $1 + !?n (2) 
where l- t-na+rz=l.  Clearly I governs the proportion of backward scattering, m the 
proportion of forward scattering and n the proportion of isotropic scattering. 

Inserting this expression into equation (1) leads to 

where 010 T= E&, ,BO= ?CJ./X and x is now in units of the total mean free path. If we 
scale again, such that x(1 -m010) -+ x, we find 

Defining 
la0 

1-Vna0 

and 
,B= B O  + nao 

I -ma0 

we obtain the final form 

( 4 4  
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The character of equation ( 5 )  is seen to be very different from that normally encoun- 
tered, because the arguments f p cause it to be a type of integro-differential-functional 
equation. Before proceeding with the solution of this problem, let us note that the 
boundary conditions for equation ( 5 )  are 

where the slab is of width 2d. We also have the symmetry condition 

b ( x ,  A = b ( - x ,  -EL).  

To convert equation ( 5 )  to canonical form, we introduce the following transforma- 
tions due to Inijnii (1973, 1976): 

y = (1 - CX2)1/2 x 

4 (4 CL> + Y? (Y ,  CG) 

a =: ( 1  - ,2)1/2 d. 
and 

We now find that we can express Y (y, ,U) as 

where 

with 

@(Y9 d=@(--y ,  --PI 

and the boundary condition 

(9) 

@(a, -p)==R@(a, p) p>O. (1 3) 
Also we have defined 

and 

The problem has now been reduced to that of solving equation (1 l), a conventional 
Boltzmann equation, but with the ‘reflective’ boundary condition given by equation (13). 
The complete solution can then be regained via equations (10) and (7). We shall consider 
the solution of equation ( 1 1 )  in the next section. Note, however, that when I=O,  i.e., 
no backscattering, the problem reduces to the conventional one. Thus it is the presence 
of backscattering that places the transport equation in this anomalous form. 
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3. Analytical solution of the basic equation 
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As previously explained, two methods will be adopted for solving equation (ll),  i.e., 
the Wiener-Hopf technique and the method of elementary solutions. 

3.1. Solution by the Wiener-Hopftechnique 

Before proceding with the solution, let us note that equation (1 1) subject to the boundary 
condition (1 3) can be converted to an integral equation for 

@o(Y)=/:, @(U, P)  dP (17) 

which we observe from equation (10) is equal to the true total flux. Following the stan- 
dard method, we find that the integral equation takes the form (Williams 1971) 

@o(Y)= f 1‘ dy’@o(y’) 
2 -a 

This equation is interesting because it shows that the effect of backscattering is related 
to the introduction of a partially reflecting surface at the boundaries of the slab with an 
albedo of R and, at the same time, contracting the true width of the slab by a factor 
(1 -1na0) (1 - 012)1/2. In addition, we note that as a + oc, : i.e., the problem becomes a 
Milne problem, @ob> satisfies 

where we have shifted the left-hand slab face to y=O. It is important to note that this 
equation does not have an explicit solution in the sense of quadratures owing to the 
presence of the term E~(y+y’ )  in the kernel. 

Let us return now to the solution of the equation by the Wiener-Hopf technique. 
It is possible to apply this method directly to the integral equation, but experience shows 
that a more rapid and convenient approach is to apply the transform to the integro- 
differential equation. Thus we shift the face of the slab from (- a, a> to (0,2a) and define 
the transform 

ws> d=J; W Y ,  CL) exp (--VI du. 

Applying this to equation (I l), we find after dividing by 
k 4 - 1 ,  1) 

where we have used @(2a, p) = @(O, - p). 
Inserting the boundary condition (l?), viz. 

@(O, p)=R@(O, - A  (P>O) 

and rearranging, we obtain 

(20) 

(sp + 1) and integrating over 

[ ~ - e x p  (-2sa)]g(s)+ [R exp (-2sa)- ~]g(-s)=~(s)@o(s) (23) 
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where 

and 

K(s)= 1 ----lg -- . 
;s (E) 

Equation (23) is in a form suitable for Wiener-Hopf factorization. However, first 
we must examine the regions of analyticity of each term: 

Function Region of analyticity 

Since the purpose of the Wiener-Hopf technique is to arrange equation (23) so that the 
members on each side are analytic in overlapping half-planes, let us decompose K(s)  in 
the following way. First, define T ( S )  (which is free from zeros in the strip) by 

where 4 U are the roots of K(s)=O. Then we write T(s)=T+(s)/T-(s), where 

~ T ( U )  Re (y)  < 1. 
2 r i  .+y-im U - s  

(27) 

Hence T+(s) is analytic in Re@) < y and T.-(s) is analytic in Re(s) > - y .  Equation (23) 
is now written 

s2- __ U 2  -. 1 _______ GO(S) _ _  - ____ (s-1) (, R--exp(-2sa) 
s + l  T-(s) Rexp(-2sa)-I T+(s) Rexp(-2sa)-1 

Now the left-hand side of equation (28) is analytic in the half-plane Re($) > - y ,  and the 
second term on the right-hand side is analytic in the half-plane Re(s) < y .  The first term 
on the right-hand side is only analytic in the strip - 1 < Re($) < y ,  and we must therefore 
decompose it in the following way: 

where 

G*(s)- - 

We note that G*(s) are analytic in the half-planes Re (s) < y and > - y ,  respectively. Also, 
it was necessary to introduce the factors into the term so that G(s) 4 0 as Is/ 4 00. 

Equation (28) may now be written 

(3 1) S Z - V Z  1 . 6- 1) 
s + l  ~-(s)Rexp(-2sa)- l  T+(S) 

+sG-(s)=sGl(s)+- g(-s). 

The left-hand side of equation (31) is analytic in the half-plane Re (s) > - y  and the 
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right-hand side in the half-plane Re (s) < y. Thus we have a strip of common analyticity 
which according to Liouville’s theorem allows us to infer that the functions on each side 
of the equation are analytic, continuations of each other. The behaviour at infinity 
shows that both sides are equal to a constant eo. Thus 

Setting s = 0 gives CO= - T-(O)g(O), where we have noted that T-(O) = l /~+(o) .  After some 
rearrangement, therefore 

The evaluation of G+.( - s) is straightforward (Williams 1973, and we find 

c J’l dt(l-  vt)g(l/t) 
G;(-s)= - ____ ____ 

2 oz(c, t )  (l+st)H(t) 

where 

(34) 

z(c, i)-(l - c t  tanh-lt)2+~2aztz/4 (35) 
and N ( p ) ,  Chandrasekhar’s H-function, is defined by (Chandrasekhar 1960) 

H ( p ) =  7- , (;) 
Inserting this expression into (33), we find the following integral equation for g(s): 

This equation may be solved for g(s) numerically. We note that for large slab thicknesses, 
there is no convenient ‘end-point’ approximation. For in the limit as a -+ CO, equation 
(37) remains implicit, and only if R=O do we regain the normal, isotropic Milne problem 
result. Given the function g(s), we are interested in three quantities: the total flux, the 
angular distribution at the surface, and the critical condition. The flux distribution and 
surface distribution are easily calculated using the left-hand side of equation (3 1)’ when 
we find for R # 0 

R exp (- 24p.‘) - 1 
R - exp (- 2a/p’) 

x 

and from (10) the true angular distribution is 

2b 
1i-b 

Y(0, p)=--  - -  @(O, - p ) .  (39) 

We note that for a = m ,  the angular flux does not reduce to the closed-form Milne 
problem expression unless R=Q. This must be due to the pathological nature of back- 
scattering since it is unlikely that any scattering law, however an.isotropic, could destroy 
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the usual closed-form nature of the Milne solution. Similarly, we can readily show that 
the angular distribution is related to &o(s) by 

The inverse transform is therefore easily applied. 

everywhere we can write from equation (23) 

or 

As far as the critical equation is concerned, we note that because &(s) is regular 

[R-exp ( -2va)]g(v)+[R exp (-2va)- I]g(-v)=O (41) 

Equation (42) is the critical equation and is readily shown to reduce to the conventional 
expression when R = 0. 

3.2. The method of elementary solutions 

Following the notation of Case and Zweifel (1967), we find that we can express the 
solution of equation (Il) ,  subject to the symmetry condition given by equation (12), as 

@tY, p)==A(yo) [+(. lo,  exP (-Y/70)+4(-yo, I”) exp (Yl?lO)l+j:, A ( d  E+(% CL) 

x e x p  (--Yl7)++(-% PI exp (Yi7)l d7 (43) 
where A (70) and A (7) are the expansion coefficients to be determined by constraining 
the solution to satisfy equation (13). Also we note that qo= l/v of the previous section. 
If we substitute equation (43) into equation (13) and let 

D ( E )  = A (0 [exp (43 - R exp ( - a/t ) l ,  E = 70 or E (0, 1) (44) 

we find the singular integral equation 

D(70)4(70, i.)+Jb D(7)+(% d?7” - N ? 0 )  exp (-2airo) W(r lo ,4+(-yo ,  

-J:, N y )  exp (-2a/y) W(% 44( -% PI d7 P E  (0, 1) (45) 

where 

1 - R exp (2a/Q 
1 - R exp (- 2a/f) W ( f , a ) =  _ _  __ _ - _ _  (=yo or 1). 

If we now multiply equation (45) by pH(p)+(yo, p), where H ( p )  is Chandrasekhar’s 
H function, and integrate over p from 0 to 1, we find 

(47) 

(48) 

where 
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Similarly we can multiply equation (45) by pLH(p)&v, p), re(0, l),  and integrate over 
,U from 0 to 1 to find 

- 1: D(7’) exp (- 2a/7’) W(y‘, a) d7’ 7 E (0, 1). (49) 

Here 

N ( 7 )  = 7 [ (1 - cq tanh-ly)Z+ (50) 

It may be shown that there is a simple relationship between the D(q)  in equation (49) 
and g(s) in equation (37). 

To find the desired results for D ( ~ o ) ,  D(7)  and a, we proceed to solve equations (47) 
and (49) iteratively. In order to initiate the iterative procedure, we take our lowest- 
order result to be that obtained by ignoring equation (49) entirely and by ignoring the 
right-hand side of equation (47) ; thus, without attempting to justify it rigorously, we 
take our lowest-order result to be  DO(^) = 0 and 

N ( ~ O ) H ( ~ O )  + 2 O - -  ~ ( 7 0 ,  a01 exp (- 2a0/70) = 0. (51) 
~H(?Io)  

Equation (51) can readily be solved to yield 

1701 uo=---- x-20,* 2 
where 

and since TT= 1, we can readily show that Z O , ~  is real. Once the critical value of a is 
found, then clearly equation (9) yields d. For the numerical results, we choose to report 
w, the critical half-width measured in units of the total mean free path. Thus in the 
accompanying table we report the ‘exact’ value of 

w = a/[( 1 - mao)2 - 12a0211’2 (55)  

where a is the result obtained by solving equations (47) and (49) iteratively. We also 
list WO,  the result obtained by using equation (52) in equation (55).  We note that the 
numerical results listed in the table were established by K Neshat (1977, private com- 
munication). 

4. Results and general discussion 

An immediate conclusion that may be drawn from the foregoing work is that the method 
of elementary solutions is a very efficient technique for this type of one-speed problem. 
Clearly, the formalized and well-documented procedures of calculating the expansion 
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coefficients are superior to the somewhat laborious manipulations involved in the Wiener- 
Hopf technique. However, these conclusions do not necessarily extend to energy-depen- 
dent or multidimensional problems where quite different considerations must be born 
in mind. 

Our numerical results, presented in table 1, show the relative effects of different types 
of scattering on the critical slab thickness. In the first three tv(1, nz, n) columns, the 

Table 1. The critical half-thickness? for selected cases. 

Case EO PO 
1 0 

2 0 . 1  

3 0.2 

4 0.3 

5 0.4 

6 0.5 

7 0.6 

8 0 .7  

9 0.8 

10 0.9 

1.01 

1.02 

1.03 

1.04 

1.06 

1 . 1  

1.2  

1 .4  

1 . 6  

1.8 

8.3295 
(8.33) 
1.7945 

(1.80) 
1 .0745 

(1.08) 
0,75337 

(0.760) 
0.55341 

(0.563) 
0.40901 

(0.421) 
0.28647 

(0.301) 
0.18623 

(0,203) 
0,12442 

(0.141) 
0.078958 
(0.0925) 

w(0,  1,O) w(O,O, 1) w(3, +, 3) w ( 3 ,  -I, 0) w(0,  +, 4) _____ -__-- 
8.3295 8.3295 8.3295 8.3295 8.3295 

(8.33) (8.33) (8.33) (8.33) (8.33) 
1.9259 1,8658 1 1,8350 1.9052 

(1 ~ 9 3 )  (1.87) (1.86) (1.84) (1.91) 
1.2134 1.1585 1.1450 1.1147 1.1944 

(1.21) (1.16) (1.15) (1.12) (1.20) 
0.58717 0.84563 0.82479 0.79011 0.57356 

(0.891) (0.847) (0.829) (0.796) (0.876) 
0.67549 0,65186 0.62414 0,58532 0.66968 

(0.682) (0.654) (0.630) (0.595) (0.674) 
0.51532 0.51196 0.47832 0.43554 0.51891 

(0.527) (0.515) (0.487) (0.448) (0.526) 
0.37062 0.38877 0.35145 0.30657 0.38429 

(0,389) (0.393) (0.363) (0.323) (0.395) 
0.24715 0.28206 0.24443 0.20013 0.26858 

(0.271) (0,288) (0.258) (0.219) (0.282) 
0.17295 0.21889 0.18116 0.13471 0.20051 

(0.203) (0.225) (0.196) (0.154) (0.216) 
0.12118 0,17741 0.13954 0,086763 0.15595 
(0.158) (0.184) (0.155) (0.104) (0.174) 

1" (3, 0,3) 

8 ' 3295 
(8 33) 
1,8414 

(1.84) 
1.1298 

(1.13) 
0,81475 

(0.81 8) 
0.62017 

(0.625) 
0.48057 

(0.487) 
0.35963 

(0.367) 
0.25678 

(0.266) 
0.19599 

(0.206) 
0.1561 6 

(0,166) 

t The indices I ,  m and n in w(l ,  in, n) correspond to the quantities given in equation (2). The results in 
brackets are those deduced from equation (52). 

critical half-thickness is shown, respectively, for purely backward, purely forward and 
purely isotropic scattering. For values of BO close to unity we note the physically reason- 
able effect in which for backward scattering the critical thickness is always smaller than 
that for the forward or isotropic cases, i.e. leakage is reduced. On the other hand, for- 
ward scattering leads to an increased leakage and therefore a larger critical size. Iso- 
tropic scattering lies in between these two extreme limits. However, the table also shows 
that, for critical thicknesses less than about one mean free path, part of this physical 
argument fails. For example, we note that for the last four entries in the table, the critical 
thickness of the case with purely forward scattering is smaller than that with purely 
isotropic scattering. This anomalous situation can be explained by reference to the 
change in angular distribution which becomes highly anisotropic. However, the source 
of neutrons due to fission is always isotropic, and it seems possible that this more than 
offsets the effect of leakage. For example, we note from equation (46) that the effective 
c value is equal to (/30+ncuo)/(l-mcuo). For m=O, n=1,  c~=j?o+olo and for m = l ,  
n = 0, C F  = Po/( 1 - ao). Using 010 = 0.6 and ,!lo = 1.2 leads to C F  = 3 and CI = 1.8. Thus the 
effective multiplication constant is much greater for the forward scattering, which there- 
fore contains a large amount of direct isotropic emission. There is, of course, a scale 
factor of (1 - ao) to be applied to the critical size to obtain true comparisons. However, 
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the net effect for these very small slabs is clearly a gain in overall neutron economy. 
This curious phenomenon does not appear to have been pointed out before. 

The remainder of the numerical results are composed of combinations of the three 
types of scattering and are given to facilitate comparison by other workers using approxi- 
mate methods of solution of the transport equation. It should be added that in the case 
of purely forward scattering, i.e. w(0, 1,0), the scattering cross-section does not enter 
the problem. Also, of course we can eliminate the parameter nz in favour of I and n ;  
however, we find that a simultaneous presentation of ( I ,  m, n) leads to greater clarity in 
the assessment of the importance of these three types of scattering. 
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