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1. Introduction 

We wish to consider here the linearized BGK model of the Boltzmann equation 
expressed as [1] 

-~ + c x ~  x + 1 h(x, c, t) = (n) -3/2 h(x,c ' ,  t)K(c':c)e-C'2d3c ', (1) 

with 
2z t2 K(e':c) = 1 + 2c.c' + ~tc - 3)(c 2 - ~). (2) 

Here h(x, c, t) represents the perturbation of the particle distribution function from 
the Maxwellian distribution, c, with components cx, cy, and c z and magnitude c, is 
the velocity, t is the time and x is the space variable. Since we are interested here in 
temperature-density effects, we can take 'moments' of Eqn. (1), in the manner of 
Cercignani [1], to obtain equations dependent only on x, c x and t. Thus we let 

;L Ol(x, Cx, t) = (n) -t/2 exp [ - ( c ~ ' +  c~)]h(x, c, t) tic, dc~ (3a) 
o0 

and 

tP2 (x, cx, t) = (~)-ale exp [ - ( c  2 + c2)]h(x, c, t)(c f + c z - 

(3b) 
so that the density perturbation 

AN(x ,  t) = 0z) -3/2 f h(x, c, o e - C  2 d3c (4) 

and the temperature perturbation 

2 - a/2 [ t)(c 2 3) e-c2 d~c (5) AT(x ,  t) ~(~) h(x ,  c, - 
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can be expressed as 

AN(x,  t) = 1 i ~176 01(x, It, t) e-"2 dit (6) 
TC j-oo 

and 

-- H2 AT(x,  0 = 5 7  [(it2 _ 1)01(x, It, t) + O2(x, It, t)3 e ait. (7) 
o0 

2 c 2) and integrate f rom oe to ivo over bo th  If we multiply Eqn. (1) by exp ( -  cy - 
2 c 2) and integrate cy and c, and then multiply Eqn. (1) by (c 2 + c 2 - 1) exp ( -  cy - 

similarly, we find that  we write the two resulting equations as 

+ It ~xx + 1 ~P(x, It, t) = (~)-  1,.2 [Q(it)Qr(lx, ) 

+ 2it i t 'P]V(x,  It', t) e -u'2 dit', (8) 

where we now use It for  % Here  ~P(x, It, t) is a two vector, with elements ~sl(x, It, t) 
and qs2(x, It, t). Also 

( 2 " ~ 1 / 2 ( H 2  3, , .  - � 8 9  1 

Q(it) = (2] t/2 (9a) 
~-~ 0 

and 

P --- . (9b) 
0 0 

Equat ions  (6) and (7) give the density and tempera ture  per turbat ions  in terms o f  

~P(x, It, t); we note  that  the xx  componen t  of  the per turbed pressure tensor  

APxx(x, t) = (~)- 3/2 f h(x, c, t)c 2 e -c~ d3c (10) 

can also be expressed in terms of  ~ (x ,  It, t)" 

APxx(X, t) = (~)-  1 ~ (x ,  It, t) e-U~it 2 dit. (11) 
oo 

F r o m  the work  of  Cercignani [1],  we note  that  the solutions to three scalar 
equat ions would be required, in addi t ion to ~g(x, It, t), in order  to construct  h(x, e, t); 
however,  the scalar equat ions can be solved generally with limited difficulty. We thus 
focus our  at tent ion here on solving Eqn. (8) subject to appropr ia te  constraints.  

2. Elementary Solutions 

In a recent paper  [23, hereafter  referred to as SB, a set of  elementary solutions 
to Eqn. (8) was found by proposing the separat ion Ansatz 

~P(x, It, t) = e ~ ( v ,  It; s) e -(~+ 1)x/~, (12) 
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where s is, in general, a complex parameter. Since we intend to develop here a col- 
lection of  orthogonality relations that is useful for solving boundary value problems 
in terms of  the elementary solutions of  Eqn. (8), we first wish to summarize some of the 
basic results of SB. In terms of the arbitrary parameter s, a solution of  Eqn. (8) can 
be written as 

~(x,l~,t) = e ~t A(v~)qJ(v~,#;s)exp[-(s + 1)x/v~] 

v~)|  v~,/~; s) exp [(s + 1)x/v~] 1 + A( 

+ f~ *(v,g;s)A(v)exp[-(s + 1)x/v]dv}, (13) 

where the continuum matrix is 

-~l~(v, #; s ) =  OvPv(v@y) Q(#)(l+?vyD)+6(v-#)e': Q-r(v)~,(v;s) 

and the discrete vectors are 

/ 1 "k 
* ( +  +:, v; s) = l - - - - - - i  Q(#)(I + yv+#O)MCv= ; s). 

- \ v ~  -T- # 1  - 

Here 

0 = ( ~ ) - 1 / 2  7 s +  1 (16a, b, c) 

and 

A(z;s) = I + z l W ( # ; s ) - -  (17) 
/ . t - - z  

W(#; s) = 0e  -u~ Qr(#)Q(y)( l  + 3:#2D). (18) 

In addition, M(v~; s) is a null vector of  A(v,; s), x is used to denote the number of  
__+ pairs of  zeros of  A(z; s) in the complex plane cut along the entire real axis, and 

d# 
~,(v; s) = I + v P |  W(#;s) �9 (19) 

# - - v  

The scalars A(+_v~) and the two-vector A(v) appearing in Eqn. (13) are arbitrary 
expansion coefficients to be used to constrain ~(x,  #, t) to meet appropriate boundary 
and initial conditions. 

(14) 

(15) 

and the discrete eigenvalues + v~ are the zeros of A(z; s) = det A(z; s), where 
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3. Orthogonality Relations and Normalization Integrals 

In SB proof  (for ~: = 0) that the elementary solutions given by Eqns. (14) and 
(15) are sufficiently general for half-range, # > 0, boundary conditions was given. 
Here we wish to show that these eigenvectors are also orthogonal on the half-range 
to a related adjoint set O(r s). As will be clearly illustrated in Section IV of this 
paper, these adjoint functions allow us to develop concisely solutions to typical 
half-space problems. We consider the adjoint functions 

OF(v, t*; s) = rc - ' (v )H-  ~(v) vI 'v  7 - - T  - ( z l  + v ) ( z l  - ~) 

+k(v;  s ) ~ -  l(v; s)x- l(v)H-r(v) a(v - /~) ,  v > 0, (20) 

and 

Or(v=,/t ;s ) = Mr(v=;s)g(_%)H_r(v,)[ - v= 2v=zl K 1, (21) 
t_v~ - ~ (z~ + v~)(z, - ~) 

with 

K = [ l  + H -  t(Zl)DH( - z1) ] -  1H- I ( z , ) D H ( -  zt). (22) 

Here we use the superscript T to denote the transpose operation and the super- 
script - T  to denote the transpose-inverse operation. In addition we let v= be the 
'positive' eigenvalue of  the pair +__ v=, and 

,t(z) = I - D, (23) 

where x/7 zl = i. The H matrix appearing in Eqns. (20) and (21) is {hat introduced 
for this problem in SB. To establish the desired orthogonality relations, we consider 
that the H matrix is the solution to the singular integral equation 

= i + d x  , oo ) ,  H v(/z)~(kt)~,(]~; s)g - 1 (kt) (24) 
2o 

and the constraints (for tc > 0) 

[l + V~ foHT(x)~F*(x;s) x dx_ V~_l~n(v~)M(v~;s)=O' ~ = 1 , 2  . . . . .  ~:, (25) 

where 

W,(x ; s) = n(x)W(x; s)n- '(x). (26) 

Once H(/*),/*el0, so), is established by solving iteratively 

H- ~(l~) = ! - # Itr(x)~,(x; s) x dx ~e[O, ~ ) ,  (27) 
o + # '  
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the representation 

H - ' ( z )  = I - z W ' ( x ) ' e , ( x ; S ) - x - U ~  S z r  (28) 
0 

yields H- l (z )  off of the cut. In addition to Eqns. (24) and (25), we note from SB that 
H(z) can be used to factor 

l'~(z; s) = I'~T(--Z; S) = Ir(z)A(z; s)Ir-l(z) (29) 

in the manner 

nr(z;  s) = H-  ~( -z )H-  1(0. (30) 

Equations (24), (25), (28) and (30), along with the fact that 

O(G; s)n(G)M(v,;  s) = 0, (31) 

can now be used to establish the following summary of orthogonality relations and 
normalization integrals: 

IO -/a2 Or(v, #; s)Hr(#)rf f lOQr(#)O(G, #; s) e It dit = 0, re(0, ~) ,  (32a) 

f ~  @r(v, s)Hr(it)n(#)Qr(#)*(v ', s) e-U~ It dit = vL(v) 3(v - v'), #; #; 

v, v'e(0, ~) ,  (32b) 

f oo Or (v~ ,# ; s )Hr (# )n (# )Qr ( i t ) * ( v ' , # ; s ) e - "~#d i t  = O, v'~(O, oo), (32c) 
0 

fo ~ Or(v~, It; s)HT(it)rr(it)Qr(#)~(va, lt; e It 3~,a. S) /12 1 

dit N(v~,) (32d) 

Here the results for the normalization integrals are 

L(v) = k(v; s ) ~ -  l(v; s)k(v; s) + ~2vZ~(v; s) (33) 

and 
2 r d N(v~) = v, M (v,; s) dz [rt(z)r( - z) A(z; s)] . . . .  M(v,; s). (34) 

In addition to Eqns. (32), we note that the following integrals can be useful for 
parallel plates (i.e., finite slab) problems: 

It; It; dit Or(v, s )n  T(it)~(it)Q r(it)O( - e-u2 it 

F 1 

L v + v~ 

2z~ 1 
- K H- l ( v~ )n ( - v~ )M(v~; s ) ,  v~(O, ~ ) ,  (35a) 

(z~ + v)(z~ + v~) 
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o Or(v,/ , ;  s)Hr(#)n(#)Q r(#)~( _ v', #; s) e -u~ I~ d# 

[ = vv'rt-l(v)H-r(v) v- -~7 I  

2Zl ] 
- ( z ,  + v ) ( z l  + ~ K  H-l (r  ~ ,ve(0 ,~) ,  

f o Or(v~' g; s)Hr(#)~t(/~)Qr(#)q~(- v ~, bt; s) e-V~ # d .  

= v~vaM*(~ ~; s)n(-  v~)H- r(~) v + v-----~ 

2zl ] 
-- (Z 1 -~- Va)(21 "q- Vfl)" K H -  ' ( v f l ) ~ ( -  vfl)M(I)/3; s), 

f oo oT(v,,/~; s)HT(#)n(#)QT(#)~( _ v',/z;S) e-  "~ # d/* 
0 

= Vav'MT(v;S)~(--Vc,)H-T(ve,)I~-I~V,I 

2zl ] 
- (z~ + v,)(z~ + v') K H-~(v')~(-v')' v '> 0. 

(35b) 

(35c) 

(35d) 

4. An Example Application and the R Matrix 

A typical problem for sound-wave propagation in a half space can be solved 
concisely in terms of the established formalism. For example, let us seek a solution of 
Eqn. (8) that is bounded as x-~  ~ and satisfies a boundary condition of the form 

�9 (0, bt, t) = ei~~ /~ > 0, (36) 

where F(/~) is considered given. By taking s = ia), we can write 

�9 (x, #; t) = e ~t A(v~)~(v~, g; ie)) exp [-( ie)  + 1)x/v~] 
kac=l 

+ f o a ~ 1 7 6 1 7 6  ' (37) 

where the expansion coefficients are determined by 

v(#) = Z a(v~).(v. ,  ~; i~) + ( ~  o(v, . ;  i~)A(~) dv, ~ > O. (38) 
0~=1 2 0  

Assuming that Eqn. (38) has a solution (this was shown to be true in SB only for 
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~: = 0), we can now multiply Eqn. (38) by Or(v~, #; i~)Hr(#)~(p)Qr(#) exp ( -p2)# ,  

integrate over ~t from 0 to ~ and use Eqns. (32c) and (32d) to find 

A(v~) - Or(v~, #; iooHr(#)n(#)Qr(#)F(#)  e -  "~ p d~. (39) U(v~) 
In a similar fashion, we can use Eqns. (32a) and (32b) to find 

;o o A(v) = 1 L -  '(v) Or(v, #; io))Hr(#)n(fz)Qr(lz)F(lz) e -~2 t~ d#. (40) 
v 

If now we set x = 0 in Eqn. (37), enter Eqn. (39) and Eqn. (40) in that equation 
and consider only p < 0, then we can evaluate the encountered integrals to obtain the 
useful result 

L W(0, - #, t) = e i~ ROd --, #)F(/z') d#', 

where the R matrix is given by 

R(~ -~ ~) 0#' ' -- e -  u'2 Q(p)~(p)H(#) /.t' + /.t 

x I I +  

/~>_ 0, (41) 

2zl(/t + P') K] HT(ff)n(ff)Qr(p'). 
( z ,  - ~ ' ) ( z l  - ~ )  

(42) 
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Abstract 
A half-range orthogonality relation concerning the elementary solutions of the time-dependent, 

linearized BGK model of the Boltzmann equation is established, and the required normalization integrals 
are evaluated. In addition, the half-space reflection matrix R(#' ~ #) is developed in order to simplify the 
evaluation of various surface quantities. 

R~snm~ 
On 6tablit une relation d'orthogonalit6 sur le demi-domaine angulaire pour les solutions 616mentaires 

du mod61e BGK lin6aris6 de l'6quation de Boltzmann d6pendant du temps et l'on 6value les intbgrales de 
normalisation associ6es. De plus, on d6veloppe la matrice de r6flexion du demi-espace R(tt'-~/~) dans le 
but de simplifier I'6valuation des diff6rentes fonctions de surface. 
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