Journal of Applied Mathematics and Physics (ZAMP)
Vol. 29, 1978 Birkhduser Verlag Basel

Half-range Orthogonality Relations Basic to the Solution
of Time-dependent Boundary Value Problems in the
Kinetic Theory of Gases

By C. E. Siewert '), Laboratoire d’Optique Atmosphérique, Université des Sciences
et Techniques de Lille, France and
J. T. Kriese, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, USA

1. Introduction

We wish to consider here the linearized BGK model of the Boltzmann equation
expressed as [ 1]
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Here A(x, c, {) represents the perturbation of the particle distribution function from
the Maxwellian distribution, ¢, with components c,, ¢,, and ¢, and magnitude c, is
the velocity, f is the time and x is the space variable. Since we are interested here in
temperature-density effects, we can take ‘moments’ of Eqn. (1), in the manner of
Cercignani [1], to obtain equations dependent only on x, ¢, and ¢. Thus we let

¥i(x, e, 1) = ()12 jw jw exp [ —(¢5"+ ¢))Ih(x, ¢, 1) de, de, (3a)

and
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(3b)
so that the density perturbation
AN(x, t) = (m)~ 32 fh(x, ¢, e “dc @
and the temperature perturbation
AT(x,t) = ()~ 3?2 f h(x, ¢, )(c?* — e " d3c (5)
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can be expressed as

o8]
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and ’

o0

[(.uz - %)llll(xa Hy t) + l//Z(x’ Ky t)] e—;ﬂ dﬂ (7)

If we multiply Eqn. (1) by exp (—¢; — ¢7) and integrate from — o0 to o over both
¢, and ¢, and then multiply Eqn. (1) by (c; + ¢ — 1) exp(—¢] — ¢7) and integrate
similarly, we find that we write the two resulting equations as

0

[QuWQ (1)

0 0 172
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where we now use p for ¢,. Here ¥(x, p, ) is a two vector, with elements ¥, (x, u, 1)
and ¥,(x, 4, ). Also

SR
W= . (9a)
and
1 0
P = . (9b)
00

Equations (6) and (7) give the density and temperature perturbations in terms of
W(x, u, t); we note that the xx component of the perturbed pressure tensor

~

AP_(x, 1) = (1) 3 | h(x, ¢, )2 e d3c (10)
J

can also be expressed in terms of ¥(x, u, #):

AP (x, )= (m)~"

1 T 0 R
0 f W(x, u, 1) e * u? du. (11)

From the work of Cercignani [1], we note that the solutions to three scalar
equations would be required, in addition to W(x, u, 1), in order to construct A(x, ¢, 1);
however, the scalar equations can be solved generally with limited difficulty. We thus
focus our attention here on solving Eqn. (8) subject to appropriate constraints.

2. Elementary Solutions

In a recent paper [2], hereafter referred to as SB, a set of elementary solutions
to Eqn. (8) was found by proposing the separation Ansatz

W(x, u, 1) = e D(v, p; ) e G W)
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where s is, in general, a complex parameter. Since we intend to develop here a col-
lection of orthogonality relations that is useful for solving boundary value problems
in terms of the elementary solutions of Eqn. (8), we first wish to summarize some of the
basic results of SB. In terms of the arbitrary parameter s, a solution of Eqn. (8) can
be written as

K

W(x, u, 1) = es‘{ Y [A(va)(l)(va, u;s)exp [—(s + Dx/v,]

a=1

+ A(—v,)®(—v,, u; s)exp [(s + l)x/va]:l

+ J‘oo Oy, u; SH)A(V)y exp [ — (s + Dx/v] dv}, {13)

i)

where the continuum matrix is

A<I>(v, u;s) = 9vPv< >Q(u)(l + yvuD) + 6(v — w e QT TMA(v;5) (14

V= u

and the discrete vectors are

1
D(+v,, p1;8) =0v, (v_??_y) Q) £ yv uD)M(v,; 3). (15)
Here
1 2s 0 0
P ~1/2 _ = 1] D= ]6 b,
f = <s+1) T lo 1‘ (16a, b, c)

and the discrete eigenvalues +v, are the zeros of A(z; s) = det A(z;s), where

A(z;s) =1+ sz W(u;s) df

(17)
-~ B

and
Y(u;s) = e QT (wQ + yu’D). (18)

In addition, M(v,; s) is a null vector of A(v,;s), x is used to denote the number of
+ pairs of zeros of A(z; s) in the complex plane cut along the entire real axis, and
© d}l

AMyv; ) =1+ va_w‘P(u;s)H —

(19)

The scalars A(+v,) and the two-vector A(v) appearing in Eqn. (13) are arbitrary
expansion coefficients to be used to constrain ¥(x, y, f) to meet appropriate boundary
and initial conditions.
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3. Orthogonality Relations and Normalization Integrals

In SB proof (for k = 0) that the elementary solutions given by Eqns. (14) and
(15) are sufficiently general for half-range, u > 0, boundary conditions was given.
Here we wish to show that these eigenvectors are also orthogonal on the half-range
to a related adjoint set (&, ii; s). As will be clearly illustrated in Section IV of this
paper, these adjoint functions allow us to develop concisely solutions to typical
half-space problems. We consider the adjoint functions

e = om0 ()~
+ A ¥ 1y m {MHTW) 6y — ), v >0, (20)
and
v
O7(v,, 13 8) = M (v; Hn(—v, ) H™(v) [vm - PR iv)(zz‘l _— K} (21
with
K =[I+H '(z))DH(—z,)] *H '(z))DH(~-z,). (22)

Here we use the superscript T to denote the transpose operation and the super-
script — T to denote the transpose-inverse operation. In addition we let v, be the
‘positive’ eigenvalue of the pair +v,, and

mz) =1 - (;) D, (23)

1

where \/y z; = i. The H matrix appearing in Eqns. (20) and (21) is that introduced
for this problem in SB. To establish the desired orthogonality relations, we consider
that the H matrix is the solution to the singular integral equation

dx

X~ H

HT(n(uhp; sm ™ () = 1 + pP r HT()Y (x5 5) » pef0, 00),  (24)
4]

and the constraints (for k > 0)

l:l +v, J‘w HY(x)¥ ,(x; 5) cix

:I"(Va)M("aQS) =0, «=12,...,K, (25)
o X —v,
where

Y. (x;5) = n(x)¥(x; s)m™ '(x). (26)

Once H(u), ue[0, w0), is established by solving iteratively

H '(w)=1- #Jm HT(x)¥ . (x; 5) dx

’ HE[O, :X))’ (27)
0 X+ p
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the representation

H(z)=1- sz HT(x)¥ (x;s) -
0

B (= o0,0] (28)
x + Z’ Z¢ (X)’ b
yields H™ !(2) off of the cut. In addition to Eqns. (24) and (25), we note from SB that
H(z) can be used to factor

Q(z;5) = QT(—2z;5) = n(2)Alz; s)n~ '(2) (29)
in the manner

Q(z;5) = H ' (-2)H '(2). (30)
Equations (24), (25), (28) and (30), along with the fact that

Qv,; (v )M(v,; 5) = 0, (31

can now be used to establish the following summary of orthogonality relations and
normalization integrals:

j ) 0O"(v, u; HH (Wn(WQ (W B(v,, 43 s) e pdp = 0, ve(0, ), (32a)

0

J O™ (v, u; HH (Wr(WQ (WD, p; 5) e pdu = vL(v) 8(v — v),
° v, (0, 20), (32b)

J O”(v,, u; HSH (Wn(WQ (WP, p; 5) e e = 0, ve(0, ), (32¢)
0

J 0(v,, u; HH (Wr(WQT (W B(vy, w3 ) e pdp = N(v,) 3, 4. (32d)

0

Here the results for the normalization integrals are

LG) = Mv; )P 1(v; )Mv; 5) + 72v?¥(v; 5) (33)
and y

N, = v;MT(v,; $) 2 [n(@n(= 2) Az $)].=, MV, 5). (34)

In addition to Eqgns. (32), we note that the following integrals can be useful for
parallel plates (i.e., finite slab) problems:

f O7(v, u; HHT(Wn(WQ (WD(—v,, 13 5) e " pdp

0

= w,n \WH () [~1—1
v+,

2z,

- - -1 — .
(Z1+v)(z1+va)KJH (= MO, 5). (0, 0), (35)
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L O7(v, 1; SH (WR(Q (W®(— V', 3 s) e ™" pd

=wa 'MH TW) [v = v’I
_ Bkl tom(=y), vve©, w) (35b)
(z, + V) + V) T

J‘ GT(Va> w; SH (Wr(WQT (w)®( - Vg, 115 5) e ¥ udy

0

= v,y MT(v; )m(—v HT(v,) l:"a v,

_ 2z4 K
(zl + va)(zl + Vp)

]H—l(vﬁ)n(—vg)M(vﬁ;s), (350)
J 0"(v,, u; HH (WR(WQ" (WO(—V', 3 5) ™ pdp
= 1M (v H 1 (0,) [J* .

7
Ve + Vv

2z,

- m K:I HHI(V/)TI!(—V’), v > 0. (35d)

4. An Example Application and the R Matrix

A typical problem for sound-wave propagation in a half space can be solved
concisely in terms of the established formalism. For example, let us seek a solution of
Eqn. (8) that is bounded as x — oo and satisfies a boundary condition of the form

(0, 1, 1) = €*F(n), >0, (36)

where F(u) is considered given. By taking s = iw, we can write

W(x,u;t) = ei“"{ i A )D(v,, u; iw) exp [—(iw + Dx/v,]
1

a=

+ j ®(v, p; imAv)exp [ — (o + Dx/v] dv}»
0 37
where the expansion coefficients are determined by
F(p) = Y A()®(,, 1; iw) + f D, u; iw)A(v) dv, p> 0. (38)
a=1 0

Assuming that Egn. (38) has a solution (this was shown to be true in SB only for
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x = 0), we can now multiply Eqn. (38) by @7 (v,, 1; io)H"(W)m(1)Q7 (1) exp (— u?)p,
integrate over u from 0 to o and use Eqns. (32¢) and (32d) to find

1
N@,)

A(v,) = Jm 0" (v,, u; i)HT ()m()QT()F(w) e p . (39)

In a similar fashion, we can use Eqns. (32a) and (32b) to find
1 ® . .
AQ) = L” () J O7(v, p; i)H" (Wn()Q (WF (1) e~*” p dp. (40)
0
If now we set x = 0 in Eqn. (37), enter Eqn. (39) and Eqn. (40) in that equation

and consider only u < 0, then we can evaluate the encountered integrals to obtain the
useful result

YO, —p,1) = ei”’f R — WF() di, =0, @1)
0
where the R matrix is given by
7 Gﬂ., o
Ry — p) = ——e™*" Q(un()H(n)
w+u
2z,(p + 1) ]
X I —+ 1 - K HT r T , Tr » . 42
{ (zy — W)z, — W) Wm(p)Q (') (42)
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Abstract

A half-range orthogonality relation concerning the elementary solutions of the time-dependent,
linearized BGK model of the Boltzmann equation is established, and the required normalization integrals
are evaluated. In addition, the half-space reflection matrix Ry’ — p) is developed in order to simplify the
evaluation of various surface quantities.

Résumé

On établit une relation d’orthogonalité sur le demi-domaine angulaire pour les solutions élémentaires
du modéle BGK linéarisé de 1’équation de Boltzmann dépendant du temps et I’on évalue les intégrales de
normalisation associées. De plus, on développe la matrice de réflexion du demi-espace R(g' — ) dans le
but de simplifier I’évaluation des différentes fonctions de surface.
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