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ABSTRACT 

This no te  deals wi th  the p rob lem o f  de te rmining  the roots o f  simple algebric equat ions  by  
const ruct ing polynomia l  equat ions  tha t  have the same roots. 

1. AN EXTREMA PROBLEM 

The extrema problem [1] for 
f(~, 7/) = ~IP÷ t~?lq - 1, P > q > 1, (1) 

subject to the linear constraint 
a~ + b~ = c, (2) 

where a, b and c are positive constants, can be 
reduced to seeking the roots of 

x + a x  3+1=  1 , 0 < x <  1, a, fl> 0. (3) 
If 3 is an integer then equation (3) is a polynomial 
equation, and so in our ~iscussions we ~ suppose 
that this is not the case. 
To find explicit solutions, or at least to obtain poly- 
nomial equations, we first introduce the sectionally 
analytic function 

A(z) = 1 -z- a z fl+l, (4) 

where we choose the principal branch of the multi- 

valued function z fl+l, so that the zeros of A(x), x > 0, 
will be the desired roots of equation (3). The limit- 
ing values of A(z) as z approaches the cut, i.e., 

A±(t) = lim A(t -+ ie), t < 0, (5) 
e~0 

can be readily computed from equation (47. We Fred 

A ± (t) = 1 + [tl + alt~ +1 e -+i3rc, t < 0. (6) 

On applying the argument principle to A(z) in the 
cut plane, we find, after writing 

fl= 2 n + f l , - l < f l <  1, n =  0, 1 , 2 , . . . , f l >  0,(7) 

that A(z) has precisely 2 n + 1 zeros. We note from 
equation (6) that A ± (t) does not vanish on the cut. 
It is further evident from the reflection property 

A(z) = A(~) (8) 

that these zeros consist of n conjugate pairs zj and 

zj, j = 1, 2 . . . .  n, and one (and only one) real 

positive zero x 0. 

We now consider the function Xn(Z ) defined by 

z2n-3A(z) =-a(z-x^)  I~ (z-z.)(z- - u j = l  J zJ )xn(z)" (9) 

Clearly Xn(z ) is sectionally analytic and nonzero. 

We further observe on taking the limiting values of 
equation (9) on the cut that 

X;(t)  = Gn(t ) X-n(t), t < 0, (10) 

where 

A+(t) e -2iIr3, t < 0. (11) 
Gn(t) = A-(t) 

Now equation (10) together with the requirement 
that Xn(Z ) ~ 1 as [z[ -- 0% constitutes a so-caUed 

Riemann problem [2] serving to determine Xn(Z ) 

uniquely. The usual method of solution discussed by 
Muskhelishvili [2] leads to 

Xn(Z ) = exp [1 f_0® [arg A+(t)-flu] td~tz], (12) 

where we have chosen arg A + (--) = flTr. Consequent- 
ly we now have the identity 

n 

(z- x0) jll=l (z- zj)(z- ~) = Fn(Z ), (13) 

where 

aFn(Z ) = - z 2n'3 A(z) X2(z ). (14) 

Of interest in this particular example is the real root 
x 0. An explicit expression can, of course, be given 
for the n = 0 case. On setting z = 1, for instance, 
we have 

x 0= 1-~I(I),0< f l<  1, (15) 

where from equation (12) 
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X01(1 ) = exp [1 fO t a n - l ( - ( l + t )  sin.~rr____, dt 
(l+t) cos flrr + at  ~+ l j  t -~] '  

0 < fl < 1. (16) 

The determination of  x o is thus reduced to qua- 

drature. The n = 1 case can be treated in a similar 
manner. 
As an alternative approach to seeking x ° for 
0 < /3 < 1, we can use the theory of  residues [3] 
to write 

1 f A ' ( z ' )  dz" _ A ' ( z ) +  1 , 
2-~ A(z')  z ' - z  ACz) Xo-0fz 0 < f l <  1, 

(17) 

where the contour integral consists o f  a path around 
the cut, that we allow to shrink onto the cut, joined 
to a circle, centered at the origin, whose radius we 
allow to tend to infinity. Since the contribution to 
the integral tends to zero as we allow the radius of  
the circle to increase without bound, we can write 
equation (17) as 

1 = _ A'(z)  + 1__ f0 [F+(t) _ F-(t)] d_t 
x 0 - z  A ( z )  21ri -= t - z '  

0 </3 < 1, (18) 

where F(z) = A'(z)/A(z). We can now use equation 
(6) to write equation (18) as 

1 = A ' ( z )  
x 0 - z A (z) 

tfl(1 +/3 + ~t) dt 
+a- sin f l r r r r  fo i l+t)2 + 2a( l+ t ) t~+lcosf l r r  + ( a - - ~ )  2 t+z '  

0 < fl < 1. (19) 

Equation (19) can of  course be solved for x 0 to 
yield 

x o = z + [- A ' ( z )  
A (z) 

t~(l+ 3 + 3t) dt ]-1 9- 
sinflrt'0f~ (l+t) 2 + 2a( l+t )  v 8+1 cosflTr + (a~+l )  2 t+z 

+ 
Ir  

0 < fl < 1, (20) 

where z is an arbitrary parameter. From a numerical 
point of  view, we have found that on using 

a -1 + (a + 1) (1 + 4 a) 1/2 (21) 
z =  z 0 =  4 a ( a +  1) 

in equation (20) results correct to five significant 
figures could be obtained. 

2. THE GEOMETRIC SERIES 

For a typical annuity calculation we consider [4] 
the geometric series 

S = R(1 + V ÷ V 2 + ... + vm-1),  (22) 

where R is the periodic payment or rent, S is the 
amount of  ordinary annuity of  m payments and 

V = (1 + I) -1, with I being the interest rate per 
payment period. Equation (22) clearly can be 
summed to yield 

R(V m =1)  (23) 
s =  ( V - l )  

For a given m and K = S/R, 1 < K < m, we wish 
to solve equation (23) for the required interest rate. 
If we let 

V = [(K- 1) x] l / m  (24) 

and 
1 - m  

a =  K ( K - l )  m (25) 

we can rewrite equation (23)~as 

l = - x  + a x  1 + /3 (26) 

where 

/3 _ 1 - m ( 2 7 )  
m 

Equation (26) clearly is similar to equation (3) and 
thus we let 

n ( z )  = 1 + z - a ~ f l  + I (28)  

and note that ~2(z) has two zeros (real) in the plane 
cut along the negative real axis. On considering the 
Riemann problem analogous to that defined by 
equation (10), we fred we can write 

~(z) = (z - Xl)(Z - x0) X(z), (29) 

where 

a t  ~+1 Sin ~¢t x(z)=X exp Sotan- ( - 
- 1 + t cos flrr 

d t  

(30) 
and 

1 (31) 
X l = K .  1 • 

We can now solve equation (29) for x 0 : 

x 0 = z -  ~(z)  x ' l ( z ) .  (32) 
z - x 1 

We have found that 

1 (2 K - 1 ~  m (33) 
z = z 0 =  ~ 1  ' 2 K  " 

can be used in equation (32) to yield results accurate 
to five significant figures. 
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