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ABSTRACT

The finite-slab invevse problem for multigroup
neutron transport theory is solved.

INTRODUCTION

In a recent Note,' the inverse problem for multigroup
transport theory was discussed and solved for an infinite
medium. Here we solve the inverse problem for the
considerably more important case of a finite slab.? Tra-
ditionally, we seek to determine the angular flux after
specifying the physical parameters of the medium and
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appropriate boundary conditions. For the inverse problem,
we wish to determine the physical parameters from a
measurement of the flux and the angular distribution of
neutrons leaving the slab.
ANALYSIS
We consider a finite subcritical medium defined by

bome W(x, p) + Z¥(x, )

i:; (2l ; 1>Pz(m01 f_ll W(x, p") Py(ndp'
X € [O,a] . (1)

Here ¥(x, ) is an n X n matrix, the columns of which are
the angular fluxes, T is the diagonal total cross-section
matrix, and the elements of the transfer matrices C; are
the I’th angular components of the transfer cross sections
for fission and scattering. Since we allow ¥(x, ) to be an
n X n matrix, we consider boundary conditions of the form

¥(0,p) = F(p) , p>0, (2a)
and
¥(a,-p) = 0 , p>0, (2b)

where F(u) is an » X n matrix that we consider to be speci-
fied. We note that the a’th column of ¥(x, 1) is the angular
flux vector corresponding to an incident distribution repre-
sented by the a’th column of F(u).

If we multiply Eq. (1) by P;(p) and integrate over p, we
find

(21 + 1) A (x) = (1 + 1) ¥), (%) - 1¥)_(x) , (3)
where
A =Z-C (4
and
¥ = [ P ¥ pdp " (5)

If we multiply Eq. (3), for I =0, by x*,2=0,1,2,3,...,
and integrate over x, we can write

" a
Bo [ W(x) dx = 8,,0%(0) - a™¥(@) + o [ 20 ax

(6)
which, for a = 0, yields
A" = MJ¥,(0) - ¥,(@)] ", (7
where
= j;ax“\llo(x)dx . (8)
From Eq. (3), we see that
V) = -3 AT (29 + W) (9)
which can be used in Eq. (6) to obtain
AM, - X a(a - AT Mon, + a™¥(a) - +aa]?
X {04,1[29,(0) + ¥,(0)] - a" "} [2¥(a) + Wo(a)]}
2 . -
= gale - DAY [{x" g mwar a=1 (10)

We can solve Eq. (10) for a = 1 to obtain
A7 = 3[AcM; +a¥(a)] {2[¥(0) - ¥y(a)] + Wo(0) - Wo(a)} ™ .
(11)

TECHNICAL NOTES

It is clear that we can continue to use Eq. (3) in Eq. (10)
and to integrate by parts to find all of the A; in terms of
spatial moments of the flux M, and angular moments of the
reflected and transmitted angular fluxes, ¥;(0) and ¥(a).
We list the following explicit results:

As' = MNG' (12a)
ATl = 3[AoM, + 0‘1’1(0)]N1-1 ’ (12b)
A;' = {145 AAM, - M0 + 12 15 a®A,%,(a)
+ % a[2¥s(a) + ‘I’o(a)]}Nz_l ) (12¢)
-1 35 35 &
Aj 15 A28140M; - & [35A2 + 28A0]M,; + I 15 ¢ A8 ¥(a)
+ %a Az[2%;(a) + Wola)] + 7a\113(a)} N;* (12d)
and
Al = 105 AzAA A 3
4 64 3828,A0My - ﬁ [35A3A2 + 28A3Ao + 27A1A0]M2
27 105
+ ? M 64 a4A3A2A1‘I',(a)
35 3
+16 @ A4, [2%,(a) + Wo(a)]
+ 15 @ [1485%5(a) - 94,%,(a)]
+ 2 a[8¥,(a) - 3\1:0(a)]} Ny (12¢)
In Egs. (12), we have used
N, = (1+1)[¥,,00) - ¥, (a)] +1[¥,_,(0) - ¥,_,(a)]
(13)
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