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1. Introduction

Some years ago Kriese and Siewert [1] used an idea of Pahor [2], and Pahor and Larson
[3], which can be seen to be closely related to the computational scheme suggested by Shure
and Natelson {4], to incorporate the linear constraint into the calculation of the H matrix
applicable to the scattering of polarized light. It was found [1] that for weakly absorbing media,
o =~ 1, the developed equation for the A matrix converged by iteration much more quickly
than the usual H equation, which as discussed by Lenoble [5] appeared, from a numerical
point-of-view, not to converge at all. This same approach of developing an equation for a func-
tion simply related to the H matrix was also used in neutron-transport studies by Kriese et al.
[6] whose L equation is very similar to the mentioned A equation. In a work devoted to the
scalar version of the L equation [7], it was shown that the non-linear L equation had a unique
solution that yielded the correct H function. The question of how to improve the calculation
of the H matrix has recently been discussed by Mullikin [8].

In addition to the fact that the L equation has led to a more expedient method for com-
puting H matrices, we note that Bowden and Zweifel [9] were able to use the L equation for
one-speed theory to prove, from the functional analysis approach, the existence and uniqueness
of the scalar H function, as defined by the non-linear H equation and one linear constraint, for
multiplying media, ¢ > 1. Thus, since to date only the singular integral equation approach
[10] has been able to deal with factorizations of dispersion matrices for multiplying media, the
utility of the L equation appears to be greater than one only of computational merit.

Here we wish to discuss the general case for H matrices when there may be more than one
linear constraint and to show that the developed L equation has a unique solution that yields
the desired H matrix. We consider first that the dispersion matrix can be written as

1
A(z):I—l—zJ Wiy &

>
-1 x—z

M

where W(x) is the characteristic matrix. We assume that A”(z) = A(—z) and that we know
already that A(z) can be factored as

AT(2) = H T(-2)H1(2). ‘ )
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Here H(y) satisfies the non-linear integral equation

! dx
H'(w=1- ﬂf H(x)¥(x) » pel0,1], (3
0 X+ u

and the constraints

1
[I+v f HT(x)'-l’(x) ]M(v )=0, a=1,2,3,...,x, Y]
and H(z) is defined by
-1 ! T, dx
H™'(2) =I—zJ0 H (x)‘l’(x);:, z¢(—1,0). (5)

Also, x is the index, i.e.; the number of + pairs of zeros of A(z) = det A(z) in the complex
plane cut from —1 to 1 along the real axis. In addition, M(v,) is a normalized null vector of
A,):

AGIM@,) =0 and MT(,)M(v,) = 1. 6)

2. Analysis

We first construct a matrix U, that has M(v,) as the first column and the remaining
elements chosen such that

Uul =1 M
Then we consider

A;(2) = D, (2)UTA(2)U, D, (- 2) ®
where D, (z) is the unit matrix except for the 1-1 element which is

D] =n0r2, ©)
Itisclearthat (i) A ,(z) is a matrix of sectionally analytic functions, asis A(z), (i) A] (2) = A (—2),

(iii) A,(z) is bounded at infinity, (iv) A,(0) = I and (v) A,(z) has associated with it the index
k — 1. Elementary considerations are sufficient to show the existence of U,. We can continue
by writing

A,(2) = D,(2)UIA,(2)U,D,(~2) 10
where the first column of U, is the normalized null vector of A, (v,),
U,U] =1, an
and D,(z) is the unit matrix except for
v,(1 + 2)
D =2 7 12
Ii"z'(z)]u v, +2z (12)

It is clear that A,(z) has the same properties as A(z) except that the index associated with A,(2)
is k — 2. Thus it follows that

AL2) = D(UID,_ (U, - Dy @QUIA@DU D (- 2)- - U, D, ((-UD(~2) (13)

has index zero; but otherwise A, (z) has the same properties as A(z).



848 C. E. Siewert and E. E. Burniston ZAMP

We now define

L~ (—2) =D (-2)UID,_ (—2)UI_,-- - D(~2)UTH T(—-2)U,---U,_ U, (14)
so that we can write
Al(z) = L™T(—2)L™ Y2). (15)

Since L™!(z) is sectionally analytic in the complex plane cut from —1 to 0 along the real axis,
is bounded at infinity, and is unity at z = 0, we can use Cauchy’s formula to deduce

! dx
L'z =1-: L LT(x)K(x) T (16)
where
K(x) = D, ()UD,_,()U;_ ;- D;()UTP(U, D, () --
U D i (=0UD(-x). (17)
If in Eqn. (16) we consider z& [0, 1], we get the non-linear L equation

t d
L7 =1 —p j LT()K(x) ——

0 X+ p

> uel0,1]. (18)

We now wish to show that Eqn. (18) has a unique solution which when used in Eqgn. (14) yields
the desired H matrix. If we write Eqn. (18) as

1
L,T(u)[l—# J KT(x)L(x) -2 }=1 (19)

0 X+ U
and post multiply Eqn. (19) by
dx

1
I+ puP J LT(x0)K(x)

0 X

then we can use some partial-fraction analysis to obtain the singular integral equation

1
LT(wh, (u) = 1 + pP J LT(n)K(n);d_*an ne(0, 1), (20)
9]
where
1
M) =1+ HPJ K(x) & 2y
-1 X —p

If we now show that Eqn. (20) has a unique solution, then so will Eqn. (18) have a unique
solution.
We introduce

dx (22)
x —

1 1
N(z) = ——J LT(x)K(x)
2ni J,
and follow our previous work [10, 11] and that of Muskhelishvili [12] to find
I + 27izN(z) = [X;%,(2) — X T (0) + X7 7(0) + zF(2)]X((2), (23)

where F(z) is a matrix of polynomials (to be determined) and X, (z) is a canonical solution (of
ordered normal form at infinity) of the Riemann-Hilbert problem defined by

Xi () = GX (1), te(0,1). 29

-T
K, asy
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Here
G(0) = [AJ O A (17T, (25)
We note that
Z";c, 1 0
lim X,(2) z ) =K, detK =0, . (©6)
|z|—> o .
0 o

where k, , are the partial indices corresponding to G, (#). Clearly

Y Ky =0. 27
a=1

Since zN(z) must be bounded as |z} — o, it follows from Eqn. (23) that F(z) = 0 if «, , > 0,
a=1,2,3,...,n; thus we would find

1 + 27izN(z) = X T(0)XT(2) (28)
and a unique L(g):
1
L(w) = TK_T(u) [X< () — X (WIX, (0. (29
wip

On the other hand, should any of the «, , be negative then zN(z) would be unbounded as
IZ] — 00, and thus there would be no solution to Eqn. (20). Thus a solution to Eqn. (18), if it
exists, is unique. Since we have assumed a factorization of A(z) in Eqn. (2), we know that
H ™ (u) exists and thus so does L~ *(u). Based on this assumption, we deduce that the solution to
Eqn. (18) is unique and that by way of Eqn. (14) it must yield the desired H matrix.

It is clear that to relax the assumption of Eqn. (2) we should try to prove that all x, , are
non negative. We hope to pursue this point in a later work.
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Abstract

A method of computing H matrices appropriate to (for example) studies of multigroup neutron-
transport theory and rarefied-gas dynamics is proposed.

Zusammenfassung

Eine Methode zur Berechnung von H- Matrizen, die z.B. fiir Studien von Problemen der Mehirfach-
gruppen-Neutronen-Transport-Theorie und der Dynamik verdiinnter Gase geeignet ist, wird vorge-
schlagen.
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