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1. Introduction 

Some years ago Kriese and Siewert [1] used an idea of Pahor [2], and Pahor and Larson 
[3], which can be seen to be closely related to the computational scheme suggested by Shure 
and Natelson [4], to incorporate the linear constraint into the calculation of the H matrix 
applicable to the scattering of polarized light. It was found [ 1 ] that for weakly absorbing media, 
co ~ 1, the developed equation for the A matrix converged by iteration much more quickly 
than the usual H equation, which as discussed by Lenoble [5] appeared, from a numerical 
point-of-view, not to converge at all. This same approach of developing an equation for a func- 
tion simply related to the H matrix was also used in neutron-transport studies by Kriese et al. 
[6] whose L equation is very similar to the mentioned A equation. In a work devoted to the 
scalar version of the L equation [7], it was shown that the non-linear L equation had a unique 
solution that yielded the correct H function. The question of how to improve the calculation 
of the H matrix has recently been discussed by Mullikin [8]. 

In addition to the fact that the L equation has led to a more expedient method for com- 
puting H matrices, we note that Bowden and Zweifel [9] were able to use the L equation for 
one-speed theory to prove, from the functional analysis approach, the existence and uniqueness 
of the scalar H function, as defined by the non-linear H equation and one linear constraint, for 
multiplying media, c > 1. Thus, since to date only the singular integral equation approach 
[10] has been able to deal with factorizations of dispersion matrices for multiplying media, the 
utility of the L equation appears to be greater than one only of computational merit. 

Here we wish to discuss the general case for H matrices when there may be more than one 
linear constraint and to show that the developed L equation has a unique solution that yields 
the desired H matrix. We consider first that the dispersion matrix can be written as 

A(z) = I + z f 1 ~(x)  - - , d x  (1) 
j -  1 X - -  Z 

where ~g(x) is the characteristic matrix. We assume that At(z) = A ( - z )  and that we know 
already that A(z) can be factored as 

At(z) = H -  r ( _  z)H- X(z). (2) 
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Here H(#) satisfies the non-linear integral equation 

f o L dx H-a(#)  = I - # Hr(x)~F(x) x ~  ~, #~[0 ,  13, (3) 

and the constraints 

I + v~ Hr(x)~F(x) M(v~) = 0, ~ = 1, 2, 3 . . . . .  ~, (4) 
X - -  V~ 

and H(z) is defined by 

f o  dx H-~(z) = I - z Ht(x)'ql(x) - - ,  z r  (5) 
x + z  

Also, ~ is the index, i.e.i the number of ___ pairs of zeros of A(z) = det A(z) in the complex 
plane cut from - 1 to 1 along the real axis. In addition, M(v,) is a normalized null vector of 
A(v,) : 

A(v,)M(v~)=0 and Mr(v,)M(v~)= 1. (6) 

2. Analysis 

We first construct a matrix U 1 that has M(vt) as the first column and the remaining 
elements chosen such that 

U1U ~ = I. (7) 

Then we consider 

Al(z ) = DI(z)U~A(z)U1Da(-  z ) (8) 

where Da(z ) is the unit matrix except for the 1-1 element which is 

IDl (z ) l  - v~(t + z ) 1 1  V 1 + z  (9) 

It is clear that (i) A 1 (z) is a matrix of sectionally analytic functions, as is A(z), (ii) A at(z) = A 1( - z), 
(iii) hi(z) is bounded at infinity, (iv) AI(0) = I and (v) Al(z) has associated with it the index 

- 1. Elementary considerations are sufficient to show the existence of Ua. We can continue 
by writing 

A2(z ) = D2(z)U~AI(z)U2Dz(-z ) (10) 

where the first column of U 2 is the normalized null vector of A~(v2), 

U2U ~ = I, (1 l) 

and D2(z ) is the unit matrix except for 

I -D2(z-)]al - v 2 ( l  + z ) v  2 + z  (12) 

It is clear that A2(z ) has the same properties as A(z) except that the index associated with A2(z ) 
is ~ - 2. Thus it follows that 

h~(z) = D~(z)U~D~_x(r z)U~_l. " r  .D I ( z )UrA( z )U1DI (_z ) . . .U K _ID ~_I (_ z )U ~D ~(_z )  (13) 

has index zero; but otherwise A~(z) has the same properties as A(z). 
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We now define 

L-  r( _ z) r r = D ~ ( -  z)U~ D~ _ 1( - z)U~_ 1 - . . D x ( - z ) u r H - r ( - z ) U t  . .  -U~_ ~U~ (14) 

so that we can write 

A~(z) = L-  T(_ z)L- l(z). (15) 

Since L - l ( z )  is sectionally analytic in the complex plane cut from - 1 to 0 along the real axis, 
is bounded at infinity, and is unity at z = 0, we can use Cauchy's formula to deduce 

fo dx L- l (z )  = I - z Lr (x)K(x) -  , (16) 
x + z  

where 

K ( x )  = D ~  ( x )U~r  D ~  _ l ( x ) U ~  - 1 . �9 D I ( x ) U ~ ' P ( x ) U 1 D I ( -  x ) .  . 

U~_ 1 D~_ 1 ( -  x)U~ D,~(- x). (17) 

If in Eqn. (16) we consider z s [0, 1], we get the non-l inear L equation 

/o t dx L-~(#) = I - /~ L T ( x ) K ( x ) ~ + ~ ,  # e [ 0 ,  1]. (18) 

We now wish to show that Eqn. (18) has a unique solution which when used in Eqn. (14) yields 
the desired H matrix. If we write Eqn. (18) as 

LT(#) I -- # Kr(x)L(x) x ~  = I (19) 

and post multiply Eqn. (19) by 

fo dx I + #P  L r ( x ) K ( x ) -  
x - #  

then we can use some partial-fraction analysis to obtain the singular integral equation 

f o L dn # LT(u)k~(/~) = I + ,uP Lr(t/)K(t/) n /~ e (0, 1), (20) 

where 

f L~(/~) = I + gP K ( x ) - - - -  (21) 
-x x - #  

If we now show that Eqn. (20) has a unique solution, then so will Eqn. (18) have a unique 
solution. 

We introduce 

N(z) = ~m" Lr (x )K(x ) - -x - z  (22) 

and follow our previous work [10, 11] and that of Muskhelishvili [12] to find 

I + 2~zizN(z) = I X -  r y(z) - X-  r y(0) + X~- r(0) + zF(z)]X~(z), (23) 

where F(z) is a matrix of polynomials (to be determined) and X~(z) is a canonical solution (of 
ordered normal form at infinity) of the Riemann-Hi lber t  problem defined by 

X+(t) = G~(t)X2(t), te(O, 1). (24) 
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Here 

G~(t) = [A+(t)]r[A~-(t)]-  r. 

We note that limxz[Zo 0] 
ZK~, 2 = K, 

ZKg, n 

(25) 

det K r 0, (26) 

where ~ , ,  are the partial indices corresponding to G~(t). Clearly 

~ ~%,~ = 0. (27) 

Since zN(z) must be bounded as Iz[ ~ oe, it follows from Eqn. (23) that F(z) - 0 if x~,, > 0, 
c~ = 1, 2, 3 . . . .  , n; thus we would find 

I + 2nizN(z) = X~-r(O)X~(z) (28) 

and a unique L(#) : 

1 
L(#) = K -  r(#) IX + (p) _ X~- (p)]X~- 1(0). (29) 

2nip 

On the other hand, should any of the xK,, be negative then zN(z) would be unbounded as 
lzl--* m,  and thus there would be no solution to Eqn. (20). Thus a solution to Eqn. (18), if it 
exists, is unique. Since we have assumed a factorization of A(z) in Eqn. (2), we know that 
H -  l(p) exists and thus so does L -  1(#). Based on this assumption, we deduce that the solution to 
Eqn. (18) is unique and that by way of Eqn. (14) it must yield the desired H matrix. 

It is clear that to relax the assumption of Eqn. (2) we should try to prove that all x~,~ are 
non negative. We hope to pursue this point in a later work. 
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Abstraet 

A method of computing H matrices appropriate to (for example) studies of multigroup neutron- 
transport theory and rarefied-gas dynamics is proposed. 

Zusammenfassung 
Eine Methode zur Berechnung von H- Matrizen, die z.B. fiir Studien von Problemen der Mehrfach- 

gruppen-Neutronen-Transport-Theorie und der Dynamik verdiinnter Gase geeignet ist, wird vorge- 
schlagen. 
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